create a website

Prognostics of battery cycle life in the early-cycle stage based on hybrid model. (2021). Peng, Zhen ; Zhang, YU ; Guan, Yong ; Wu, Lifeng.
In: Energy.
RePEc:eee:energy:v:221:y:2021:i:c:s036054422100150x.

Full description at Econpapers || Download paper

Cited: 29

Citations received by this document

Cites: 36

References cited by this document

Cocites: 32

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review. (2025). Ando, Oswaldo Hideo ; Lopes, Srgio F ; Afonso, Jos A ; Carmo, Joao Paulo ; Munhoz, Marcio Lus ; MacIel, Joylan Nunes ; Sylvestrin, Giovane Ronei.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:3:p:746-:d:1584934.

    Full description at Econpapers || Download paper

  2. Lithium-ion batteries lifetime early prediction using domain adversarial learning. (2025). Wang, Yanyu ; Zhang, Zhen ; Ruan, Xingxin.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007615.

    Full description at Econpapers || Download paper

  3. A comprehensive framework for estimating the remaining useful life of Li-ion batteries under limited data conditions with no temporal identifier. (2025). Alemayehu, Fisseha ; Dabetwar, Shweta ; Ekwaro-Osire, Stephen ; Lopez-Salazar, Camilo.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005891.

    Full description at Econpapers || Download paper

  4. Early prediction of battery lifetime for lithium-ion batteries based on a hybrid clustered CNN model. (2025). Su, Taian ; Hou, Jing ; Xue, Wei ; Yang, Yan ; Gao, Tian.
    In: Energy.
    RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006346.

    Full description at Econpapers || Download paper

  5. Coupling a capacity fade model with machine learning for early prediction of the battery capacity trajectory. (2025). Li, Tingkai ; Thelen, Adam ; Liu, Jinqiang ; Yang, Xiao-Guang ; Mishra, Ankush Kumar ; Hu, Chao ; Wang, Zhaoyu.
    In: Applied Energy.
    RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004337.

    Full description at Econpapers || Download paper

  6. Inconsistency identification for Lithium-ion battery energy storage systems using deep embedded clustering. (2025). Pan, Ershun ; Xia, Tangbin ; Zhou, DI ; Liu, Weijie ; Chen, Zhen.
    In: Applied Energy.
    RePEc:eee:appene:v:388:y:2025:i:c:s0306261925004076.

    Full description at Econpapers || Download paper

  7. Machine learning for full lifecycle management of lithium-ion batteries. (2024). Kang, Qiaoling ; Zhai, Qiangxiang ; Long, Nengbing ; Zhou, Mingjiong ; Yan, Lijing ; Jiang, Hongmin ; Meng, Xianhe ; Ma, Tingli.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124003733.

    Full description at Econpapers || Download paper

  8. Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization. (2024). Lai, Yuan ; Huang, Yiyang ; Zhu, Liqi ; Wang, Jiaxin ; Dai, Houde.
    In: Renewable Energy.
    RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018220.

    Full description at Econpapers || Download paper

  9. A robust adapted Flexible Parallel Neural Network architecture for early prediction of lithium battery lifespan. (2024). He, GE ; Huang, Qingsong ; Chen, Junxiong ; Li, Zhuoxiang ; Jiang, Lidang.
    In: Energy.
    RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026148.

    Full description at Econpapers || Download paper

  10. An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition. (2024). Fan, Yongcun ; Zhu, Tao ; Wang, Shunli ; Huang, QI ; Hai, Nan ; Fernandez, Carlos.
    In: Energy.
    RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022382.

    Full description at Econpapers || Download paper

  11. Enhancing lithium-ion battery lifespan early prediction using a multi-branch vision transformer model. (2024). Zhang, Zhen ; Ding, Wei ; Zhao, Wanjie.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015895.

    Full description at Econpapers || Download paper

  12. Two-stage prediction method for capacity aging trajectories of lithium-ion batteries based on Siamese-convolutional neural network. (2024). Zhang, Weige ; Li, Shuowei ; Du, Jingcai.
    In: Energy.
    RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007199.

    Full description at Econpapers || Download paper

  13. Predict the lifetime of lithium-ion batteries using early cycles: A review. (2024). Mei, Xuesong ; Zhao, Fei ; Wang, Lingzhi ; Liu, Rui ; Sun, Xiaofei ; Yang, Minxing.
    In: Applied Energy.
    RePEc:eee:appene:v:376:y:2024:i:pa:s030626192401554x.

    Full description at Econpapers || Download paper

  14. Cross-conditions capacity estimation of lithium-ion battery with constrained adversarial domain adaptation. (2023). Wu, Lifeng ; He, Jiabei.
    In: Energy.
    RePEc:eee:energy:v:277:y:2023:i:c:s0360544223009532.

    Full description at Econpapers || Download paper

  15. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery. (2023). Zhang, YU ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000592.

    Full description at Econpapers || Download paper

  16. Life prediction model for lithium-ion battery considering fast-charging protocol. (2023). Wu, Lifeng ; Wang, Hongmin ; Zhang, Chen.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029954.

    Full description at Econpapers || Download paper

  17. Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction. (2023). Wang, Yixiu ; Cao, Yankai ; Zhu, Jiangong ; Gopaluni, Bhushan.
    In: Applied Energy.
    RePEc:eee:appene:v:350:y:2023:i:c:s0306261923010243.

    Full description at Econpapers || Download paper

  18. An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty. (2022). Jiang, Yuchen ; Li, Xiang ; Yin, Shen ; Huo, Mingyi ; Zhang, Jiusi ; Luo, Hao.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:222:y:2022:i:c:s0951832022000369.

    Full description at Econpapers || Download paper

  19. A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction. (2022). Ma, Yan ; Gao, Jinwu ; Chen, Hong ; Shan, CE.
    In: Energy.
    RePEc:eee:energy:v:251:y:2022:i:c:s0360544222008763.

    Full description at Econpapers || Download paper

  20. Remaining useful life prediction of lithium-ion batteries using a hybrid model. (2022). Wu, Youxi ; He, Wenxuan ; Ding, Fei ; Yao, Fang ; Meng, Defang.
    In: Energy.
    RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005254.

    Full description at Econpapers || Download paper

  21. A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery. (2022). Liu, Yongjie ; Yan, Lisen ; Peng, Jun ; Gao, Dianzhu ; Huang, Zhiwu ; Wu, Yue.
    In: Energy.
    RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032874.

    Full description at Econpapers || Download paper

  22. Battery pack consistency modeling based on generative adversarial networks. (2022). He, Xitian ; Fan, Xinyuan ; Zhang, Weige ; Sun, Bingxiang.
    In: Energy.
    RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221026682.

    Full description at Econpapers || Download paper

  23. A method for capacity prediction of lithium-ion batteries under small sample conditions. (2022). Guan, Yong ; Zhang, Meng ; Wu, Lifeng ; Kang, Guoqing.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023422.

    Full description at Econpapers || Download paper

  24. A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles. (2022). Zhang, Weige ; Wei, Shaoyuan ; Jiang, Jiuchun ; Chen, Dinghong ; Sun, Bingxiang ; Cong, Xinwei.
    In: Applied Energy.
    RePEc:eee:appene:v:327:y:2022:i:c:s030626192201371x.

    Full description at Econpapers || Download paper

  25. Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications. (2021). Park, Seongyun ; Kim, Kun Woo ; Baek, Jongbok.
    In: Energy.
    RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012718.

    Full description at Econpapers || Download paper

  26. Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network. (2021). He, Yurong ; Wang, Xinzhi ; Cheng, Gong.
    In: Energy.
    RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012706.

    Full description at Econpapers || Download paper

  27. A method for capacity estimation of lithium-ion batteries based on adaptive time-shifting broad learning system. (2021). Guan, Yong ; Hu, Tao ; Zhang, Meng ; Wu, Lifeng ; Kang, Guoqing.
    In: Energy.
    RePEc:eee:energy:v:231:y:2021:i:c:s036054422101207x.

    Full description at Econpapers || Download paper

  28. Innovative lumped-battery model for state of charge estimation of lithium-ion batteries under various ambient temperatures. (2021). Song, Youngbin ; Paek, Sung Wook ; Kim, Sangwoo ; Seo, Minhwan.
    In: Energy.
    RePEc:eee:energy:v:226:y:2021:i:c:s0360544221005508.

    Full description at Econpapers || Download paper

  29. Early prediction of battery lifetime via a machine learning based framework. (2021). Zhang, Zijun ; Fei, Zicheng ; Li, Lishuai ; Tsui, Kwok-Leung ; Yang, Fangfang.
    In: Energy.
    RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004540.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Antanasijević, D. ; Pocajt, V. ; Ristić, M. ; Perić-Grujić, A. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. 2015 Energy. 84 816-824

  2. Barré, A. ; Deguilhem, B. ; Grolleau, S. ; Gérard, M. ; Suard, F. ; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. 2013 J Power Sources. 241 680-689
    Paper not yet in RePEc: Add citation now
  3. Bendu, H. ; Deepak, B.B.V.L. ; Murugan, S. Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO. 2017 Appl Energy. 187 601-611

  4. Bian, C. ; He, H. ; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. 2020 Energy. 191 116538-

  5. Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
    Paper not yet in RePEc: Add citation now
  6. Chaoui, H. ; Ibe-Ekeocha, C.C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. 2017 IEEE Trans Veh Technol. 66 8773-8783
    Paper not yet in RePEc: Add citation now
  7. Chen, L. ; Wang, H. ; Liu, B. ; Wang, Y. ; Ding, Y. ; Pan, H. Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation. 2021 Energy. 215 119078-

  8. Deng, Z. ; Hu, X. ; Lin, X. ; Che, Y. ; Xu, L. ; Guo, W. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. 2020 Energy. 205 118000-

  9. Fasahat, M. ; Manthouri, M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks. 2020 J Power Sources. 469 228375-
    Paper not yet in RePEc: Add citation now
  10. Gregorutti, B. ; Michel, B. ; Saint-Pierre, P. Correlation and variable importance in random forests. 2017 Stat Comput. 27 659-678
    Paper not yet in RePEc: Add citation now
  11. Karaboga, D. ; Akay, B. A comparative study of Artificial Bee Colony algorithm. 2009 Appl Math Comput. 214 108-132
    Paper not yet in RePEc: Add citation now
  12. Khaleghi, S. ; Firouz, Y. ; Van Mierlo, J. ; Van den Bossche, P. Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators. 2019 Appl Energy. 255 113813-

  13. Li, X. ; Yuan, C. ; Wang, Z. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. 2020 J Power Sources. 467 228358-
    Paper not yet in RePEc: Add citation now
  14. Li, X. ; Yuan, C. ; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression. 2020 Energy. 203 117852-

  15. Li, Y. ; Zou, C. ; Berecibar, M. ; Nanini-Maury, E. ; Chan, J.C.-W. ; van den Bossche, P. Random forest regression for online capacity estimation of lithium-ion batteries. 2018 Appl Energy. 232 197-210

  16. Liang, Y. ; Niu, D. ; Hong, W.-C. Short term load forecasting based on feature extraction and improved general regression neural network model. 2019 Energy. 166 653-663

  17. Ma, Y. ; Wu, L. ; Guan, Y. ; Peng, Z. The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach. 2020 J Power Sources. 476 228581-
    Paper not yet in RePEc: Add citation now
  18. Meng, J. ; Cai, L. ; Stroe, D.-I. ; Ma, J. ; Luo, G. ; Teodorescu, R. An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system. 2020 Energy. 206 118140-

  19. Niu, D. ; Wang, K. ; Sun, L. ; Wu, J. ; Xu, X. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study. 2020 Appl Soft Comput. 93 106389-
    Paper not yet in RePEc: Add citation now
  20. Patil, M.A. ; Tagade, P. ; Hariharan, K.S. ; Kolake, S.M. ; Song, T. ; Yeo, T. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. 2015 Appl Energy. 159 285-297

  21. Qiu, X. ; Wu, W. ; Wang, S. Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method. 2020 J Power Sources. 450 227700-
    Paper not yet in RePEc: Add citation now
  22. Remeseiro, B. ; Bolon-Canedo, V. A review of feature selection methods in medical applications. 2019 Comput Biol Med. 112 103375-
    Paper not yet in RePEc: Add citation now
  23. Severson, K.A. ; Attia, P.M. ; Jin, N. ; Perkins, N. ; Jiang, B. ; Yang, Z. Data-driven prediction of battery cycle life before capacity degradation. 2019 Nat Energy. 4 383-391
    Paper not yet in RePEc: Add citation now
  24. Shen, D. ; Wu, L. ; Kang, G. ; Guan, Y. ; Peng, Z. A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current. 2020 Energy. 119490-
    Paper not yet in RePEc: Add citation now
  25. Specht, D.F. A general regression neural network. 1991 IEEE Trans Neural Network. 2 568-576
    Paper not yet in RePEc: Add citation now
  26. Sun, D. ; Yu, X. ; Wang, C. ; Zhang, C. ; Huang, R. ; Zhou, Q. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. 2021 Energy. 214 119025-

  27. Wang, F.-K. ; Mamo, T. A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries. 2018 J Power Sources. 401 49-54
    Paper not yet in RePEc: Add citation now
  28. Wang, Y. ; Ni, Y. ; Lu, S. ; Wang, J. ; Zhang, X. Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee Colony. 2019 IEEE Trans Veh Technol. 68 9543-9553
    Paper not yet in RePEc: Add citation now
  29. Wu, J. ; Zhang, C. ; Chen, Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. 2016 Appl Energy. 173 134-140

  30. Wu, L. ; Fu, X. ; Guan, Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. 2016 Appl Sci. 6 166-
    Paper not yet in RePEc: Add citation now
  31. Xiong, R. ; Tian, J. ; Mu, H. ; Wang, C. A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries. 2017 Appl Energy. 207 372-383

  32. Yang, D. ; Zhang, X. ; Pan, R. ; Wang, Y. ; Chen, Z. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. 2018 J Power Sources. 384 387-395
    Paper not yet in RePEc: Add citation now
  33. Yang, F. ; Zhang, S. ; Li, W. ; Miao, Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. 2020 Energy. 201 117664-

  34. Zhang, X. ; Wang, Y. ; Liu, C. ; Chen, Z. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm. 2018 J Power Sources. 376 191-199
    Paper not yet in RePEc: Add citation now
  35. Zheng, Y. ; Gao, W. ; Ouyang, M. ; Lu, L. ; Zhou, L. ; Han, X. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter. 2018 J Power Sources. 383 50-58
    Paper not yet in RePEc: Add citation now
  36. Zhou, J. ; He, Z. ; Gao, M. ; Liu, Y. Battery state of health estimation using the generalized regression neural network. 2015 En : 2015 8th Int. Congr. Image signal process.. :
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Application of Generalized Regression Neural Network in Predicting the Performance of Solar Photovoltaic Thermal Water Collector. (2023). Sridharan, M.
    In: Annals of Data Science.
    RePEc:spr:aodasc:v:10:y:2023:i:1:d:10.1007_s40745-020-00273-1.

    Full description at Econpapers || Download paper

  2. Dual Effects of N-Butanol and Magnetite Nanoparticle to Biodiesel-Diesel Fuel Blends as Additives on Emission Pattern and Performance of a Diesel Engine with ANN Validation. (2023). Latiff, Zulkarnain Abdul ; Epin, Vorathin ; Abas, Mohd Azman ; Elahi, Manzoore ; Harny, Irianto ; Veza, Ibham ; Sule, Ahmed.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:2:p:1404-:d:1032583.

    Full description at Econpapers || Download paper

  3. Optimization of CI Engine Performance and Emissions Using Alcohol–Biodiesel Blends: A Regression Analysis Approach. (2023). Dey, Suman ; Gajghate, Sameer Sheshrao ; Pal, Sagnik ; Das, Pankaj Kumar ; Deb, Madhujit ; Saha, Bidyut Baran ; Singh, Akhilendra Pratap.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:20:p:14667-:d:1256534.

    Full description at Econpapers || Download paper

  4. Optimizing a Green and Sustainable Off-Grid Energy-System Design: A Real Case. (2023). Nowzari, Raheleh ; Ghadirinejad, Nickyar ; Alsaadi, Naif ; Ottermo, Fredric.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:17:p:12800-:d:1224000.

    Full description at Econpapers || Download paper

  5. Dynamic carbon emission factor based interactive control of distribution network by a generalized regression neural network assisted optimization. (2023). Guo, Zhengxun ; Yang, Yuyao ; Zhang, Xiaoshun ; Pan, Feng ; Li, Chuansheng.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025264.

    Full description at Econpapers || Download paper

  6. Multi-objective optimization of the Atkinson cycle gasoline engine using NSGA Ⅲ coupled with support vector machine and back-propagation algorithm. (2023). Zhou, Shi ; Ouyang, Minggao ; Tong, JI ; Liu, Jingping ; Dang, Jian.
    In: Energy.
    RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222021478.

    Full description at Econpapers || Download paper

  7. Exploring dilution potential for full load operation of medium duty hydrogen engine for the transport sector. (2023). Novella, Ricardo ; Gomez-Soriano, Josep ; Garcia, Antonio ; Fogue-Robles, Alvaro.
    In: Applied Energy.
    RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009996.

    Full description at Econpapers || Download paper

  8. Optimizing the effect of a mixture of light naphtha, diesel and gasoline fuels on engine performance and emission values on an HCCI engine. (2023). Demir, Usame ; Kocakulak, Tolga ; Elebi, Samet ; Ergen, Gokhan ; Yilmaz, Emre.
    In: Applied Energy.
    RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922016063.

    Full description at Econpapers || Download paper

  9. In Search of Non-Obvious Relationships between Greenhouse Gas or Particulate Matter Emissions, Renewable Energy and Corruption. (2022). Dec, Pawe ; Wysocki, Jacek.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:4:p:1347-:d:748447.

    Full description at Econpapers || Download paper

  10. Influence of Intake Port Structure on the Performance of a Spark-Ignited Natural Gas Engine. (2022). Li, Wei ; Zhu, Tao ; Ma, Junfang ; Wei, Jing ; Xu, Jingjing ; Pan, Jie ; Liu, Hongzhe ; Zhang, Hairui.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:22:p:8545-:d:973332.

    Full description at Econpapers || Download paper

  11. Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends. (2022). Kocakulak, Tolga ; Safieddin, Seyed Mohammad ; Babagiray, Mustafa ; Solmaz, Hamit ; Calam, Alper ; Nacak, Aatay.
    In: Renewable Energy.
    RePEc:eee:renene:v:182:y:2022:i:c:p:827-841.

    Full description at Econpapers || Download paper

  12. A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain. (2021). Hamdy, Mohamed ; Bashery, Mahmoud Abdelkader.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:17:p:5410-:d:625899.

    Full description at Econpapers || Download paper

  13. Application of machine learning tools for constrained multi-objective optimization of an HCCI engine. (2021). Alizadeh, Pouria ; Abbasi, Hamid Reza ; Gharehghani, Ayat.
    In: Energy.
    RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013542.

    Full description at Econpapers || Download paper

  14. Prognostics of battery cycle life in the early-cycle stage based on hybrid model. (2021). Peng, Zhen ; Zhang, YU ; Guan, Yong ; Wu, Lifeng.
    In: Energy.
    RePEc:eee:energy:v:221:y:2021:i:c:s036054422100150x.

    Full description at Econpapers || Download paper

  15. A data-driven evolutionary algorithm for wind farm layout optimization. (2020). Gu, Wei ; Li, Peikun ; Long, Huan.
    In: Energy.
    RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314171.

    Full description at Econpapers || Download paper

  16. Thermodynamic-CFD analysis of waste heat recovery from homogeneous charge compression ignition (HCCI) engine by Recuperative organic Rankine Cycle (RORC): Effect of operational parameters. (2020). Mousavi, Seyed Soheil ; Ezoji, Hosein.
    In: Energy.
    RePEc:eee:energy:v:205:y:2020:i:c:s0360544220310963.

    Full description at Econpapers || Download paper

  17. Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit. (2020). Costa, M ; Costagliola, M A ; Martoriello, G ; di Blasio, G ; Cirillo, D ; Caputo, C ; Prati, M V ; la Villetta, M.
    In: Applied Energy.
    RePEc:eee:appene:v:275:y:2020:i:c:s0306261920309302.

    Full description at Econpapers || Download paper

  18. Daily reference evapotranspiration prediction of Tieguanyin tea plants based on mathematical morphology clustering and improved generalized regression neural network. (2020). Shijie, Song ; Ruiming, Fang.
    In: Agricultural Water Management.
    RePEc:eee:agiwat:v:236:y:2020:i:c:s0378377420304029.

    Full description at Econpapers || Download paper

  19. The Contribution of Energy Taxes to Climate Change Policy in the European Union (EU). (2019). Butkus, Mindaugas ; Matuzeviit, Kristina ; Liobikien, Genovait.
    In: Resources.
    RePEc:gam:jresou:v:8:y:2019:i:2:p:63-:d:220543.

    Full description at Econpapers || Download paper

  20. Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity. (2019). Gao, Yuelin ; Sun, Ying ; Shi, Xudong.
    In: Mathematics.
    RePEc:gam:jmathe:v:7:y:2019:i:2:p:146-:d:203331.

    Full description at Econpapers || Download paper

  21. Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance. (2019). Haider, Syed Irtaza ; Alhussein, Musaed ; Aurangzeb, Khursheed.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:8:p:1487-:d:224240.

    Full description at Econpapers || Download paper

  22. A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies. (2019). He, Zhixia ; Leng, Xianying ; Zhong, Wenjun ; Pachiannan, Tamilselvan ; Rajkumar, Sundararajan ; Wang, Qian.
    In: Applied Energy.
    RePEc:eee:appene:v:251:y:2019:i:c:75.

    Full description at Econpapers || Download paper

  23. Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy. (2018). Malayalamurthi, R ; Krishnamoorthi, M.
    In: Energy.
    RePEc:eee:energy:v:165:y:2018:i:pb:p:1292-1319.

    Full description at Econpapers || Download paper

  24. Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm. (2018). Sultana, U ; Qazi, Sajid Hussain ; Malik, Nimra Riaz ; Rasheed, Nadia ; Khairuddin, Azhar B.
    In: Energy.
    RePEc:eee:energy:v:165:y:2018:i:pa:p:408-421.

    Full description at Econpapers || Download paper

  25. Economic evaluation of a PV combined energy storage charging station based on cost estimation of second-use batteries. (2018). Liang, Yubo ; Ai, Yaoyao ; Han, Xiaojuan.
    In: Energy.
    RePEc:eee:energy:v:165:y:2018:i:pa:p:326-339.

    Full description at Econpapers || Download paper

  26. Prediction of short-term PV power output and uncertainty analysis. (2018). Wennersten, Ronald ; Sun, Qie ; Liu, Luyao ; Xie, Jiyang ; Yin, Hongyi ; Chang, Dongliang ; Ma, Zhanyu ; Zhao, YI.
    In: Applied Energy.
    RePEc:eee:appene:v:228:y:2018:i:c:p:700-711.

    Full description at Econpapers || Download paper

  27. Crank angle-resolved exergy analysis of exhaust flows in a diesel engine from the perspective of exhaust waste energy recovery. (2018). Subramanian, Swaminathan ; Krishnan, Sundar Rajan ; Srinivasan, Kalyan Kumar ; Mahabadipour, Hamidreza.
    In: Applied Energy.
    RePEc:eee:appene:v:216:y:2018:i:c:p:31-44.

    Full description at Econpapers || Download paper

  28. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy. (2017). Butkus, Mindaugas ; Liobikien, Genovait.
    In: Renewable Energy.
    RePEc:eee:renene:v:106:y:2017:i:c:p:298-309.

    Full description at Econpapers || Download paper

  29. CO2 emissions in Chinas building sector through 2050: A scenario analysis based on a bottom-up model. (2017). Pan, Yiqun ; Yang, Yikun ; Xu, Peng ; Lin, Meishun ; Qin, Bingyue ; Huang, Zhizhong.
    In: Energy.
    RePEc:eee:energy:v:128:y:2017:i:c:p:208-223.

    Full description at Econpapers || Download paper

  30. Effect of bioethanol on combustion and emissions in advanced CI engines: HCCI, PPC and GCI mode – A review. (2017). No, Soo-Young ; Noh, Hyun Kwon.
    In: Applied Energy.
    RePEc:eee:appene:v:208:y:2017:i:c:p:782-802.

    Full description at Econpapers || Download paper

  31. Greenhouse gas emission accounting for EU member states from 1991 to 2012. (2016). Zheng, Ying ; Yin, Xuemei ; Pauleit, Stephan ; Chen, Shaoqing ; Su, Meirong ; Xu, Chao.
    In: Applied Energy.
    RePEc:eee:appene:v:184:y:2016:i:c:p:759-768.

    Full description at Econpapers || Download paper

  32. Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study. (2016). Cesarotti, Vittorio ; Introna, Vito ; Benedetti, Miriam ; Serranti, Jacopo .
    In: Applied Energy.
    RePEc:eee:appene:v:165:y:2016:i:c:p:60-71.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 19:56:07 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.