create a website

Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system. (2024). Zhao, Zheng ; Zhang, Yagang ; Cheng, Xiaodan ; Wang, Tong.
In: Energy.
RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002639.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 88

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A Wind Speed Prediction Method Based on Signal Decomposition Technology Deep Learning Model. (2025). Du, Jie ; Liu, Yubao ; Pan, Linlin ; Chen, Shuaizhi.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:5:p:1136-:d:1599642.

    Full description at Econpapers || Download paper

  2. Advancing renewable energy scenarios with graph theory and ensemble meta-optimized approach. (2025). Bafti, Amin Arjmand ; Rezaei, Mohsen.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:218:y:2025:i:c:s1364032125004794.

    Full description at Econpapers || Download paper

  3. Probability density function based adaptive ensemble learning with global convergence for wind power prediction. (2024). Zhou, Chengyu ; Jia, LI ; Li, Jianfang.
    In: Energy.
    RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033516.

    Full description at Econpapers || Download paper

  4. A reconstruction-based secondary decomposition-ensemble framework for wind power forecasting. (2024). Zhang, Guowei ; Liu, DA ; Yang, DI ; Cheng, Runkun.
    In: Energy.
    RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026690.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abebe, M. ; Noh, Y. ; Kang, Y.-J. ; Seo, C. ; Kim, D. ; Seo, J. Ship trajectory planning for collision avoidance using hybrid ARIMA-LSTM models. 2022 Ocean Eng. 256 29-8018
    Paper not yet in RePEc: Add citation now
  2. Ajagekar, A. ; You, F. Deep reinforcement learning based unit commitment scheduling under load and wind power uncertainty. 2023 IEEE Trans Sustain Energy. 14 803-812
    Paper not yet in RePEc: Add citation now
  3. Ak, E. ; Canberk, B. Forecasting quality of service for next-generation data-driven WiFi6 campus networks. 2021 IEEE Transactions on Network and Service Management. 18 4744-4755
    Paper not yet in RePEc: Add citation now
  4. Cadenas, E. ; Rivera, W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. 2010 Renew Energy. 2732-2738

  5. Caro, F.D. ; Stefani, J.D. ; Vaccaro, A. ; Bontempi, G. DAFT-E: feature-based multivariate and multi-step-ahead wind power forecasting. 2022 IEEE Trans Sustain Energy. 13 1199-1209
    Paper not yet in RePEc: Add citation now
  6. Chaturved, S. ; Rajasekar, E. ; Natarajan, S. ; McCullen, N. A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. 2022 Energy Pol. 168 301-4215

  7. Chen, J. ; Feng, X. ; Jiang, L. ; Zhu, Q. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network. 2021 Energy. 227 360-5442

  8. Davò, F. ; Alessandrini, S. ; Sperati, S. ; Monache, L.D. ; Airoldi, D. ; Vespucci, M.T. Post-pro-cessing techniques and principal component analysis for regional wind power and solar irradiance forecasting. 2016 Sol Energy. 134 327-338
    Paper not yet in RePEc: Add citation now
  9. Ding Y, Chen Z, Zhang H, Wang X, Guo Y. A short-term wind power prediction model based on CEEMD and WOA-KELM. Renewable Energy 2022,189:188-198..

  10. Ding, Y. ; Chen, Z. ; Zhang, H. ; Wang, X. ; Guo, Y. A short-term wind power prediction model based on CEEMD and WOA-KELM. 2022 Renew Energy. 189 188-198

  11. Dong, Y. ; Liu, Y. ; Qin, S.J. Efficient dynamic latent variable analysis for high-dimensional time series data. 2020 IEEE Trans Ind Inf. 16 4068-4076
    Paper not yet in RePEc: Add citation now
  12. Dong, Z. ; Wang, X. ; Zhu, R. ; Dong, X. ; Ai, X. Improving the accuracy of wind speed statistical analysis and wind energy utilization in the Ningxia Autonomous Region. China. 2022 Appl Energy. 320 -

  13. Dorigo, M. ; Gambardella, L.M. Ant colony system: a cooperative learning approach to the traveling salesman problem. 1997 IEEE Trans Evol Comput. 1 53-66
    Paper not yet in RePEc: Add citation now
  14. Duff, E.P. ; Trachtenberg, A.J. ; Mackay, C.E. ; Howard, M.A. ; Wilson, F. ; Smith, S.M. ; Woolrich, M.W. Task-driven ICA feature generation for accurate and interpretable prediction using fMRI. 2016 Neuroimage. 60 189-203
    Paper not yet in RePEc: Add citation now
  15. El-Sattar, H.A. ; Kamel, S. ; Hassan, M.H. ; Jurado, F. An effective optimization strategy for design of standalone hybrid renewable energy systems. 2022 Energy. 260 -

  16. Fan, D. ; Sun, H. ; Yao, J. ; Zhang, K. ; Yan, X. ; Sun, Z. Well production forecasting based on ARIMA-LSTM model considering manual operations. 2021 Energy. 220 -

  17. Fazlipour, Z. ; Mashhour, E. ; Joorabian, M. A deep model for short-term load forecasting applying a stacked autoencoder based on LSTM supported by a multi-stage attention mechanism. 2022 Appl Energy. 327 306-2619

  18. Global Energy Review 2022, International Energy Agency (IEA), https://www.iea.org/.
    Paper not yet in RePEc: Add citation now
  19. Guo, Z. ; Qiu, D. ; Yu, Y. ; Xue, Y. ; Liu, Q. ; Zhang, W. ; Li, Z. Analysis and prediction of nonuniform deformation in composite strata during tunnel. 2023 excavation. 157 -
    Paper not yet in RePEc: Add citation now
  20. He, Y. ; Wang, Y. Short-term wind power prediction based on EEMD–LASSO–QRNN model. 2021 Appl Soft Comput. 105 -
    Paper not yet in RePEc: Add citation now
  21. Hosseini, S.A. ; Toubeau, J.-F. ; Grève, Z.D. ; Wang, Y. ; Amjady, N. ; Vallée, F. Data-driven multi-resolution probabilistic energy and reserve bidding of wind power. 2023 IEEE Trans Power Syst. 38 85-99
    Paper not yet in RePEc: Add citation now
  22. Hou, W. ; Tao, X. ; Xu, D. Combining prior knowledge with CNN for weak scratch inspection of optical components. 2021 IEEE Trans Instrum Meas. 70 1-11
    Paper not yet in RePEc: Add citation now
  23. Hu, H. ; Wang, L. ; Tao, R. Wind speed forecasting based on variational mode decomposition and improved echo state network. 2021 Renew Energy. 164 729-751

  24. Huang, X. ; Teng, Z. ; Tang, Q. ; Yu, Z. ; Hua, J. ; Wang, X. Fault diagnosis of automobile power seat with acoustic analysis and retrained SVM based on smartphone. 2022 Measurement. 202 263-2241
    Paper not yet in RePEc: Add citation now
  25. Imani, M. Electrical load-temperature CNN for residential load forecasting. 2021 Energy. 227 -

  26. Jeong, K. ; Mallard, A.R. ; Coombe, L. ; Ward, J. Artificial intelligence and prediction of cardiometabolic disease: systematic review of model performance and potential benefits in indigenous populations. 2023 Artif Intell Med. 139 933-3657
    Paper not yet in RePEc: Add citation now
  27. Ji, S. ; Zhang, C. ; Ran, L. An attitude improvement method of FOG-based measurement-while-drilling utilizing backtracking navigation algorithm. 2022 IEEE Sensor J. 22 22077-22088
    Paper not yet in RePEc: Add citation now
  28. Joseph, L.P. ; Deo, R.C. ; Prasad, R. ; Salcedo-Sanz, S. ; Raj, N. ; Soar, J. Near real-time wind speed forecast model with bidirectional LSTM networks. 2023 Renew Energy. 201 39-58

  29. Kansal, V. ; Dhillon, J.S. Ameliorated artificial hummingbird algorithm for coordinated wind-solar-thermal generation scheduling problem in multiobjective framework. 2022 Appl Energy. 326 -

  30. Kingma, D.P. ; Adam, Ba J. A method for stochastic optimization. International conference on learning representations. 2014 :
    Paper not yet in RePEc: Add citation now
  31. Krannichfeldt, L.V. ; Wang, Y. ; Zufferey, T. ; Hug, G. Online ensemble approach for probabilistic wind power forecasting. 2022 IEEE Trans Sustain Energy. 13 1221-1233
    Paper not yet in RePEc: Add citation now
  32. Li, C. ; Wu, Y. ; Lin, H. ; Li, J. ; Zhang, F. ; Yang, Y. ECG denoising method based on an improved VMD algorithm. 2022 IEEE Sensor J. 22 22725-22733
    Paper not yet in RePEc: Add citation now
  33. Li, G. ; Liu, Y. ; Jiao, Y. ; Zhang, Z. ; Wu, Y. ; Zhang, X. ; Zhao, H. ; Li, J. ; Song, Y. ; Li, Q. ; Zhai, S. Mid-infrared acetone sensor for exhaled gas using FWA-LSSVM and empirical mode decomposition algorithm. 2023 Measurement. 213 263-2241
    Paper not yet in RePEc: Add citation now
  34. Li, R. ; Jin, Y. A wind speed interval prediction system based on multi-objective optimization for machine learning method. 2018 Appl Energy. 228 2207-2220

  35. Li, S. ; Qin, N. ; Huang, D. ; Huang, D. ; Ke, L. Damage localization of stacker's track based on EEMD-EMD and DBSCAN cluster algorithms. 2020 IEEE Trans Instrum Meas. 69 1981-1992
    Paper not yet in RePEc: Add citation now
  36. Li, Z. A spatiotemporal directed graph convolution network for ultra-short-term wind power prediction. 2022 IEEE Trans Sustain Energy. 14 39-54
    Paper not yet in RePEc: Add citation now
  37. Liao, T.W. Two hybrid differential evolution algorithms for engineering design optimization. 2010 Appl Soft Comput. 10 1188-1199
    Paper not yet in RePEc: Add citation now
  38. Lin, Z. ; Shi, Y. ; Wang, Z. ; Li, B. ; Chen, Y. Intelligent seam tracking of an ultranarrow gap during K-TIG welding: a hybrid CNN and adaptive ROI operation algorithm. 2023 IEEE Trans Instrum Meas. 72 1-14
    Paper not yet in RePEc: Add citation now
  39. Liu, H. ; Wu, H. ; Li, Y. Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction. 2018 Energy Convers Manag. 161 266-283
    Paper not yet in RePEc: Add citation now
  40. Liu, M.-D. ; Ding, L. ; Bai, Y.-L. Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction. 2021 Energy Convers Manag. 233 -
    Paper not yet in RePEc: Add citation now
  41. Liu, W. ; Zhao, C. ; Peng, T. ; Zhang, Z. ; Wan, A. Simulation-assisted multi-process integrated optimization for green Telligent aluminum casting. 2023 Appl Energy. 336 -

  42. Liu, X. ; Lin, Z. ; Feng, Z. Short-term offshore wind speed forecast by seasonal ARIMA - a comparison against GRU and LSTM. 2021 Energy. 227 -

  43. Liu, Y. ; Li, X. ; Yang, L. ; Bian, G. ; Yu, H. A CNN-transformer hybrid recognition approach for sEMG-based dynamic gesture prediction. 2023 IEEE Trans Instrum Meas. 72 1-16
    Paper not yet in RePEc: Add citation now
  44. Long, B. ; Zhu, Z. ; Yang, W. ; Chong, K.T. ; Rodríguez, J. ; Guerrero, J.M. Gradient descent optimization based parameter identification for FCS-MPC control of LCL-Type grid Connected converter. 2022 IEEE Trans Ind Electron. 69 2631-2643
    Paper not yet in RePEc: Add citation now
  45. Mounir, N. ; Ouadi, H. ; Jrhilifa, I. Short-term electric load forecasting using an EMD-BI-LSTM approach for smart grid energy management system. 2023 Energy Build. 288 378-7788
    Paper not yet in RePEc: Add citation now
  46. Naik, J. ; Satapathy, P. ; Dash, P.K. Short-term wind speed and wind power prediction using hybrid empirical mode decomposition and kernel ridge regression. 2018 Appl Soft Comput. 70 1167-1188
    Paper not yet in RePEc: Add citation now
  47. Niu, D. ; Sun, L. ; Yu, M. ; Wang, K. Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model. 2022 Energy. 254 -

  48. Pang, H. Design of highly uniform field coils based on the magnetic field coupling model and improved PSO algorithm in atomic sensors. 2022 IEEE Trans Instrum Meas. 71 1-11
    Paper not yet in RePEc: Add citation now
  49. Renewable Energy Statistics 2022, International Renewable Energy Agency (IRENA), https://www.irena.org/.
    Paper not yet in RePEc: Add citation now
  50. Sahani, M. ; Dash, P.K. Deep convolutional stack autoencoder of process adaptive VMD data with robust multikernel RVFLN for power quality events recognition. 2021 IEEE Trans Instrum Meas. 70 1-12
    Paper not yet in RePEc: Add citation now
  51. Santos, V.O. ; Rocha, P.A.C. ; Griensven, J.V. ; Gharabaghi, B. Spatiotemporal analysis of bidimensional wind speed forecasting: development and thorough assessment of LSTM and ensemble graph neural networks on the Dutch database. 2023 Energy. 278 -

  52. Sareen, K. ; Panigrahi, Bk ; Shikhola, T. ; Sharma, R. An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction. 2023 Energy. 278 -

  53. Shi, J. ; Li, C. ; Yan, X. Artificial intelligence for load forecasting: a stacking learning approach based on ensemble diversity regularization. 2023 Energy. 262 -

  54. Su, H. ; Zio, E. ; Zhang, J. ; Xu, M. ; Li, X. ; Zhang, Z. A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model. 2019 Energy. 178 585-597

  55. Su, H.-Y. ; Huang, C.-R. Enhanced wind generation forecast using robust ensemble learning. 2021 IEEE Trans Smart Grid. 12 912-915
    Paper not yet in RePEc: Add citation now
  56. Tabrizi, S.E. ; Xiao, K. ; Griensven, J.V. ; Saad, M. ; Farghaly, H. ; Yang, S.X. ; Gharabaghi, B. Hourly Road pavement surface temperature forecasting using deep learning models. 2021 J Hydrol. 603 -
    Paper not yet in RePEc: Add citation now
  57. Tian, Z. Modes decomposition forecasting approach for ultra-short-term wind speed. 2021 Appl Soft Comput. 105 -
    Paper not yet in RePEc: Add citation now
  58. Wang, C. ; Zhang, H. ; Fan, W. ; Ma, P. A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction. 2017 Energy. 138 977-990

  59. Wang, J. ; He, L. ; Lu, X. ; Zhou, L. ; Tang, H. ; Yan, Y. ; Ma, W. A full-coverage estimation of PM2.5 concentrations using a hybrid XGBoost-WD model and WRF-simulated meteorological fields in the Yangtze River Delta Urban Agglomeration, China. 2022 Environ Res. 203 13-9351
    Paper not yet in RePEc: Add citation now
  60. Wang, K. ; Zhang, Y. ; Lin, F. ; Wang, J. ; Zhu, M. Nonparametric probabilistic forecasting for wind power generation using quadratic spline quantile function and autoregressive recurrent neural network. 2022 IEEE Trans Sustain Energy. 13 1930-1943
    Paper not yet in RePEc: Add citation now
  61. Wang, Q. ; Kong, W. ; Zhong, J. ; Shan, Z. ; Wang, J. ; Li, X. ; Peng, H. ; Hu, B. A hybrid SVM and kernel function-based sparse representation classification for automated epilepsy detection in EEG signals. 2023 Neurocomputing. 562 -
    Paper not yet in RePEc: Add citation now
  62. Wei, D. ; Wang, J. ; Li, Z. ; Wang, R. Wind power curve modeling with hybrid copula and grey Wolf optimization. 2022 IEEE Trans Sustain Energy. 13 265-276
    Paper not yet in RePEc: Add citation now
  63. Wei, X. Reduce the noise of transient electromagnetic signal based on the method of SMA-VMD-WTD. 2022 IEEE Sensor J. 22 14959-14969
    Paper not yet in RePEc: Add citation now
  64. Wei, X. ; Xiang, Y. ; Li, J. ; Zhang, X. Self-dispatch of wind-storage integrated system: a deep reinforcement learning approach. 2022 IEEE Trans Sustain Energy. 13 1861-1864
    Paper not yet in RePEc: Add citation now
  65. Wen, H. ; Ma, J. ; Gu, J. ; Yuan, L. ; Jin, Z. Sparse variational Gaussian process based day-ahead probabilistic wind power forecasting. 2022 IEEE Trans Sustain Energy. 13 957-970
    Paper not yet in RePEc: Add citation now
  66. Wen, S. ; Li, Y. ; Su, Y. A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations. 2022 Renew Energy. 198 155-168

  67. Wu, Y.-K. ; Wu, Y.-C. ; Chang, H.-L. ; Hong, J.-S. Using extreme wind-speed probabilistic forecasts to optimize unit scheduling decision. 2022 IEEE Trans Sustain Energy. 13 818-829
    Paper not yet in RePEc: Add citation now
  68. Xie, J. ; Yang, R. ; Gooi, H.B. ; Nguyen, H.D. PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system. 2023 Appl Energy. 331 306-2619

  69. Xu, L. ; Wang, J. ; Ou, Y. ; Fu, Y. ; Bian, X. A novel decision-making system for selecting offshore wind turbines with PCA and D numbers. 2022 Energy. 258 -

  70. Yakoub, G. ; Mathew, S. ; Leal, J. Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models. 2023 Energy. 263 -

  71. Yang, N. ; Ruan, S. ; Han, L. ; Liu, H. ; Guo, L. ; Xiang, C. Reinforcement learning-based real-time intelligent energy management for hybrid electric vehicles in a model predictive control framework. 2023 Energy. 270 -

  72. Yousuf, M.U. ; Al-Bahadly, I. ; Avci, E. Statistical wind speed forecasting models for small sample datasets: problems, Improvements, and prospects. 2022 Energy Convers Manag. 261 -
    Paper not yet in RePEc: Add citation now
  73. Zamora, E. ; Sossa, H. Dendrite morphological neurons trained by stochastic gradient descent. 2017 Neurocomputing. 260 420-431
    Paper not yet in RePEc: Add citation now
  74. Zhang, C. ; Peng, T. ; Nazir, M.S. A novel hybrid approach based on variational heteroscedastic Gaussian process regression for multi-step ahead wind speed forecasting. 2022 Int J Electr Power Energy Syst. 136 -
    Paper not yet in RePEc: Add citation now
  75. Zhang, K. ; Yang, X. ; Wang, T. ; Thé, J. ; Tan, Z. ; Yu, H. Multi-step carbon price forecasting using a hybrid model based on multivariate decomposition strategy and deep learning algorithms. 2023 J Clean Prod. 405 -
    Paper not yet in RePEc: Add citation now
  76. Zhang, M. ; Liang, K. ; Miao, Y. ; Lin, J. ; Ding, C. Application of improved double-dictionary K-SVD for compound-fault diagnosis of rolling element bearings. 2022 Measurement. 187 263-2241
    Paper not yet in RePEc: Add citation now
  77. Zhang, X. ; Chen, L. ; Sun, Y. ; Bai, Y. ; Huang, B. ; Chen, K. Determination of zinc oxide content of mineral medicine calamine using near-infrared spectroscopy based on MIV and BP-ANN algorithm. 2018 Spectrochim Acta Part A Mol Biomol Spectrosc. 193 133-140
    Paper not yet in RePEc: Add citation now
  78. Zhang, Y. ; Chen, B. ; Pan, G. ; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. 2019 Energy Convers Manag. 195 180-197
    Paper not yet in RePEc: Add citation now
  79. Zhang, Y. ; Chen, Y. ; Qi, Z. ; Wang, S. ; Zhang, J. ; Wang, F. A hybrid forecasting system with complexity identification and improved optimization for short-term wind speed prediction. 2022 Energy Convers Manag. 270 -
    Paper not yet in RePEc: Add citation now
  80. Zhang, Y. ; Li, C. ; Jiang, Y. ; Zhao, R. ; Yan, K. ; Wang, W. A hybrid model combining mode decomposition and deep learning algorithms for detecting TP in urban sewer networks. 2023 Appl Energy. 333 -

  81. Zhang, Y. ; Pan, G. ; Chen, B. ; Han, J. ; Zhao, Y. ; Zhang, C. Short-term wind speed prediction model based on GA-ANN improved by VMD. 2020 Renew Energy. 156 1373-1388

  82. Zhang, Y. ; Pan, G. ; Zhao, Y. ; Li, Q. ; Wang, F. Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution. 2020 Energy Convers Manag. 224 -
    Paper not yet in RePEc: Add citation now
  83. Zhang, Y. ; Zhao, Y. ; Kong, C. ; Chen, B. A new prediction method based on VMD-PRBF-ARMA-E model considering wind speed characteristic. 2020 Energy Convers Manag. 203 -
    Paper not yet in RePEc: Add citation now
  84. Zhang, Y. ; Zhao, Y. ; Shen, X. ; Zhang, J. A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms. 2022 Appl Energy. 305 -

  85. Zhang, Z. ; Zhou, S. ; Li, D. ; Yang, T. Gradient preconditioned mini-batch SGD for ridge regression. 2020 Neurocomputing. 413 284-293
    Paper not yet in RePEc: Add citation now
  86. Zhao, W. ; Wang, L. ; Mirjalili, S. Artificial hummingbird algorithm: a new bio-inspired optimizer with its engineering applications. 2022 Comput Methods Appl Mech Eng. 388 45-7825
    Paper not yet in RePEc: Add citation now
  87. Zhen, H. ; Niu, D. ; Wang, K. ; Shi, Y. ; Ji, Z. ; Xu, X. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information. 2021 Energy. 231 360-5442

  88. Zou, M. Bayesian CNN-BiLSTM and vine-GMCM based probabilistic forecasting of hour-ahead wind farm power outputs. 2022 IEEE Trans Sustain Energy. 13 1169-1187
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Predicting gasoline shortage during disasters using social media. (2020). Batta, Rajan ; He, Qing ; Khare, Abhinav.
    In: OR Spectrum: Quantitative Approaches in Management.
    RePEc:spr:orspec:v:42:y:2020:i:3:d:10.1007_s00291-019-00559-8.

    Full description at Econpapers || Download paper

  2. The Hybridization of Ensemble Empirical Mode Decomposition with Forecasting Models: Application of Short-Term Wind Speed and Power Modeling. (2020). Yaseen, Zaher Mundher ; Tao, Siyu ; Bokde, Neeraj ; Al-Ansari, Nadhir ; Feijoo, Andres.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:7:p:1666-:d:340783.

    Full description at Econpapers || Download paper

  3. Fuzzy First-Order Transition-Rules-Trained Hybrid Forecasting System for Short-Term Wind Speed Forecasts. (2020). Bai, Yulong ; Yang, Yang ; Ma, Xiaoyan ; Fan, Manhong ; Tang, Lihong.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:13:p:3332-:d:378232.

    Full description at Econpapers || Download paper

  4. Soft Computing Methods with Phase Space Reconstruction for Wind Speed Forecasting—A Performance Comparison. (2019). Flores, Juan ; Lopez-Farias, Rodrigo ; Graff, Mario ; Cedeo, Jose R ; Rodriguez, Hector ; Calderon, Felix.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:18:p:3545-:d:267697.

    Full description at Econpapers || Download paper

  5. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. (2019). Guerrero, Josep M ; Dhiman, Harsh S ; Deb, Dipankar.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:108:y:2019:i:c:p:369-379.

    Full description at Econpapers || Download paper

  6. High resolution wind speed forecasting based on wavelet decomposed phase space reconstruction and self-organizing map. (2019). qi, huang ; Chen, Zhe ; Hu, Weihao ; Huang, QI ; Li, Pengfei ; Gokmen, Nuri.
    In: Renewable Energy.
    RePEc:eee:renene:v:140:y:2019:i:c:p:17-31.

    Full description at Econpapers || Download paper

  7. Robust functional regression for wind speed forecasting based on Sparse Bayesian learning. (2019). Wang, Yun ; Hu, Qinghua ; Srinivasan, Dipti.
    In: Renewable Energy.
    RePEc:eee:renene:v:132:y:2019:i:c:p:43-60.

    Full description at Econpapers || Download paper

  8. A hybrid forecasting system based on fuzzy time series and multi-objective optimization for wind speed forecasting. (2019). Jiang, Ping ; Heng, Jiani ; Yang, Hufang.
    In: Applied Energy.
    RePEc:eee:appene:v:235:y:2019:i:c:p:786-801.

    Full description at Econpapers || Download paper

  9. A Hybrid Model Based on A Modified Optimization Algorithm and An Artificial Intelligence Algorithm for Short-Term Wind Speed Multi-Step Ahead Forecasting. (2018). Yao, Zonggui ; Wang, Chen.
    In: Sustainability.
    RePEc:gam:jsusta:v:10:y:2018:i:5:p:1443-:d:144780.

    Full description at Econpapers || Download paper

  10. Forecasting methods in energy planning models. (2018). Mourshed, Monjur ; Debnath, Kumar Biswajit.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:88:y:2018:i:c:p:297-325.

    Full description at Econpapers || Download paper

  11. Research and application of a combined model based on variable weight for short term wind speed forecasting. (2018). Guo, Zhenhai ; Wang, Jianzhou ; Li, Hongmin ; Lu, Haiyan.
    In: Renewable Energy.
    RePEc:eee:renene:v:116:y:2018:i:pa:p:669-684.

    Full description at Econpapers || Download paper

  12. Innovative hybrid models for forecasting time series applied in wind generation based on the combination of time series models with artificial neural networks. (2018). Lucio, Paulo Sergio ; Marques, Paulo Cesar ; Verosa, Joo Bosco ; Do, Henrique ; von Glehn, Daniel.
    In: Energy.
    RePEc:eee:energy:v:151:y:2018:i:c:p:347-357.

    Full description at Econpapers || Download paper

  13. Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system. (2018). Li, Yifan ; Yang, Wendong ; Du, Pei ; Wang, Jianzhou.
    In: Energy.
    RePEc:eee:energy:v:148:y:2018:i:c:p:59-78.

    Full description at Econpapers || Download paper

  14. Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review. (2018). Zendehboudi, Sohrab ; Rezaei, Nima ; Lohi, Ali.
    In: Applied Energy.
    RePEc:eee:appene:v:228:y:2018:i:c:p:2539-2566.

    Full description at Econpapers || Download paper

  15. A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting. (2018). Xiao, Zhengguang ; Zou, Wen ; Zhang, Chu ; Li, Chaoshun.
    In: Applied Energy.
    RePEc:eee:appene:v:215:y:2018:i:c:p:131-144.

    Full description at Econpapers || Download paper

  16. Renewable energy: Present research and future scope of Artificial Intelligence. (2017). Kr, Sunil ; Patel, Nilesh ; Bilalovic, Jasmin ; Zhang, Han ; Jha, Anju .
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:77:y:2017:i:c:p:297-317.

    Full description at Econpapers || Download paper

  17. A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction. (2017). Fan, Wenhui ; Ma, Ping ; Zhang, Hongli ; Wang, Cong.
    In: Energy.
    RePEc:eee:energy:v:138:y:2017:i:c:p:977-990.

    Full description at Econpapers || Download paper

  18. Short-term wind speed forecasting using a hybrid model. (2017). Wang, Yun ; Jiang, Ping.
    In: Energy.
    RePEc:eee:energy:v:119:y:2017:i:c:p:561-577.

    Full description at Econpapers || Download paper

  19. Comparative Study of Hybrid Models Based on a Series of Optimization Algorithms and Their Application in Energy System Forecasting. (2016). Ma, Xuejiao ; Liu, Dandan.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:8:p:640-:d:76019.

    Full description at Econpapers || Download paper

  20. Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting. (2016). Filik, Tansu.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:3:p:168-:d:65196.

    Full description at Econpapers || Download paper

  21. Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model. (2016). Rivera, Wilfrido ; Campos-Amezcua, Rafael ; Cadenas, Erasmo ; Heard, Christopher.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2016:i:2:p:109-:d:63927.

    Full description at Econpapers || Download paper

  22. Transfer learning for short-term wind speed prediction with deep neural networks. (2016). Zhou, Yucan ; Zhang, Rujia ; Hu, Qinghua.
    In: Renewable Energy.
    RePEc:eee:renene:v:85:y:2016:i:c:p:83-95.

    Full description at Econpapers || Download paper

  23. A novel bidirectional mechanism based on time series model for wind power forecasting. (2016). Li, Zhi ; Zhao, Yongning ; Lang, Yansheng ; Song, Xuri ; Ye, Lin ; Su, Jian.
    In: Applied Energy.
    RePEc:eee:appene:v:177:y:2016:i:c:p:793-803.

    Full description at Econpapers || Download paper

  24. Hybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation. (2015). Su, Zhongyue ; An, Ning ; Liu, Liwei ; Zhao, Jing.
    In: Energies.
    RePEc:gam:jeners:v:9:y:2015:i:1:p:7-:d:61216.

    Full description at Econpapers || Download paper

  25. Wind speed prediction in the mountainous region of India using an artificial neural network model. (2015). Chandel, S. S. ; Ramasamy, P. ; Yadav, Amit Kumar.
    In: Renewable Energy.
    RePEc:eee:renene:v:80:y:2015:i:c:p:338-347.

    Full description at Econpapers || Download paper

  26. A self-adaptive hybrid approach for wind speed forecasting. (2015). Zhang, Yixin ; Ma, Kailiang ; Wang, Jianzhou ; Hu, Jianming.
    In: Renewable Energy.
    RePEc:eee:renene:v:78:y:2015:i:c:p:374-385.

    Full description at Econpapers || Download paper

  27. Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. (2015). Qin, Shanshan ; Zhou, Qingping ; Wang, Jianzhou ; Jiang, Haiyan.
    In: Renewable Energy.
    RePEc:eee:renene:v:76:y:2015:i:c:p:91-101.

    Full description at Econpapers || Download paper

  28. Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. (2015). Shukur, Osamah Basheer ; Lee, Muhammad Hisyam.
    In: Renewable Energy.
    RePEc:eee:renene:v:76:y:2015:i:c:p:637-647.

    Full description at Econpapers || Download paper

  29. Reliability measures for indexed semi-Markov chains applied to wind energy production. (2015). Damico, Guglielmo ; Prattico, Flavio ; Petroni, Filippo.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:144:y:2015:i:c:p:170-177.

    Full description at Econpapers || Download paper

  30. A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. (2015). Arunraj, Nari Sivanandam ; Ahrens, Diane.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:170:y:2015:i:pa:p:321-335.

    Full description at Econpapers || Download paper

  31. Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea. (2015). Koo, Junmo ; Shim, Joon Hyung ; Choi, Hyung Jong ; Han, Gwon Deok .
    In: Energy.
    RePEc:eee:energy:v:93:y:2015:i:p2:p:1296-1302.

    Full description at Econpapers || Download paper

  32. A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: A case study of wind farms in northwest China. (2015). Wang, Yun ; Wei, Xiang.
    In: Energy.
    RePEc:eee:energy:v:91:y:2015:i:c:p:556-572.

    Full description at Econpapers || Download paper

  33. A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction. (2015). Du, Zhaoping ; Chang, Yanchao ; Su, Xunliang ; Wu, Xuedong ; Fan, Shaosheng ; Zeng, Qingjun ; Zhu, Zhiyu.
    In: Energy.
    RePEc:eee:energy:v:88:y:2015:i:c:p:194-201.

    Full description at Econpapers || Download paper

  34. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks. (2015). Li, Yan-Fei ; Liang, Xi-Feng ; Liu, Hui ; Tian, Hong-Qi .
    In: Applied Energy.
    RePEc:eee:appene:v:157:y:2015:i:c:p:183-194.

    Full description at Econpapers || Download paper

  35. The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China. (2015). Wang, Yun ; Jiang, Ping.
    In: Applied Energy.
    RePEc:eee:appene:v:143:y:2015:i:c:p:472-488.

    Full description at Econpapers || Download paper

  36. Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting. (2014). Jimenez-Come, M. J. ; Ruiz-Aguilar, J. J. ; Turias, I. J..
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:67:y:2014:i:c:p:1-13.

    Full description at Econpapers || Download paper

  37. A review of combined approaches for prediction of short-term wind speed and power. (2014). Uzunoglu, M. ; Tascikaraoglu, A..
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:34:y:2014:i:c:p:243-254.

    Full description at Econpapers || Download paper

  38. Wind energy resource in Northern Mexico. (2014). Saldaa-Flores, R. ; Hernandez-Escobedo, Q. ; Manzano-Agugliaro, F. ; Rodriguez-Garcia, E. R..
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:32:y:2014:i:c:p:890-914.

    Full description at Econpapers || Download paper

  39. Current status and future advances for wind speed and power forecasting. (2014). Broadwater, Robert P. ; Jung, Jaesung.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:31:y:2014:i:c:p:762-777.

    Full description at Econpapers || Download paper

  40. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. (2014). Fan, Leilei ; Wang, Hui ; Niu, Dongxiao ; Liu, DA.
    In: Renewable Energy.
    RePEc:eee:renene:v:62:y:2014:i:c:p:592-597.

    Full description at Econpapers || Download paper

  41. A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China. (2014). Xiong, Shenghua ; Wang, Jianzhou.
    In: Energy.
    RePEc:eee:energy:v:76:y:2014:i:c:p:526-541.

    Full description at Econpapers || Download paper

  42. A time series-based approach for renewable energy modeling. (2013). Karanfil, Fatih ; Hocaoglu, Fatih Onur.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:28:y:2013:i:c:p:204-214.

    Full description at Econpapers || Download paper

  43. Very short-term wind speed forecasting with Bayesian structural break model. (2013). Song, Zhe ; Jiang, YU ; Kusiak, Andrew.
    In: Renewable Energy.
    RePEc:eee:renene:v:50:y:2013:i:c:p:637-647.

    Full description at Econpapers || Download paper

  44. A new strategy for predicting short-term wind speed using soft computing models. (2012). Senjyu, Tomonobu ; Mandal, Paras ; Kaye, Mary E. ; Chang, Liuchen ; Meng, Julian ; Haque, Ashraf U..
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:16:y:2012:i:7:p:4563-4573.

    Full description at Econpapers || Download paper

  45. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. (2012). Zheng, Songtao ; Guo, Jinmei ; Shi, Jing.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:16:y:2012:i:5:p:3471-3480.

    Full description at Econpapers || Download paper

  46. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. (2012). Li, Yan-Fei ; Liu, Hui ; Tian, Hong-Qi ; Chen, Chao.
    In: Renewable Energy.
    RePEc:eee:renene:v:48:y:2012:i:c:p:545-556.

    Full description at Econpapers || Download paper

  47. Performance analysis of four modified approaches for wind speed forecasting. (2012). Zhao, Weigang ; Zhang, Wenyu ; Shen, Lin ; Wu, Jie ; Wang, Jianzhou.
    In: Applied Energy.
    RePEc:eee:appene:v:99:y:2012:i:c:p:324-333.

    Full description at Econpapers || Download paper

  48. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. (2012). Li, Yan-Fei ; Liu, Hui ; Tian, Hong-Qi .
    In: Applied Energy.
    RePEc:eee:appene:v:98:y:2012:i:c:p:415-424.

    Full description at Econpapers || Download paper

  49. Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods. (2011). de Giorgi, Maria Grazia ; Tarantino, Marco ; Ficarella, Antonio.
    In: Energy.
    RePEc:eee:energy:v:36:y:2011:i:7:p:3968-3978.

    Full description at Econpapers || Download paper

  50. Evaluating alternative offering strategies for wind producers in a pool. (2011). Rahimiyan, Morteza ; Morales, Juan M. ; Conejo, Antonio J..
    In: Applied Energy.
    RePEc:eee:appene:v:88:y:2011:i:12:p:4918-4926.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 23:00:57 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.