Adams, Z. ; Glück, T. Financialization in commodity markets: a passing trend or the new normal?. 2015 J. Bank. Financ.. 60 93-111
AlKathiri, N. ; Al-Rashed, Y. ; Doshi, T.K. ; Murphy, F.H. “Asian premium” or “North Atlantic discount”: does geographical diversification in oil trade always impose costs?. 2017 Energy Econ.. 66 411-420
Ando, T. ; Greenwood-Nimmo, M. ; Shin, Y. Quantile connectedness: modeling tail behavior in the topology of financial networks. 2022 Manag. Sci.. 68 2401-2431
Asadi, M. ; Roudari, S. ; Tiwari, A.K. ; Roubaud, D. Scrutinizing commodity markets by quantile spillovers: a case study of the Australian economy. 2023 Energy Econ.. 118 -
Baruník, J. ; Křehlík, T. Measuring the frequency dynamics of financial connectedness and systemic risk. 2018 J. Financ. Econ.. 16 271-296
Bouri, E. ; Nekhili, R. ; Todorova, N. Dynamic co-movement in major commodity markets during crisis periods: a wavelet local multiple correlation analysis. 2023 Financ. Res. Lett.. 55 -
Cabrera, B.L. ; Schulz, F. Volatility linkages between energy and agricultural commodity prices. 2016 Energy Econ.. 54 190-203
Cagli, E.C. The volatility spillover between battery metals and future mobility stocks: evidence from the time-varying frequency connectedness approach. 2023 Res. Policy. 86 -
Chen, H. ; Sun, Z. International crude oil price, regulation and asymmetric response of China’s gasoline price. 2021 Energy Econ.. 94 -
Chen, Z.H. ; Gao, X. ; Insuwan, A. Dynamic information spillover between Chinese carbon and stock markets under extreme weather shocks. 2023 Human. Soc. Sci. Commun.. 10 1-12
Cui, J. ; Maghyereh, A. Unveiling interconnectedness: exploring higher-order moments among energy, precious metals, industrial metals, and agricultural commodities in the context of geopolitical risks and systemic stress. 2024 J. Commod. Mark.. 33 -
Da, Z. ; Tang, K. ; Tao, Y. ; Yang, L. Financialization and commodity markets serial dependence. 2024 Manag. Sci.. 70 2122-2143
Dai, Z. ; Zhu, J. ; Zhang, X. Time-frequency connectedness and cross-quantile dependence between crude oil, Chinese commodity market, stock market and investor sentiment. 2022 Energy Econ.. 114 -
Diebold, F.X. ; Yilmaz, K. Better to give than to receive: predictive directional measurement of volatility spillovers. 2012 Int. J. Forecast.. 28 57-66
Diebold, F.X. ; Yılmaz, K. On the network topology of variance decompositions: measuring the connectedness of financial firms. 2014 J. Econ.. 182 119-134
Duan, K. ; Ren, X. ; Wen, F. ; Chen, J. Evolution of the information transmission between Chinese and international oil markets: a quantile-based framework. 2023 J. Commod. Mark.. 29 -
- Fernández-Macho, J. Time-localized wavelet multiple regression and correlation. 2018 Phys. A Stat. Mechan. Appl.. 492 1226-1238
Paper not yet in RePEc: Add citation now
Gao, Y. ; Zhou, Y. ; Zhao, L. Quantile interdependence and network connectedness between China's green financial and energy markets. 2024 Econom. Analys. Policy. 81 1148-1177
Gong, X. ; Xu, J. Geopolitical risk and dynamic connectedness between commodity markets. 2022 Energy Econ.. 110 -
Guo, Y. ; Li, P. ; Wu, H. Jumps in the Chinese crude oil futures volatility forecasting: new evidence. 2023 Energy Econ.. 126 -
- Huang, X. ; Huang, S. Identifying the comovement of price between China’s and international crude oil futures: a time-frequency perspective. 2020 Int. Rev. Financ. Anal.. 72 -
Paper not yet in RePEc: Add citation now
Ji, Q. ; Zhang, D. ; Zhao, Y. Intra-day co-movements of crude oil futures: China and the international benchmarks. 2022 Ann. Oper. Res.. 313 77-103
- Jiang, Z. ; Zhang, L. ; Zhang, L. ; Wen, B. Investor sentiment and machine learning: predicting the price of China’s crude oil futures market. 2022 Energy. 247 -
Paper not yet in RePEc: Add citation now
- Joo, K. ; Jeong, M. ; Seo, Y. ; Suh, J.H. ; Ahn, K. Shanghai crude oil futures: flagship or burst?. 2021 Energy Rep.. 7 4197-4204
Paper not yet in RePEc: Add citation now
Kang, S.H. ; Yoon, S.M. Dynamic correlation and volatility spillovers across Chinese stock and commodity futures markets. 2020 Int. J. Financ. Econ.. 25 261-273
Li, Y. ; Shi, Y. ; Shi, Y. ; Xiong, X. ; Yi, S. Time-frequency extreme risk spillovers between COVID-19 news-based panic sentiment and stock market volatility in the multi-layer network: evidence from the RCEP countries. 2024 Int. Rev. Financ. Anal.. 94 -
Liu, M. ; Lee, C.C. Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting. 2021 Energy Econ.. 103 -
- Londono, J.M. Bad bad contagion. 2019 J. Bank. Financ.. 108 -
Paper not yet in RePEc: Add citation now
Martínez, J.M.P. ; Abadie, L.M. ; Fernández-Macho, J. A multi-resolution and multivariate analysis of the dynamic relationships between crude oil and petroleum-product prices. 2018 Appl. Energy. 228 1550-1560
Ouyang, R. ; Zhang, X. Financialization of agricultural commodities: evidence from China. 2020 Econ. Model.. 85 381-389
Ouyang, R. ; Zhuang, C. ; Wang, T. ; Zhang, X. Network analysis of risk transmission among energy futures: an industrial chain perspective. 2022 Energy Econ.. 107 -
- Polanco-Martínez, J.M. ; Fernández-Macho, J. ; Medina-Elizalde, M. Dynamic wavelet correlation analysis for multivariate climate time series. 2020 Sci. Rep.. 10 21277-
Paper not yet in RePEc: Add citation now
Ren, Y. ; Tan, A. ; Zhu, H. ; Zhao, W. Does economic policy uncertainty drive nonlinear risk spillover in the commodity futures market?. 2022 Int. Rev. Financ. Anal.. 81 -
Shah, M.I. ; Foglia, M. ; Shahzad, U. ; Fareed, Z. Green innovation, resource price and carbon emissions during the COVID-19 times: new findings from wavelet local multiple correlation analysis. 2022 Technol. Forecast. Soc. Chang.. 184 -
Shi, X. ; Sun, S. Energy price, regulatory price distortion and economic growth: a case study of China. 2017 Energy Econ.. 63 261-271
Sun, G. ; Li, J. ; Shang, Z. Return and volatility linkages between international energy markets and Chinese commodity market. 2022 Technol. Forecast. Soc. Chang.. 179 -
Wang, S. Tail dependence, dynamic linkages, and extreme spillover between the stock and China’s commodity markets. 2023 J. Commod. Mark.. 29 -
Wei, Y. ; Wang, Y. ; Vigne, S.A. ; Ma, Z. Alarming contagion effects: the dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets. 2023 J. Int. Financ. Mark. Inst. Money. 88 -
Wei, Y. ; Zhang, Y. ; Wang, Y. Information connectedness of international crude oil futures: Evidence from SC, WTI, and Brent. 2022 Int. Rev. Financ. Anal.. 81 -
Xie, Q. ; Bai, Y. ; Jia, N. ; Xu, X. Do macroprudential policies reduce risk spillovers between energy markets?: evidence from time-frequency domain and mixed-frequency methods. 2024 Energy Econ.. 134 -
- Yang, J. ; Zhou, Y. Return and volatility transmission between China’s and international crude oil futures markets: a first look. 2020 J. Futur. Mark.. 40 860-884
Paper not yet in RePEc: Add citation now
Yang, Y. ; Ma, Y.R. ; Hu, M. ; Zhang, D. ; Ji, Q. Extreme risk spillover between Chinese and global crude oil futures. 2021 Financ. Res. Lett.. 40 -
Zeng, H. ; Abedin, M.Z. ; Zhou, X. ; Lu, R. Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices. 2024 Int. Rev. Financ. Anal.. 92 -
Zhang, D. ; Shi, M. ; Shi, X. Oil indexation, market fundamentals, and natural gas prices: an investigation of the Asian premium in natural gas trade. 2018 Energy Econ.. 69 33-41
- Zhang, Q. ; Hu, Y. ; Jiao, J. ; Wang, S. Is refined oil price regulation a “shock absorber” for crude oil price shocks?. 2023 Energy Policy. 173 -
Paper not yet in RePEc: Add citation now
Zhao, M. ; Park, H. Quantile time-frequency spillovers among green bonds, cryptocurrencies, and conventional financial markets. 2024 Int. Rev. Financ. Anal.. 93 -