Alizadeh, A.H. ; Nomikos, N.K. ; Pouliasis, P.K. A Markov regime switching approach for hedging energy commodities. 2008 J. Bank. Financ.. 32 1970-1983
Anghel, D.G. ; Caraiani, P. The volatility connectedness of US industries: the role of investor sentiment. 2024 Econ. Lett.. 245 -
Asgharian, H. ; Hou, A.J. ; Javed, F. The importance of the macroeconomic variables in forecasting stock return variance: a GARCH-MIDAS approach. 2013 J. Forecast.. 32 600-612
- Barndorff-Nielsen, ; Ole, E. ; Neil, S. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. 2002 J. R. Stat. Soc. B. 64 253-280
Paper not yet in RePEc: Add citation now
Baumeister, C. ; Kilian, L. Forecasting the real price of oil in a changing world: a forecast combination approach. 2015 J. Bus. Econ. Stat.. 33 338-351
Baumeister, C. ; Kilian, L. Forty years of oil price fluctuations: why the price of oil may still surprise us. 2016 J. Econ. Perspect.. 30 139-160
Ben, N.A. ; Lux, T. ; Ajmi, A.N. ; Gupta, R. Forecasting the volatility of the Dow Jones Islamic stock market index: long memory vs. regime switching. 2016 Int. Rev. Econ. Financ.. 45 559-571
Calvet, L. ; Fisher, A. Regime-switching and the estimation of multifractal processes. 2004 J. Financ. Econ.. 2 44-83
Calvet, L. ; Fisher, A. ; Thompson, S. Volatility comovement: a multifrequency approach. 2006 J. Econ.. 131 179-215
Chen, C. ; Hu, C. ; Wu, L. Feedback trading, investor sentiment and the volatility puzzle: an infinite theoretical framework. 2023 Mathematics. 11 3148-
Chen, R. ; Wang, S. ; Ye, M. ; Jin, C. ; Chen, S. Cross-market investor sentiment of energy futures and return comovements. 2022 Financ. Res. Lett.. 50 -
Chen, Y.L. ; Mo, W.S. ; Chang, Y.K. Investor sentiment spillover effect and market quality in crude oil futures. 2022 Int. Rev. Econ. Financ.. 82 177-193
Cheong, C.W. Modeling and forecasting crude oil markets using ARCH-type models. 2009 Energy Policy. 37 2346-2355
Choi, D. ; Gao, Z. ; Jiang, W. Attention to global warming. 2020 Rev. Financ. Stud.. 33 1112-1145
Christinsen, C. ; Schmeling, M. ; Schrimpf, A. A comprehensive look at financial volatility prediction by economic variables. 2012 J. Appl. Econ.. 27 956-977
Clark, T.E. ; West, K.D. Approximately normal tests for equal predictive accuracy in nested models. 2007 J. Econ.. 138 -
Conrad, C. ; Loch, K. Anticipating long-term stock market volatility. 2012 J. Appl. Econ.. 30 -
Corsi, F. A simple approximate long-memory model of realized volatility. 2009 J. Financ. Econ.. 7 174-196
Dai, P.F. ; Xiong, X. ; Zhang, J. ; Zhou, W.X. The role of global economic policy uncertainty in predicting crude oil futures volatility: evidence from a two-factor GARCH-MIDAS model. 2022 Res. Policy. 78 -
Das, S. ; Demirer, R. ; Gupta, R. ; Mangisa, S. The effect of globle crises on stock market correlations: evidence from scaler regressions via functional data analysis. 2019 Struct. Chang. Econ. Dyn.. 50 132-147
Dong, X. ; Yoon, S. Effect of weather and environmental attentions on financial system risks: evidence from Chinese high- and low-carbon assets. 2023 Energy Econ.. 121 -
El Ouadghiri, I. ; Guesmi, K. ; Peillex, J. ; Ziegler, A. Public attention to environmental issues and stock market returns. 2021 Ecol. Econ.. 180 -
- Energy Argus Petroleum Coke Group, Low-Sulphur fuel oil prices at 16-year high. 2019 Energy Argus Pet. Coke. 19 18-19
Paper not yet in RePEc: Add citation now
Engle, R.F. ; Ghysels, E. ; Sohn, B. Stock market volatility and macroeconomic fundamentals. 2013 Rev. Econ. Stat.. 95 776-797
Engle, R.F. ; Giglio, S. ; Kelly, B. ; Lee, H. ; Stroebel, J. Hedging climate change news. 2020 Rev. Financ. Stud.. 33 1184-1216
Fang, T. ; Lee, T.H. ; Su, Z. Predicting the long-term stock market volatility: a GARCH-MIDAS model with variable selection. 2020 J. Empir. Financ.. 58 36-49
- Feng, Y.S. ; Cao, B.M. Multifractal fluctuation analysis of correlation between agricultural futures market in China and the US based on MF-X-DFA and MF-DPXA methods. 2022 Fluct. Noise. Lett.. 21 1-19
Paper not yet in RePEc: Add citation now
Ghazani, M.M. ; Khosravi, R. Multifractal detrended cross-correlation analysis on benchmark cryptocurrencies and crude oil prices. 2020 Physica A. 51 -
Giglio, S. ; Maggiori, M. ; Rao, K. ; Stroebel, J. ; Weber, A. Climate change and longrun discount rates: evidence from real estate. 2021 Rev. Financ. Stud.. 34 3527-3571
Gong, X. ; Zhang, W. ; Wang, J. ; Wang, C. Investor sentiment and stock volatility: new evidence. 2022 Int. Rev. Financ. Anal.. 80 -
Granger, C.W. ; Jeon, Y. Long-term forecasting and evaluation. 2007 Int. J. Forecast.. 23 539-551
Guo, Y. ; He, F. ; Liang, C. ; Ma, F. Oil price volatility predictability: new evidence from a scaled PCA approach. 2022 Energy Econ.. 105 -
Hamilton, J.D. Oil and the macroeconomy since world war II. 1983 J. Polit. Econ.. 91 28-248
Hansen, P.R. ; Lunde, A. A forecast comparison of volatility models: does anything beat a GARCH(1,1)?. 2005 J. Appl. Econ.. 20 873-889
Hansen, P.R. ; Lunde, A. ; James, M.N. The model confidence set. 2011 Econometrica. 79 453-497
He, L.Y. ; Chen, S.P. Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives. 2010 Physica A. 389 3218-3229
Hong, Y. ; Wang, L. ; Liang, C. ; Umar, M. Impact of financial instability on international crude oil volatility: new sight from a regime-switching framework. 2022 Res. Policy. 77 -
- Hu, J. ; Sui, Y. ; Ma, F. The measurement method of investor sentiment and its relationship with stock market. 2021 Comput. Intell. Neurosci.. 1 1-11
Paper not yet in RePEc: Add citation now
Jiang, Z. ; Gupta, R. ; Subramaniam, S. ; Yoon, S.-M. The effect of air quality and weather on the Chinese stock: Evidence from Shenzhen stock exchange. 2021 Sustainability. 13 2931-
Kantelhardt, J.W. ; Zschiegner, S.A. ; Koscielny-Bunde, E. Multifractal detrended fluctuation analysis of nonstationary time series[J]. 2002 Physica A. 316 87-114
Karim, S. ; Naeem, M.A. ; Mizra, N. ; Paule-Vianez, J. Quantifying the hedge amd safe-haven properties of bond markets for cryptocurrency indices. 2022 The. J. Risk Financ.. 3 191-205
Khashanah, K. ; Shao, C. Short-term volatility forecasting with kernel support vector regression and Markov switching multifractal model. 2022 Quant. Financ.. 22 241-253
- Kristina, S. ; Monika, M. ; Tomislav, K. Development of tight oil resources in the USA: exploitation costs and effect of macroeconomic indicators in a volatile oil price environment. 2017 Rudarsko-Geolosko-Naftni Zbornik. 32 23-33
Paper not yet in RePEc: Add citation now
Kristjanpoller, W. ; Minutolo, M.C. Asymmetric multi-fractal cross-correlations of the price of electricity in the US with crude oil and the natural gas. 2021 Physica A. 572 -
Kwapien, J. ; Oswiecimka, P. ; Drozdz, S. Components of multifractality in high-frequency stock returns. 2005 Physica A. 350 466-474
- Landau, L.D. ; Lifshitz, E.M. Statistical Physics 3rd Edition Part 1. 1996 Butterworth-Heinemann: Oxford
Paper not yet in RePEc: Add citation now
- Li, X. ; Ye, C. ; Bhuiyan, M.A. ; Huang, S. Volatility forecasting with an extended GARCH-MIDAS approach. 2023 Int. J. Forecast.. 43 24-39
Paper not yet in RePEc: Add citation now
Liu, Y. ; Zhang, W. ; Fu, J. Binomial Markov-switching multifractal model with skewed t innovations and applications to Chinese SSEC index. 2016 Physica A. 462 56-66
Long, S.B. ; Liang, J. Asymmetric and nonlinear pass-through of global crude oil price to China’s PPI and CPI inflation. 2018 Econ. Res.-Ekonomska Istrazivanja. 31 240-251
Lucey, B.M. ; Dowling, M. The role of feelings in investor decision-making. 2005 J. Econ. Surv.. 19 211-237
Lux, T. ; Morales-Arias, L. Forecasting volatility under fractality, regime-switching, long memory and student-t innovations. 2010 Comput. Stat. Data An.. 54 2676-2692
Lux, T. ; Segnon, M. ; Gupta, R. Forecasting crude oil price volatility and value-at-risk: evidence from historical and recent data. 2016 Energy Econ.. 56 117-133
Ma, F. ; Liao, Y. ; Zhang, Y. ; Cao, Y. Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks. 2019 J. Empir. Financ.. 52 40-55
- Mandelbrot, B.B. Fractals and Scaling in Finance: Discontinuity, Concentration, Risk. 1997 Springer Verlag: New York
Paper not yet in RePEc: Add citation now
- Mandelbrot, B.B., Fisher, A., Calvet, L., 1997. A multifractal model of asset returns[J] discussion paper of science research network. 1-42.
Paper not yet in RePEc: Add citation now
Marena, M. ; Nicolini, M. ; Vignati, I. Financial speculation in energy and agriculture futures markets: a multivariate GARCH approach. 2013 Energy J.. 34 -
Meng, F. ; Liu, L. Analyzing the economic sources of oil price volatility: an out-of-sample perspective. 2019 Energy. 177 476-486
- Mensi, W. ; Lee, Y. ; Vo, X.V. ; Yoon, M. Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil consumers? Evidence from an asymmetric MF-DFA approach. 2021 North Am. J. Econ. Financ.. 57 -
Paper not yet in RePEc: Add citation now
Mohammadi, H. ; Su, L. International evidence on crude oil price dynamics: applications of ARIMA-GARCH models. 2010 Energy Econ.. 32 1001-1008
Norouzzadeh, P. ; Rahmani, B. A multifractal detrended fluctuation description of Iranian rial US dollar exchange rate. 2006 Physica A. 367 328-336
Pan, Z. ; Huang, X. ; Liu, L. ; Huang, J. Geopolitical uncertainty and crude oil volatility: evidence from oil-importing and oil-exporting countries. 2023 Financ. Res. Lett.. 52 -
Pan, Z. ; Wang, Y. ; Wu, C. ; Yin, L. Oil price volatility and macroeconomic fundamentals: a regime switching GARCH-MIDAS model. 2017 J. Empir. Financ.. 43 130-142
Pastor, L. ; Stambaugh, R.F. ; Taylor, L.A. Sustainable investing in equilibrium. 2021 J. Financ. Econ. 142 550-571
Qu, H. ; Li, G. Multi-perspective investor attention and oil futures volatility forecasting. 2023 Energy Econ.. 119 -
Rossi, B. ; Inoue, A. Out-of-Sample Forecast Tests Robust to the Choice of Window Size. 2012 J. Bus. Econ. Stat.. 30 432-453
Salisu, A.A. ; Gupta, R. ; Demirer, R. Global financial cycle and the predictability of oil market volatility: evidence from a GARCH-MIDAS model. 2022 Energy Econ.. 108 -
Salisu, A.A. ; Kazeem, I. ; Tirimisiyu, O.O. Technology shocks and crude oil market connection: the role of climate change. 2024 Energy Econ.. 130 -
Sevi, B. Forecasting the volatility of crude oil futures using intraday data. 2014 Eur. J. Oper. Res.. 235 643-659
Shang, Y. ; Dong, Q. Oil volatility forecasting and risk allocation: evidence from an extended mixed-frequency volatility model. 2021 Int. Rev. Econ. Financ.. 45 559-571
- Shen, N. ; Chen, J.Y. Multifractal analysis of the impact of COVID-19 on NASDAQ, CIPOI and WTI crude oil market. 2022 Fluct. Noise Lett.. 4 1-
Paper not yet in RePEc: Add citation now
Tashman, L.J. Out-of-sample tests of forecasting accuracy: an analysis and review. 2000 Int. J. Forecast.. 16 437-450
Tian, H. ; Long, S. ; Li, Z. Asymmetric effects of climate policy uncertainty, infectious diseases-related uncertainty, crude oil volatility, and geopolitical risks on green bond prices. 2022 Financ. Res. Lett.. 48 -
Umar, Z. ; Abrar, A. ; Zaremba, A. ; Teplova, T. ; Vo, X.V. Network connectedness of environmental attention—green and dirty assets. 2022 Financ. Res. Lett.. 50 -
Walid, M. ; Lee, Y.J. ; Xuan, V.V. ; Yoon, S.M. Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil consumers? Evidence from an asymmetric MF-DFA approach. 2021 North Am. J. Econ. Financ.. 57 -
Wang, F. ; Ye, X. ; Wu, C. Multifractal characteristics analysis of crude oil futures prices fluctuation in China. 2019 Physica A. 533 -
Wang, L. ; Ma, F. ; Liu, G. ; Lang, Q. Do extreme shocks help forecast oil price volatility? The augmented GARCH-MIDAS approach. 2023 Int. J. Financ. Econ.. 28 2056-2073
Wang, L. ; Wu, J. ; Cao, Y. ; Hong, Y. Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: either, neither or both?. 2022 Energy Econ.. 111 -
Wang, Y. ; Ma, F. ; Liu, G. Forecasting stock volatility in the presence of extreme shock: short-term and long-term effects. 2020 J. Forecast.. 39 797-810
Wang, Y. ; Wu, C. ; Yang, L. Forecasting crude oil market volatility: a Markov switching multifractal volatility approach. 2016 Int. J. Forecast.. 32 1-9
Wei, Y. ; Wang, Y. ; Huang, D. Forecasting crude oil market volatility: further evidence using GARCH-class models. 2010 Energy Econ.. 32 1477-1484
- Wu, R. ; Liu, B. Do climate policy uncertainty and investor sentiment drive the dynamic spillovers among green finance markets?. 2023 J. Environ. Manag.. 347 -
Paper not yet in RePEc: Add citation now
Yao, C.Z. ; Mo, Y.N. ; Zhang, Z.K. A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis. 2021 North Am. J. Econ. Financ.. 58 -
Zhang, L. ; Yan, C. ; Elie, E. Time-varying jump intensity and volatility forecasting of crude oil returns. 2024 Energy Econ.. 129 -
Zhang, S. ; Guo, Y. ; Cheng, H. ; Zhang, H. Cross-correlations between price and volume in China’s crude oil futures market: a study based on multifractal approaches. 2021 Chaos, Solitons Fractals. 144 -
Zhang, Y. ; Ma, F. ; Wang, T. ; Liu, L. Out-of-sample volatility prediction: A new mixed-frequency approach. 2019 J. Forecast.. 38 669-680
Zhao, J. Exploring the influence of the main factors on the crude oil price volatility: an analysis based on GARCH-MIDAS model with lasso approach. 2022 Res. Policy. 79 -
Zhou, W. ; Dang, Y. ; Gu, R. Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm. 2013 Phys. A. 392 1429-1438