Antanasijević, D. ; Pocajt, V. ; Ristić, M. ; Perić-Grujić, A. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. 2015 Energy. 84 816-824
- Barré, A. ; Deguilhem, B. ; Grolleau, S. ; Gérard, M. ; Suard, F. ; Riu, D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. 2013 J Power Sources. 241 680-689
Paper not yet in RePEc: Add citation now
Bendu, H. ; Deepak, B.B.V.L. ; Murugan, S. Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN–PSO. 2017 Appl Energy. 187 601-611
Bian, C. ; He, H. ; Yang, S. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries. 2020 Energy. 191 116538-
- Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
Paper not yet in RePEc: Add citation now
- Chaoui, H. ; Ibe-Ekeocha, C.C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. 2017 IEEE Trans Veh Technol. 66 8773-8783
Paper not yet in RePEc: Add citation now
Chen, L. ; Wang, H. ; Liu, B. ; Wang, Y. ; Ding, Y. ; Pan, H. Battery state-of-health estimation based on a metabolic extreme learning machine combining degradation state model and error compensation. 2021 Energy. 215 119078-
Deng, Z. ; Hu, X. ; Lin, X. ; Che, Y. ; Xu, L. ; Guo, W. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression. 2020 Energy. 205 118000-
- Fasahat, M. ; Manthouri, M. State of charge estimation of lithium-ion batteries using hybrid autoencoder and Long Short Term Memory neural networks. 2020 J Power Sources. 469 228375-
Paper not yet in RePEc: Add citation now
- Gregorutti, B. ; Michel, B. ; Saint-Pierre, P. Correlation and variable importance in random forests. 2017 Stat Comput. 27 659-678
Paper not yet in RePEc: Add citation now
- Karaboga, D. ; Akay, B. A comparative study of Artificial Bee Colony algorithm. 2009 Appl Math Comput. 214 108-132
Paper not yet in RePEc: Add citation now
Khaleghi, S. ; Firouz, Y. ; Van Mierlo, J. ; Van den Bossche, P. Developing a real-time data-driven battery health diagnosis method, using time and frequency domain condition indicators. 2019 Appl Energy. 255 113813-
- Li, X. ; Yuan, C. ; Wang, Z. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. 2020 J Power Sources. 467 228358-
Paper not yet in RePEc: Add citation now
Li, X. ; Yuan, C. ; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression. 2020 Energy. 203 117852-
Li, Y. ; Zou, C. ; Berecibar, M. ; Nanini-Maury, E. ; Chan, J.C.-W. ; van den Bossche, P. Random forest regression for online capacity estimation of lithium-ion batteries. 2018 Appl Energy. 232 197-210
Liang, Y. ; Niu, D. ; Hong, W.-C. Short term load forecasting based on feature extraction and improved general regression neural network model. 2019 Energy. 166 653-663
- Ma, Y. ; Wu, L. ; Guan, Y. ; Peng, Z. The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach. 2020 J Power Sources. 476 228581-
Paper not yet in RePEc: Add citation now
Meng, J. ; Cai, L. ; Stroe, D.-I. ; Ma, J. ; Luo, G. ; Teodorescu, R. An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system. 2020 Energy. 206 118140-
- Niu, D. ; Wang, K. ; Sun, L. ; Wu, J. ; Xu, X. Short-term photovoltaic power generation forecasting based on random forest feature selection and CEEMD: a case study. 2020 Appl Soft Comput. 93 106389-
Paper not yet in RePEc: Add citation now
Patil, M.A. ; Tagade, P. ; Hariharan, K.S. ; Kolake, S.M. ; Song, T. ; Yeo, T. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. 2015 Appl Energy. 159 285-297
- Qiu, X. ; Wu, W. ; Wang, S. Remaining useful life prediction of lithium-ion battery based on improved cuckoo search particle filter and a novel state of charge estimation method. 2020 J Power Sources. 450 227700-
Paper not yet in RePEc: Add citation now
- Remeseiro, B. ; Bolon-Canedo, V. A review of feature selection methods in medical applications. 2019 Comput Biol Med. 112 103375-
Paper not yet in RePEc: Add citation now
- Severson, K.A. ; Attia, P.M. ; Jin, N. ; Perkins, N. ; Jiang, B. ; Yang, Z. Data-driven prediction of battery cycle life before capacity degradation. 2019 Nat Energy. 4 383-391
Paper not yet in RePEc: Add citation now
- Shen, D. ; Wu, L. ; Kang, G. ; Guan, Y. ; Peng, Z. A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current. 2020 Energy. 119490-
Paper not yet in RePEc: Add citation now
- Specht, D.F. A general regression neural network. 1991 IEEE Trans Neural Network. 2 568-576
Paper not yet in RePEc: Add citation now
Sun, D. ; Yu, X. ; Wang, C. ; Zhang, C. ; Huang, R. ; Zhou, Q. State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator. 2021 Energy. 214 119025-
- Wang, F.-K. ; Mamo, T. A hybrid model based on support vector regression and differential evolution for remaining useful lifetime prediction of lithium-ion batteries. 2018 J Power Sources. 401 49-54
Paper not yet in RePEc: Add citation now
- Wang, Y. ; Ni, Y. ; Lu, S. ; Wang, J. ; Zhang, X. Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee Colony. 2019 IEEE Trans Veh Technol. 68 9543-9553
Paper not yet in RePEc: Add citation now
Wu, J. ; Zhang, C. ; Chen, Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. 2016 Appl Energy. 173 134-140
- Wu, L. ; Fu, X. ; Guan, Y. Review of the remaining useful life prognostics of vehicle lithium-ion batteries using data-driven methodologies. 2016 Appl Sci. 6 166-
Paper not yet in RePEc: Add citation now
Xiong, R. ; Tian, J. ; Mu, H. ; Wang, C. A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries. 2017 Appl Energy. 207 372-383
- Yang, D. ; Zhang, X. ; Pan, R. ; Wang, Y. ; Chen, Z. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. 2018 J Power Sources. 384 387-395
Paper not yet in RePEc: Add citation now
Yang, F. ; Zhang, S. ; Li, W. ; Miao, Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. 2020 Energy. 201 117664-
- Zhang, X. ; Wang, Y. ; Liu, C. ; Chen, Z. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm. 2018 J Power Sources. 376 191-199
Paper not yet in RePEc: Add citation now
- Zheng, Y. ; Gao, W. ; Ouyang, M. ; Lu, L. ; Zhou, L. ; Han, X. State-of-charge inconsistency estimation of lithium-ion battery pack using mean-difference model and extended Kalman filter. 2018 J Power Sources. 383 50-58
Paper not yet in RePEc: Add citation now
- Zhou, J. ; He, Z. ; Gao, M. ; Liu, Y. Battery state of health estimation using the generalized regression neural network. 2015 En : 2015 8th Int. Congr. Image signal process.. :
Paper not yet in RePEc: Add citation now