- Akita, R. ; Yoshihara, A. ; Matsubara, T. ; Uehara, K. Deep learning for stock prediction using numerical and textual information. 2016 En : 2016 IEEE/ACIS 15th International Conference on Computer and Information Science. IEEE:
Paper not yet in RePEc: Add citation now
Alquist, R. ; Kilian, L. What do we learn from the price of crude oil futures?. 2010 J. Appl. Econometrics. 25 539-573
Alquist, R. ; Kilian, L. ; Vigfusson, R.J. Forecasting the price of oil. 2013 En : Elliott, G. ; Timmermann, A. Handbook of Economic Forecasting. North Holland:
- Bai, X. Predicting consumer sentiments from online text. 2011 Decis. Support Syst.. 50 732-742
Paper not yet in RePEc: Add citation now
- Baughman, M. ; Haas, C. ; Wolski, R. ; Foster, I. ; Chard, K. Predicting amazon spot prices with LSTM networks. 2018 En : Proceedings of the 9th Workshop on Scientific Cloud Computing. Association for Computing Machinery: New York, NY, USA
Paper not yet in RePEc: Add citation now
Baumeister, C. ; Kilian, L. Forecasting the real price of oil in a changing world: A forecast combination approach. 2015 J. Bus. Econom. Statist.. 33 338-351
- Baumeister, C. ; Kilian, L. Real-time forecasts of the real price of oil. 2012 J. Bus. Econom. Statist.. 30 326-336
Paper not yet in RePEc: Add citation now
Baumeister, C. ; Kilian, L. ; Zhou, X. Are product spreads useful for forecasting oil prices? An empirical evaluation of the verleger hypothesis. 2018 Macroecon. Dyn.. 22 562-580
- Bengio, Y. ; Simard, P. ; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. 1994 IEEE Trans. Neural Netw.. 5 157-166
Paper not yet in RePEc: Add citation now
Çepni, O. ; Gupta, R. ; Pienaar, D. ; Pierdzioch, C. Forecasting the realized variance of oil-price returns using machine learning: Is there a role for US state-level uncertainty?. 2022 Energy Econ.. 114 -
- Ceron, A. ; Curini, L. ; Iacus, S.M. ; Porro, G. Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens’ political preferences with an application to Italy and France. 2014 New Med. Soc.. 16 340-358
Paper not yet in RePEc: Add citation now
- Cerqueira, V. ; Torgo, L. ; Mozetič, I. Evaluating time series forecasting models: An empirical study on performance estimation methods. 2020 Mach. Learn.. 109 1997-2028
Paper not yet in RePEc: Add citation now
- Chai, J. ; Xing, L.-M. ; Zhou, X.-Y. ; Zhang, Z.G. ; Li, J.-X. Forecasting the WTI crude oil price by a hybrid-refined method. 2018 Energy Econ.. 71 114-127
Paper not yet in RePEc: Add citation now
- Cheon, A. ; Urpelainen, J. Oil prices and energy technology innovation: An empirical analysis. 2012 Glob. Environ. Change. 22 407-417
Paper not yet in RePEc: Add citation now
Date, P. ; Mamon, R. ; Tenyakov, A. Filtering and forecasting commodity futures prices under an HMM framework. 2013 Energy Econ.. 40 1001-1013
Diebold, F.X. Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of diebold–mariano tests. 2015 J. Bus. Econom. Statist.. 33 -
Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 2002 J. Bus. Econ. Statist.. 20 134-144
- EIA, E.I.A. Spot prices. 2020 :
Paper not yet in RePEc: Add citation now
Fischer, T. ; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. 2018 European J. Oper. Res.. 270 654-669
- Ghoddusi, H. ; Creamer, G.G. ; Rafizadeh, N. Machine learning in energy economics and finance: A review. 2019 Energy Econ.. 81 709-727
Paper not yet in RePEc: Add citation now
- Gholamy, A. ; Kreinovich, V. ; Kosheleva, O. Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. 2018 :
Paper not yet in RePEc: Add citation now
Godarzi, A.A. ; Amiri, R.M. ; Talaei, A. ; Jamasb, T. Predicting oil price movements: A dynamic artificial neural network approach. 2014 Energy Policy. 68 371-382
- He, Y. ; Zhou, D. Self-training from labeled features for sentiment analysis. 2011 Inf. Process. Manage.. 47 606-616
Paper not yet in RePEc: Add citation now
- Henry, E. Henry’s finance-specific dictionary. 2008 :
Paper not yet in RePEc: Add citation now
- Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. 1991 Diploma Tech. Univ. München. 91 -
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput.. 9 1735-1780
Paper not yet in RePEc: Add citation now
Hu, J.W.-S. ; Hu, Y.-C. ; Lin, R.R.-W. Applying neural networks to prices prediction of crude oil futures. 2012 Math. Probl. Eng.. 2012 -
- Hutto, C.J., Gilbert, E., 2014. VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. In: Eighth International AAAI Conference on Weblogs and Social Media.
Paper not yet in RePEc: Add citation now
Jammazi, R. ; Aloui, C. Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. 2012 Energy Econ.. 34 828-841
Knetsch, T.A. Forecasting the price of crude oil via convenience yield predictions. 2007 J. Forecast.. 26 527-549
Lautier, D. ; Galli, A. Simple and extended Kalman filters: an application to term structures of commodity prices. 2004 Appl. Financial Econ.. 14 963-973
- Li, J. ; Xu, Z. ; Yu, L. ; Tang, L. Forecasting oil price trends with sentiment of online news articles. 2016 Procedia Comput. Sci.. 91 1081-1087
Paper not yet in RePEc: Add citation now
Li, Y. ; Jiang, S. ; Li, X. ; Wang, S. The role of news sentiment in oil futures returns and volatility forecasting: data-decomposition based deep learning approach. 2021 Energy Econ.. 95 -
Lin, L. ; Jiang, Y. ; Xiao, H. ; Zhou, Z. Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model. 2020 Physica A. -
- Liu, B. Sentiment Analysis and Opinion Mining. 2012 Morgan & Claypool Publishers:
Paper not yet in RePEc: Add citation now
- Loughran, T. ; McDonald, B. Oughran-McDonald master dictionary. 2018 :
Paper not yet in RePEc: Add citation now
Lu, Q. ; Li, Y. ; Chai, J. ; Wang, S. Crude oil price analysis and forecasting: A perspective of “new triangle”. 2020 Energy Econ.. 87 -
- Luo, Z. ; Chen, J. ; Cai, X.J. ; Tanaka, K. ; Takiguchi, T. ; Kinkyo, T. ; Hamori, S. Oil price forecasting using supervised GANs with continuous wavelet transform features. 2018 En : 2018 24th International Conference on Pattern Recognition. IEEE:
Paper not yet in RePEc: Add citation now
Manoliu, M. ; Tompaidis, S. Energy futures prices: term structure models with Kalman filter estimation. 2002 Appl. Math. Finance. 9 21-43
- Medhat, W. ; Hassan, A. ; Korashy, H. Sentiment analysis algorithms and applications: A survey. 2014 Ain Shams Eng. J.. 5 1093-1113
Paper not yet in RePEc: Add citation now
Monge, M. ; Gil-Alana, L.A. ; de Gracia, F.P. US shale oil production and WTI prices behaviour. 2017 Energy. 141 12-19
Movagharnejad, K. ; Mehdizadeh, B. ; Banihashemi, M. ; Kordkheili, M.S. Forecasting the differences between various commercial oil prices in the Persian gulf region by neural network. 2011 Energy. 36 3979-3984
- OECD, K. OECD total inflation (2015=100). 2020 :
Paper not yet in RePEc: Add citation now
- Olah, C. ; Cammarata, N. ; Schubert, L. ; Goh, G. ; Petrov, M. ; Carter, S. Zoom in: An introduction to circuits. 2020 Distill. 5 e00024-001
Paper not yet in RePEc: Add citation now
- Pagolu, V.S. ; Reddy, K.N. ; Panda, G. ; Majhi, B. Sentiment analysis of Twitter data for predicting stock market movements. 2016 En : 2016 International Conference on Signal Processing, Communication, Power and Embedded System. IEEE:
Paper not yet in RePEc: Add citation now
Park, J. ; Ratti, R.A. Oil price shocks and stock markets in the US and 13 European countries. 2008 Energy Econ.. 30 2587-2608
Qadan, M. ; Nama, H. Investor sentiment and the price of oil. 2018 Energy Econ.. 69 42-58
Qin, Q. ; Xie, K. ; He, H. ; Li, L. ; Chu, X. ; Wei, Y.-M. ; Wu, T. An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction. 2019 Energy Econ.. 83 402-414
- Qiu, G. ; He, X. ; Zhang, F. ; Shi, Y. ; Bu, J. ; Chen, C. DASA: dissatisfaction-oriented advertising based on sentiment analysis. 2010 Expert Syst. Appl.. 37 6182-6191
Paper not yet in RePEc: Add citation now
Ramyar, S. ; Kianfar, F. Forecasting crude oil prices: A comparison between artificial neural networks and vector autoregressive models. 2019 Comput. Econ.. 53 743-761
- Ribeiro, F.N. ; Araújo, M. ; Gonçalves, P. ; Gonçalves, M.A. ; Benevenuto, F. Sentibench-a benchmark comparison of state-of-the-practice sentiment analysis methods. 2016 EPJ Data Sci.. 5 1-29
Paper not yet in RePEc: Add citation now
- Sadik, Z.A. ; Date, P.M. ; Mitra, G. Forecasting crude oil futures prices using global macroeconomic news sentiment. 2020 IMA J. Manag. Math.. 31 191-215
Paper not yet in RePEc: Add citation now
- Samek, W. ; Montavon, G. ; Vedaldi, A. ; Hansen, L.K. ; Müller, K.-R. . 2019 Springer Nature:
Paper not yet in RePEc: Add citation now
Spiegel, U. ; Tavor, T. ; Templeman, J. The effects of rumours on financial market efficiency. 2010 Appl. Econ. Lett.. 17 1461-1464
Tetlock, P.C. Giving content to investor sentiment: The role of media in the stock market. 2007 J. Finance. 62 1139-1168
Verleger, P.K. The determinants of official OPEC crude prices. 1982 Rev. Econ. Stat.. 177-183
Wu, C. ; Wang, J. ; Hao, Y. Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm. 2022 Resour. Policy. 77 -
Xing, L.-M. ; Zhang, Y.-J. Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and huber loss help?. 2022 Energy Econ.. 110 -
Xu, K. ; Niu, H. Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?. 2022 Technol. Forecast. Soc. Change. 184 -
- Yu, Y. ; Duan, W. ; Cao, Q. The impact of social and conventional media on firm equity value: A sentiment analysis approach. 2013 Decis. Support Syst.. 55 919-926
Paper not yet in RePEc: Add citation now
- Zhao, L. ; Zeng, G. ; Wang, W. ; Zhang, Z. Forecasting oil price using web-based sentiment analysis. 2019 Energies. 12 4291-
Paper not yet in RePEc: Add citation now
Zhao, Y. ; Li, J. ; Yu, L. A deep learning ensemble approach for crude oil price forecasting. 2017 Energy Econ.. 66 9-16