create a website

Prediction method of key corrosion state parameters in refining process based on multi-source data. (2023). Dou, Zhan ; Hu, Yuanhao ; Chen, Liangchao ; Yang, Jianfeng ; Suo, Guanyu.
In: Energy.
RePEc:eee:energy:v:263:y:2023:i:pa:s036054422202480x.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 47

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Knowledge- and data-driven prediction of blast furnace gas generation and consumption in iron and steel sites. (2025). Sun, Wenqiang ; Liu, Shuhan.
    In: Applied Energy.
    RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005495.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abbas, M.H. ; Norman, R. ; Charles, A. Neural network modelling of high pressure CO2 corrosion in pipeline steels. 2018 Process Saf Environ. 119 36-45
    Paper not yet in RePEc: Add citation now
  2. Al-Jamimi, H.A. ; Al-Azani, S. ; Saleh, T.A. Supervised machine learning techniques in the desulfurization of oil products for environmental protection: a review. 2018 Process Saf Environ. 120 57-71
    Paper not yet in RePEc: Add citation now
  3. Barboza, F. ; Kimura, H. ; Altman, E. Machine learning models and bankruptcy prediction. 2017 Expert Syst Appl. 83 405-417
    Paper not yet in RePEc: Add citation now
  4. Ben Seghier, M.E.A. ; Keshtegar, B. ; Taleb-Berrouane, M. ; Abbassi, R. ; Trung, N. Advanced intelligence frameworks for predicting maximum pitting corrosion depth in oil and gas pipelines. 2021 Process Saf Environ. 147 818-833
    Paper not yet in RePEc: Add citation now
  5. Benali, L. ; Notton, G. ; Fouilloy, A. ; Voyant, C. ; Dizene, R. Solar radiation forecasting using artificial neural network and random forest methods: application to normal beam, horizontal diffuse and global components. 2019 Renew Energy. 132 871-884

  6. Bienvenido-Huertas, D. ; Rubio-Bellido, C. ; Solís-Guzmán, J. ; Oliveira, M.J. Experimental characterisation of the periodic thermal properties of walls using artificial intelligence. 2020 Energy. 203 -

  7. Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
    Paper not yet in RePEc: Add citation now
  8. Breunig, M. ; Kriegel, H. ; Ng, R. ; Sander, J. LOF: identifying density-based local outliers. 2000 ACM SIGMOD Rec. 29 93-104
    Paper not yet in RePEc: Add citation now
  9. Carranza, C. ; Nolet, C. ; Pezij, M. ; van der Ploeg, M. Root zone soil moisture estimation with Random Forest. 2021 J Hydrol. 593 -
    Paper not yet in RePEc: Add citation now
  10. Cerrada, M. ; Zurita, G. ; Cabrera, D. ; Sánchez, R. ; Artés, M. ; Li, C. Fault diagnosis in spur gears based on genetic algorithm and random forest. 2016 Mech Syst Signal Process. 70–71 87-103
    Paper not yet in RePEc: Add citation now
  11. Chen, G. ; Li, S. ; Knibbs, L.D. ; Hamm, N.A.S. ; Cao, W. ; Li, T. ; Guo, J. ; Ren, H. ; Abramson, M.J. ; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. 2018 Sci Total Environ. 636 52-60
    Paper not yet in RePEc: Add citation now
  12. Chen, X. ; Wang, L. ; Huang, Z. Principal component analysis based dynamic fuzzy neural network for internal corrosion rate prediction of gas pipelines. 2020 Math Probl Eng. 12 1-9

  13. Cheng, M. ; Prayogo, D. Symbiotic Organisms Search: a new metaheuristic optimization algorithm. 2014 Comput Struct. 139 98-112
    Paper not yet in RePEc: Add citation now
  14. Chou, J. ; Ngo, N. ; Chong, W.K. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. 2017 Eng Appl Artif Intell. 65 471-483
    Paper not yet in RePEc: Add citation now
  15. Cottis, R.A. ; Qing, L. ; Owen, G. ; Gartland, S.J. ; Helliwell, I.A. ; Turega, M. Neural network methods for corrosion data reduction. 1999 Mater Eng. 20 169-178
    Paper not yet in RePEc: Add citation now
  16. Diao, Y. ; Yan, L. ; Gao, K. Improvement of the machine learning-based corrosion rate prediction model through the optimization of input features. 2021 Mater Des. 198 -
    Paper not yet in RePEc: Add citation now
  17. Domingues, R. ; Filippone, M. ; Michiardi, P. ; Zouaoui, J. A comparative evaluation of outlier detection algorithms: experiments and analyses. 2018 Pattern Recogn. 74 406-421
    Paper not yet in RePEc: Add citation now
  18. El Amine Ben Seghier, M. ; Keshtegar, B. ; Tee, K.F. ; Zayed, T. ; Abbassi, R. ; Trung, N.T. Prediction of maximum pitting corrosion depth in oil and gas pipelines. 2020 Eng Fail Anal. 112 -
    Paper not yet in RePEc: Add citation now
  19. El-Abbasy, M.S. ; Senouci, A. ; Zayed, T. ; Mirahadi, F. ; Parvizsedghy, L. Artificial neural network models for predicting condition of offshore oil and gas pipelines. 2014 Autom ConStruct. 45 50-65
    Paper not yet in RePEc: Add citation now
  20. Ezugwu, A.E. ; Adewumi, A.O. ; Frîncu, M.E. Simulated annealing based symbiotic organisms search optimization algorithm for traveling salesman problem. 2017 Expert Syst Appl. 77 189-210
    Paper not yet in RePEc: Add citation now
  21. Grimm, R. ; Behrens, T. ; Märker, M. ; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island — digital soil mapping using Random Forests analysis. 2008 Geoderma. 146 102-113
    Paper not yet in RePEc: Add citation now
  22. Guedes Soares, C. ; Garbatov, Y. ; Zayed, A. ; Wang, G. Corrosion wastage model for ship crude oil tanks. 2008 Corrosion Sci. 50 3095-3106
    Paper not yet in RePEc: Add citation now
  23. Hatami, S. ; Ghaderi-Ardakani, A. ; Niknejad-Khomami, M. ; Karimi-Malekabadi, F. ; Rasaei, M.R. ; Mohammadi, A.H. On the prediction of CO 2 corrosion in petroleum industry. 2016 J Supercrit Fluids. 117 108-112
    Paper not yet in RePEc: Add citation now
  24. Kamrunnahar, M. ; Urquidi-Macdonald, M. Prediction of corrosion behavior using neural network as a data mining tool. 2009 Corrosion Sci. 52 669-677
    Paper not yet in RePEc: Add citation now
  25. Lang, Z. ; Wang, D. ; Liu, H. ; Gou, X. Mapping the knowledge domains of research on corrosion of petrochemical equipment: an informetrics analysis-based study. 2021 Eng Fail Anal. 129 -
    Paper not yet in RePEc: Add citation now
  26. Lee, S. ; Narayana, P.L. ; Seok, B.W. ; Panigrahi, B.B. ; Lim, S. ; S Reddy, N. Quantitative estimation of corrosion rate in 3C steels under seawater environment. 2021 J Mater Res Technol. 11 681-686
    Paper not yet in RePEc: Add citation now
  27. Li, Q. ; Wang, D. ; Zhao, M. ; Yang, M. ; Tang, J. ; Zhou, K. Modeling the corrosion rate of carbon steel in carbonated mixtures of MDEA-based solutions using artificial neural network. 2021 Process Saf Environ. 147 300-310
    Paper not yet in RePEc: Add citation now
  28. Liu, F.T. ; Ting, K.M. ; Zhou, Z. . 2008 Isol For. 413-422
    Paper not yet in RePEc: Add citation now
  29. Lv, Y. ; Wang, J. ; Wang, J. ; Xiong, C. ; Zou, L. ; Li, L. ; Li, D. Steel corrosion prediction based on support vector machines. 2020 Chaos, Solit Fractals. 136 -

  30. Paik, J.K. ; Thayamballi, A.K. ; Park, Y.I. ; Hwang, J.S. A time-dependent corrosion wastage model for seawater ballast tank structures of ships. 2004 Corrosion Sci. 46 471-486
    Paper not yet in RePEc: Add citation now
  31. Pei, Z. ; Zhang, D. ; Zhi, Y. ; Yang, T. ; Jin, L. ; Fu, D. ; Cheng, X. ; Terryn, H.A. ; Mol, J.M.C. ; Li, X. Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning. 2020 Corrosion Sci. 170 -
    Paper not yet in RePEc: Add citation now
  32. Peng, S. ; Zhang, Z. ; Liu, E. ; Liu, W. ; Qiao, W. A new hybrid algorithm model for prediction of internal corrosion rate of multiphase pipeline. 2020 J Nat Gas Sci Eng. 85 -
    Paper not yet in RePEc: Add citation now
  33. Rocabruno-Valdés, C.I. ; González-Rodriguez, J.G. ; Díaz-Blanco, Y. ; Juantorena, A.U. ; Muñoz-Ledo, J.A. ; El-Hamzaoui, Y. ; Hernández, J.A. Corrosion rate prediction for metals in biodiesel using artificial neural networks. 2019 Renew Energy. 140 592-601

  34. Rodriguez-Galiano, V. ; Sanchez-Castillo, M. ; Chica-Olmo, M. ; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. 2015 Ore Geol Rev. 71 804-818
    Paper not yet in RePEc: Add citation now
  35. Rodriguez-Galiano, V.F. ; Ghimire, B. ; Rogan, J. ; Chica-Olmo, M. ; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. 2012 ISPRS J Photogramm. 67 93-104
    Paper not yet in RePEc: Add citation now
  36. Schölkopf, B. ; Platt, J.C. ; Shawe-Taylor, J. ; Smola, A.J. ; Williamson, R.C. Estimating the support of a high-dimensional distribution. 2001 Neural Comput. 13 1443-1471
    Paper not yet in RePEc: Add citation now
  37. Suo, G. ; Lei, J. ; Chen, L. ; Yang, J. ; Dou, Z. Corrosion prediction model of circulating water in refinery unit based on PCA-PSO-BP. 2021 :
    Paper not yet in RePEc: Add citation now
  38. Tran, D. ; Luong, D. ; Chou, J. Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings. 2020 Energy. 191 -

  39. Verikas, A. ; Gelzinis, A. ; Bacauskiene, M. Mining data with random forests: a survey and results of new tests. 2011 Pattern Recogn. 44 330-349
    Paper not yet in RePEc: Add citation now
  40. Wen, Y.F. ; Cai, C.Z. ; Liu, X.H. ; Pei, J.F. ; Zhu, X.J. ; Xiao, T.T. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression. 2009 Corrosion Sci. 51 349-355
    Paper not yet in RePEc: Add citation now
  41. Were, K. ; Bui, D.T. ; Dick, Ø.B. ; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. 2015 Ecol Indicat. 52 394-403
    Paper not yet in RePEc: Add citation now
  42. Wu, H. ; Zhou, Y. ; Luo, Q. ; Basset, M.A. Training feedforward neural networks using symbiotic organisms search algorithm. 2016 Comput Intell Neurosci. 1-14
    Paper not yet in RePEc: Add citation now
  43. Xue, L. ; Liu, Y. ; Xiong, Y. ; Liu, Y. ; Cui, X. ; Lei, G. A data-driven shale gas production forecasting method based on the multi-objective random forest regression. 2021 J Petrol Sci Eng. 196 -
    Paper not yet in RePEc: Add citation now
  44. Yan, L. ; Diao, Y. ; Lang, Z. ; Gao, K. Corrosion rate prediction and influencing factors evaluation of low-alloy steels in marine atmosphere using machine learning approach. 2020 Sci Technol Adv Mater. 21 359-370
    Paper not yet in RePEc: Add citation now
  45. Yu, V.F. ; Redi, A.A.N.P. ; Yang, C. ; Ruskartina, E. ; Santosa, B. Symbiotic organisms search and two solution representations for solving the capacitated vehicle routing problem. 2017 Appl Soft Comput. 52 657-672
    Paper not yet in RePEc: Add citation now
  46. Zhi, Y. ; Jin, Z. ; Lu, L. ; Yang, T. ; Zhou, D. ; Pei, Z. ; Wu, D. ; Fu, D. ; Zhang, D. ; Li, X. Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model. 2021 Corrosion Sci. 178 -
    Paper not yet in RePEc: Add citation now
  47. Zounemat-Kermani, M. ; Stephan, D. ; Barjenbruch, M. ; Hinkelmann, R. Ensemble data mining modeling in corrosion of concrete sewer: a comparative study of network-based (MLPNN & RBFNN) and tree-based (RF, CHAID, & CART) models. 2020 Adv Eng Inf. 43 -
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Intra-hour solar irradiance forecasting using topology data analysis and physics-driven deep learning. (2024). Han, Tian ; Li, Ruimeng ; Peng, Qinke ; Wang, Nannan ; Chen, Kang ; Gao, Zhenxin.
    In: Renewable Energy.
    RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002039.

    Full description at Econpapers || Download paper

  2. Global horizontal irradiance prediction model considering the effect of aerosol optical depth based on the Informer model. (2024). Yuan, Yuan ; He-Ping, Tan ; Jie-Mei, Liu ; Xiu-Yan, Gao.
    In: Renewable Energy.
    RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015860.

    Full description at Econpapers || Download paper

  3. Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks. (2024). Li, Yulin ; Chen, Yilin ; Liu, Qian ; Zhang, Jiang ; Jiang, Hang.
    In: Energy.
    RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029742.

    Full description at Econpapers || Download paper

  4. A Novel Machine Learning Approach for Solar Radiation Estimation. (2023). Benkirane, Said ; Azrour, Mourade ; Hissou, Hasna ; Guezzaz, Azidine ; Beni-Hssane, Abderrahim.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:13:p:10609-:d:1187503.

    Full description at Econpapers || Download paper

  5. Accurately forecasting solar radiation distribution at both spatial and temporal dimensions simultaneously with fully-convolutional deep neural network model. (2023). Ruan, Zhaohui ; Yuan, Yuan ; Sun, Weiwei ; Tan, Heping.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:184:y:2023:i:c:s1364032123003854.

    Full description at Econpapers || Download paper

  6. Prediction method of key corrosion state parameters in refining process based on multi-source data. (2023). Dou, Zhan ; Hu, Yuanhao ; Chen, Liangchao ; Yang, Jianfeng ; Suo, Guanyu.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pa:s036054422202480x.

    Full description at Econpapers || Download paper

  7. Predicting photovoltaic power production using high-uncertainty weather forecasts. (2023). Polasek, Tomas ; Adik, Martin.
    In: Applied Energy.
    RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003537.

    Full description at Econpapers || Download paper

  8. Machine Learning and Deep Learning in Energy Systems: A Review. (2022). Zahedi, Rahim ; Forootan, Mohammad Mahdi ; Larki, Iman ; Ahmadi, Abolfazl.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:8:p:4832-:d:796121.

    Full description at Econpapers || Download paper

  9. An Integrated Framework Based on an Improved Gaussian Process Regression and Decomposition Technique for Hourly Solar Radiation Forecasting. (2022). Hao, Xiangmiao ; Jiang, Wei ; Peng, Tian ; Zhang, Shuai ; Sun, NA.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:22:p:15298-:d:976158.

    Full description at Econpapers || Download paper

  10. Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model. (2022). Ahmed, Tofael ; Ahmad, Shameem ; Rahman, M M ; Gheni, Hassan Muwafaq ; Mubarak, Hamza ; Abdellatef, Hamdan ; Shafiullah, G M ; Hammoudeh, Ahmad ; Abdellatif, Abdallah.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:17:p:11083-:d:907204.

    Full description at Econpapers || Download paper

  11. Solar Power Forecasting Using CNN-LSTM Hybrid Model. (2022). Lim, Su-Chang ; Hong, Seok-Hoon ; Huh, Jun-Ho ; Kim, Jong-Chan ; Park, Chul-Young.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:21:p:8233-:d:963128.

    Full description at Econpapers || Download paper

  12. Ensemble Interval Prediction for Solar Photovoltaic Power Generation. (2022). Zhang, Yaxin ; Hu, Tao.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:19:p:7193-:d:929641.

    Full description at Econpapers || Download paper

  13. Solar Energy Resources and Photovoltaic Power Potential of an Underutilised Region: A Case of Alice, South Africa. (2022). Overen, Ochuko Kelvin ; Meyer, Edson Leroy.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:13:p:4646-:d:847417.

    Full description at Econpapers || Download paper

  14. A mathematical model for a rapid calculation of the urban canyon albedo and its applications. (2022). Wang, Wenbo ; Yao, Runming ; Luo, Qing ; Zhang, Hongjie.
    In: Renewable Energy.
    RePEc:eee:renene:v:197:y:2022:i:c:p:836-851.

    Full description at Econpapers || Download paper

  15. A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method. (2022). Yan, Yuying ; Zhang, Yingjie ; Dong, Yan ; Shi, Xuhang ; Wang, Fuqiang ; Cheng, Ziming.
    In: Renewable Energy.
    RePEc:eee:renene:v:192:y:2022:i:c:p:606-616.

    Full description at Econpapers || Download paper

  16. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction. (2022). Ghimire, Sujan ; Salcedo-Sanz, Sancho ; Deo, Ravinesh C ; Casillas-Perez, David.
    In: Renewable Energy.
    RePEc:eee:renene:v:190:y:2022:i:c:p:408-424.

    Full description at Econpapers || Download paper

  17. Evaluation of machine learning models for predicting daily global and diffuse solar radiation under different weather/pollution conditions. (2022). Gao, Xiaoqing ; Liu, Weiping ; Lv, Tao ; Yang, Liwei ; Zhou, Jiaxin ; Jia, Dongyu.
    In: Renewable Energy.
    RePEc:eee:renene:v:187:y:2022:i:c:p:896-906.

    Full description at Econpapers || Download paper

  18. Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms. (2022). Hassan, Rakibul ; Das, Pronob ; Rahman, Mushfiqur.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221021083.

    Full description at Econpapers || Download paper

  19. A hybrid deep learning framework integrating feature selection and transfer learning for multi-step global horizontal irradiation forecasting. (2022). Wei, Wei ; Niu, Tong ; Li, Jinkai ; Yue, Hui.
    In: Applied Energy.
    RePEc:eee:appene:v:326:y:2022:i:c:s0306261922012211.

    Full description at Econpapers || Download paper

  20. An efficient robust optimized functional link broad learning system for solar irradiance prediction. (2022). Bisoi, Ranjeeta ; Dash, P K ; Tripathy, Lokanath.
    In: Applied Energy.
    RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006341.

    Full description at Econpapers || Download paper

  21. Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms. (2022). Ghimire, Sujan ; Salcedo-Sanz, Sancho ; Deo, Ravinesh C ; Casillas-Perez, David.
    In: Applied Energy.
    RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004585.

    Full description at Econpapers || Download paper

  22. Short-term forecasting of global solar irradiance in tropical environments with incomplete data. (2022). Hoyos-Gomez, Laura S ; Ruiz-Muoz, Jose F ; Ruiz-Mendoza, Belizza J.
    In: Applied Energy.
    RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014616.

    Full description at Econpapers || Download paper

  23. Machine Learning Applied to the Oxygen-18 Isotopic Composition, Salinity and Temperature/Potential Temperature in the Mediterranean Sea. (2021). Galvez, Juan F ; Mejuto, Juan C ; Astray, Gonzalo ; Barreiro, Enrique ; Soto, Benedicto.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:19:p:2523-:d:651480.

    Full description at Econpapers || Download paper

  24. Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models. (2021). Mejuto, Juan Carlos ; Astray, Gonzalo ; Martinez-Castillo, Cecilia.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:8:p:2332-:d:539808.

    Full description at Econpapers || Download paper

  25. Comparative Analysis of Machine Learning Models for Day-Ahead Photovoltaic Power Production Forecasting. (2021). Theocharides, Spyros ; Theristis, Marios ; Kynigos, Marios ; Makrides, George ; Georghiou, George E ; Spanias, Chrysovalantis.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:1081-:d:501693.

    Full description at Econpapers || Download paper

  26. A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. (2021). Thil, Stephane ; Grieu, Stephane ; Gbemou, Shab ; Eynard, Julien ; Guillot, Emmanuel.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3192-:d:565352.

    Full description at Econpapers || Download paper

  27. Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts. (2021). Hwang, Youngseok ; Schluter, Stephan ; Liebermann, Simon ; Um, Jung-Sup.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3030-:d:560922.

    Full description at Econpapers || Download paper

  28. Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System Feasibility. (2021). Sun, Hongfei ; Pan, Guobing ; Xu, Fang ; Ma, Dengchang.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:10:p:2893-:d:556393.

    Full description at Econpapers || Download paper

  29. Potential of Bayesian additive regression trees for predicting daily global and diffuse solar radiation in arid and humid areas. (2021). Tang, Xiaoping ; Wu, Wei ; Lv, Jiake ; Liu, Hongbin ; Yang, Chao.
    In: Renewable Energy.
    RePEc:eee:renene:v:177:y:2021:i:c:p:148-163.

    Full description at Econpapers || Download paper

  30. High-resolution estimates of diffuse fraction based on dynamic definitions of sky conditions. (2021). Campana, Pietro Elia ; Hassan, Muhammed A ; Abubakr, Mohamed ; Akoush, Bassem M ; Khalil, Adel.
    In: Renewable Energy.
    RePEc:eee:renene:v:169:y:2021:i:c:p:641-659.

    Full description at Econpapers || Download paper

  31. Machine learning for site-adaptation and solar radiation forecasting. (2021). Bressan, Michael ; Giraldo, Luis Felipe ; Narvaez, Gabriel ; Pantoja, Andres.
    In: Renewable Energy.
    RePEc:eee:renene:v:167:y:2021:i:c:p:333-342.

    Full description at Econpapers || Download paper

  32. A regression unsupervised incremental learning algorithm for solar irradiance prediction. (2021). Rajkumar, Rajprasad Kumar ; Khan, Nafizah ; Juman, Mohammed Ayoub ; Chong, Lee Wai ; Begam, K M ; Puah, Boon Keat ; Wong, Yee Wan.
    In: Renewable Energy.
    RePEc:eee:renene:v:164:y:2021:i:c:p:908-925.

    Full description at Econpapers || Download paper

  33. Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem. (2021). Nonaka, Hirofumi ; Yamashiro, Hirochika.
    In: Operations Research Perspectives.
    RePEc:eee:oprepe:v:8:y:2021:i:c:s2214716021000178.

    Full description at Econpapers || Download paper

  34. Deep learning-based forecasting of aggregated CSP production. (2021). Ayuso, Pablo ; Segarra-Tamarit, Jorge ; Beltran, Hector ; Moya, Eric ; Perez, Emilio.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:184:y:2021:i:c:p:306-318.

    Full description at Econpapers || Download paper

  35. Inter-Hour Forecast of Solar Radiation Based on the Structural Equation Model and Ensemble Model. (2020). Guo, Yiren ; Zhu, Tingting ; Wang, Cong ; Ni, Chao.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4534-:d:407463.

    Full description at Econpapers || Download paper

  36. Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks. (2020). Leva, Sonia ; Pimentel, Sergio Pires ; Mussetta, Marco ; de Paiva, Gabriel Mendona ; Marra, Enes Gonalves ; Alvarenga, Bernardo Pinheiro.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:11:p:3005-:d:370022.

    Full description at Econpapers || Download paper

  37. Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer. (2020). Ma, Xin ; Azimi, Mohammadamin ; Huang, Kun ; Lu, Hongfang.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:127:y:2020:i:c:s1364032120301507.

    Full description at Econpapers || Download paper

  38. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. (2020). Wei, Zhinong ; Sun, LI ; Liu, Ling ; Cheng, Lilin ; Zang, Haixiang.
    In: Renewable Energy.
    RePEc:eee:renene:v:160:y:2020:i:c:p:26-41.

    Full description at Econpapers || Download paper

  39. Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data. (2020). Lakhliai, Zakia ; Amouzg, Mohammed ; Marzouq, Manal ; Zenkouar, Khalid ; el Fadili, Hakim.
    In: Renewable Energy.
    RePEc:eee:renene:v:157:y:2020:i:c:p:214-231.

    Full description at Econpapers || Download paper

  40. Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems. (2020). ben Ammar, Rim ; Oualha, Abdelmajid.
    In: Renewable Energy.
    RePEc:eee:renene:v:153:y:2020:i:c:p:1016-1028.

    Full description at Econpapers || Download paper

  41. Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach. (2020). Chakrabarti, Siddharth ; Makade, Rahul G ; Sakhale, C N ; Jamil, Basharat.
    In: Renewable Energy.
    RePEc:eee:renene:v:146:y:2020:i:c:p:2044-2059.

    Full description at Econpapers || Download paper

  42. Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China. (2020). Zhou, Yong ; Zhu, Ying ; Wang, Yingying ; Chen, Yaowen ; Liu, Yanfeng.
    In: Renewable Energy.
    RePEc:eee:renene:v:146:y:2020:i:c:p:1101-1112.

    Full description at Econpapers || Download paper

  43. Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine. (2020). Liu, Yingwen ; Wang, Xiaojun ; Ye, Wenlian.
    In: Energy.
    RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300190.

    Full description at Econpapers || Download paper

  44. Comparison of daily diffuse radiation models in regions of China without solar radiation measurement. (2020). Yu, Ying ; Liu, Yan ; Cao, Qimeng ; Yang, Liu.
    In: Energy.
    RePEc:eee:energy:v:191:y:2020:i:c:s0360544219322662.

    Full description at Econpapers || Download paper

  45. Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance. (2019). Haider, Syed Irtaza ; Alhussein, Musaed ; Aurangzeb, Khursheed.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:8:p:1487-:d:224240.

    Full description at Econpapers || Download paper

  46. Designing a New Data Intelligence Model for Global Solar Radiation Prediction: Application of Multivariate Modeling Scheme. (2019). Yaseen, Zaher Mundher ; Heddam, Salim ; Deo, Ravinesh ; Al-Ansari, Nadhir ; Ebtehaj, Isa ; Bonakdari, Hossein ; Tao, Hai ; Voyant, Cyril.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:7:p:1365-:d:221246.

    Full description at Econpapers || Download paper

  47. Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction. (2019). Ghimire, Sujan ; Deo, Ravinesh C ; Raj, Nawin.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:12:p:2407-:d:242248.

    Full description at Econpapers || Download paper

  48. Random forest solar power forecast based on classification optimization. (2019). Sun, Kun ; Liu, DA.
    In: Energy.
    RePEc:eee:energy:v:187:y:2019:i:c:s036054421931624x.

    Full description at Econpapers || Download paper

  49. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM. (2019). Gao, Mingming ; Li, Jianjing ; Hong, Feng ; Long, Dongteng.
    In: Energy.
    RePEc:eee:energy:v:187:y:2019:i:c:s0360544219315105.

    Full description at Econpapers || Download paper

  50. The implementation of univariable scheme-based air temperature for solar radiation prediction: New development of dynamic evolving neural-fuzzy inference system model. (2019). Yaseen, Zaher Mundher ; Heddam, Salim ; Kisi, Ozgur.
    In: Applied Energy.
    RePEc:eee:appene:v:241:y:2019:i:c:p:184-195.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 18:58:56 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.