- Abbas, M.H. ; Norman, R. ; Charles, A. Neural network modelling of high pressure CO2 corrosion in pipeline steels. 2018 Process Saf Environ. 119 36-45
Paper not yet in RePEc: Add citation now
- Al-Jamimi, H.A. ; Al-Azani, S. ; Saleh, T.A. Supervised machine learning techniques in the desulfurization of oil products for environmental protection: a review. 2018 Process Saf Environ. 120 57-71
Paper not yet in RePEc: Add citation now
- Barboza, F. ; Kimura, H. ; Altman, E. Machine learning models and bankruptcy prediction. 2017 Expert Syst Appl. 83 405-417
Paper not yet in RePEc: Add citation now
- Ben Seghier, M.E.A. ; Keshtegar, B. ; Taleb-Berrouane, M. ; Abbassi, R. ; Trung, N. Advanced intelligence frameworks for predicting maximum pitting corrosion depth in oil and gas pipelines. 2021 Process Saf Environ. 147 818-833
Paper not yet in RePEc: Add citation now
Benali, L. ; Notton, G. ; Fouilloy, A. ; Voyant, C. ; Dizene, R. Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components. 2019 Renew Energy. 132 871-884
Bienvenido-Huertas, D. ; Rubio-Bellido, C. ; Solís-Guzmán, J. ; Oliveira, M.J. Experimental characterisation of the periodic thermal properties of walls using artificial intelligence. 2020 Energy. 203 -
- Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
Paper not yet in RePEc: Add citation now
- Breunig, M. ; Kriegel, H. ; Ng, R. ; Sander, J. LOF: identifying density-based local outliers. 2000 ACM SIGMOD Rec. 29 93-104
Paper not yet in RePEc: Add citation now
- Carranza, C. ; Nolet, C. ; Pezij, M. ; van der Ploeg, M. Root zone soil moisture estimation with Random Forest. 2021 J Hydrol. 593 -
Paper not yet in RePEc: Add citation now
- Cerrada, M. ; Zurita, G. ; Cabrera, D. ; Sánchez, R. ; Artés, M. ; Li, C. Fault diagnosis in spur gears based on genetic algorithm and random forest. 2016 Mech Syst Signal Process. 70–71 87-103
Paper not yet in RePEc: Add citation now
- Chen, G. ; Li, S. ; Knibbs, L.D. ; Hamm, N.A.S. ; Cao, W. ; Li, T. ; Guo, J. ; Ren, H. ; Abramson, M.J. ; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. 2018 Sci Total Environ. 636 52-60
Paper not yet in RePEc: Add citation now
Chen, X. ; Wang, L. ; Huang, Z. Principal component analysis based dynamic fuzzy neural network for internal corrosion rate prediction of gas pipelines. 2020 Math Probl Eng. 12 1-9
- Cheng, M. ; Prayogo, D. Symbiotic Organisms Search: a new metaheuristic optimization algorithm. 2014 Comput Struct. 139 98-112
Paper not yet in RePEc: Add citation now
- Chou, J. ; Ngo, N. ; Chong, W.K. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. 2017 Eng Appl Artif Intell. 65 471-483
Paper not yet in RePEc: Add citation now
- Cottis, R.A. ; Qing, L. ; Owen, G. ; Gartland, S.J. ; Helliwell, I.A. ; Turega, M. Neural network methods for corrosion data reduction. 1999 Mater Eng. 20 169-178
Paper not yet in RePEc: Add citation now
- Diao, Y. ; Yan, L. ; Gao, K. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features. 2021 Mater Des. 198 -
Paper not yet in RePEc: Add citation now
- Domingues, R. ; Filippone, M. ; Michiardi, P. ; Zouaoui, J. A comparative evaluation of outlier detection algorithms: experiments and analyses. 2018 Pattern Recogn. 74 406-421
Paper not yet in RePEc: Add citation now
- El Amine Ben Seghier, M. ; Keshtegar, B. ; Tee, K.F. ; Zayed, T. ; Abbassi, R. ; Trung, N.T. Prediction of maximum pitting corrosion depth in oil and gas pipelines. 2020 Eng Fail Anal. 112 -
Paper not yet in RePEc: Add citation now
- El-Abbasy, M.S. ; Senouci, A. ; Zayed, T. ; Mirahadi, F. ; Parvizsedghy, L. Artificial neural network models for predicting condition of offshore oil and gas pipelines. 2014 Autom ConStruct. 45 50-65
Paper not yet in RePEc: Add citation now
- Ezugwu, A.E. ; Adewumi, A.O. ; Frîncu, M.E. Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem. 2017 Expert Syst Appl. 77 189-210
Paper not yet in RePEc: Add citation now
- Grimm, R. ; Behrens, T. ; Märker, M. ; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using Random Forests analysis. 2008 Geoderma. 146 102-113
Paper not yet in RePEc: Add citation now
- Guedes Soares, C. ; Garbatov, Y. ; Zayed, A. ; Wang, G. Corrosion wastage model for ship crude oil tanks. 2008 Corrosion Sci. 50 3095-3106
Paper not yet in RePEc: Add citation now
- Hatami, S. ; Ghaderi-Ardakani, A. ; Niknejad-Khomami, M. ; Karimi-Malekabadi, F. ; Rasaei, M.R. ; Mohammadi, A.H. On the prediction of CO 2 corrosion in petroleum industry. 2016 J Supercrit Fluids. 117 108-112
Paper not yet in RePEc: Add citation now
- Kamrunnahar, M. ; Urquidi-Macdonald, M. Prediction of corrosion behavior using neural network as a data mining tool. 2009 Corrosion Sci. 52 669-677
Paper not yet in RePEc: Add citation now
- Lang, Z. ; Wang, D. ; Liu, H. ; Gou, X. Mapping the knowledge domains of research on corrosion of petrochemical equipment: an informetrics analysis-based study. 2021 Eng Fail Anal. 129 -
Paper not yet in RePEc: Add citation now
- Lee, S. ; Narayana, P.L. ; Seok, B.W. ; Panigrahi, B.B. ; Lim, S. ; S Reddy, N. Quantitative estimation of corrosion rate in 3C steels under seawater environment. 2021 J Mater Res Technol. 11 681-686
Paper not yet in RePEc: Add citation now
- Li, Q. ; Wang, D. ; Zhao, M. ; Yang, M. ; Tang, J. ; Zhou, K. Modeling the corrosion rate of carbon steel in carbonated mixtures of MDEA-based solutions using artificial neural network. 2021 Process Saf Environ. 147 300-310
Paper not yet in RePEc: Add citation now
- Liu, F.T. ; Ting, K.M. ; Zhou, Z. . 2008 Isol For. 413-422
Paper not yet in RePEc: Add citation now
Lv, Y. ; Wang, J. ; Wang, J. ; Xiong, C. ; Zou, L. ; Li, L. ; Li, D. Steel corrosion prediction based on support vector machines. 2020 Chaos, Solit Fractals. 136 -
- Paik, J.K. ; Thayamballi, A.K. ; Park, Y.I. ; Hwang, J.S. A time-dependent corrosion wastage model for seawater ballast tank structures of ships. 2004 Corrosion Sci. 46 471-486
Paper not yet in RePEc: Add citation now
- Pei, Z. ; Zhang, D. ; Zhi, Y. ; Yang, T. ; Jin, L. ; Fu, D. ; Cheng, X. ; Terryn, H.A. ; Mol, J.M.C. ; Li, X. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. 2020 Corrosion Sci. 170 -
Paper not yet in RePEc: Add citation now
- Peng, S. ; Zhang, Z. ; Liu, E. ; Liu, W. ; Qiao, W. A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline. 2020 J Nat Gas Sci Eng. 85 -
Paper not yet in RePEc: Add citation now
Rocabruno-Valdés, C.I. ; González-Rodriguez, J.G. ; Díaz-Blanco, Y. ; Juantorena, A.U. ; Muñoz-Ledo, J.A. ; El-Hamzaoui, Y. ; Hernández, J.A. Corrosion rate prediction for metals in biodiesel using artificial neural networks. 2019 Renew Energy. 140 592-601
- Rodriguez-Galiano, V. ; Sanchez-Castillo, M. ; Chica-Olmo, M. ; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. 2015 Ore Geol Rev. 71 804-818
Paper not yet in RePEc: Add citation now
- Rodriguez-Galiano, V.F. ; Ghimire, B. ; Rogan, J. ; Chica-Olmo, M. ; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. 2012 ISPRS J Photogramm. 67 93-104
Paper not yet in RePEc: Add citation now
- Schölkopf, B. ; Platt, J.C. ; Shawe-Taylor, J. ; Smola, A.J. ; Williamson, R.C. Estimating the support of a high-dimensional distribution. 2001 Neural Comput. 13 1443-1471
Paper not yet in RePEc: Add citation now
- Suo, G. ; Lei, J. ; Chen, L. ; Yang, J. ; Dou, Z. Corrosion prediction model of circulating water in refinery unit based on PCA-PSO-BP. 2021 :
Paper not yet in RePEc: Add citation now
Tran, D. ; Luong, D. ; Chou, J. Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings. 2020 Energy. 191 -
- Verikas, A. ; Gelzinis, A. ; Bacauskiene, M. Mining data with random forests: a survey and results of new tests. 2011 Pattern Recogn. 44 330-349
Paper not yet in RePEc: Add citation now
- Wen, Y.F. ; Cai, C.Z. ; Liu, X.H. ; Pei, J.F. ; Zhu, X.J. ; Xiao, T.T. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression. 2009 Corrosion Sci. 51 349-355
Paper not yet in RePEc: Add citation now
- Were, K. ; Bui, D.T. ; Dick, Ø.B. ; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. 2015 Ecol Indicat. 52 394-403
Paper not yet in RePEc: Add citation now
- Wu, H. ; Zhou, Y. ; Luo, Q. ; Basset, M.A. Training feedforward neural networks using symbiotic organisms search algorithm. 2016 Comput Intell Neurosci. 1-14
Paper not yet in RePEc: Add citation now
- Xue, L. ; Liu, Y. ; Xiong, Y. ; Liu, Y. ; Cui, X. ; Lei, G. A data-driven shale gas production forecasting method based on the multi-objective random forest regression. 2021 J Petrol Sci Eng. 196 -
Paper not yet in RePEc: Add citation now
- Yan, L. ; Diao, Y. ; Lang, Z. ; Gao, K. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. 2020 Sci Technol Adv Mater. 21 359-370
Paper not yet in RePEc: Add citation now
- Yu, V.F. ; Redi, A.A.N.P. ; Yang, C. ; Ruskartina, E. ; Santosa, B. Symbiotic organisms search and two solution representations for solving the capacitated vehicle routing problem. 2017 Appl Soft Comput. 52 657-672
Paper not yet in RePEc: Add citation now
- Zhi, Y. ; Jin, Z. ; Lu, L. ; Yang, T. ; Zhou, D. ; Pei, Z. ; Wu, D. ; Fu, D. ; Zhang, D. ; Li, X. Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model. 2021 Corrosion Sci. 178 -
Paper not yet in RePEc: Add citation now
- Zounemat-Kermani, M. ; Stephan, D. ; Barjenbruch, M. ; Hinkelmann, R. Ensemble data mining modeling in corrosion of concrete sewer: a comparative study of network-based (MLPNN & RBFNN) and tree-based (RF, CHAID, & CART) models. 2020 Adv Eng Inf. 43 -
Paper not yet in RePEc: Add citation now