Abramson, B. ; Finizza, A. Probabilistic forecasts from probabilistic models: a case study in the oil market. 1995 Int J Forecast. 11 63-72
Akaike, H. Fitting autoregressive models for prediction. 1969 Ann Inst Stat Math. 21 243-247
Alameer, Z. ; Fathalla, A. ; Li, K. ; Ye, H. ; Jianhua, Z. Multistep-ahead forecasting of coal prices using a hybrid deep learning model. 2020 Resour Pol. 65 -
- Aloke, M. ; Somnath, G. ; Chhanda, R. Why efforts to address India's ‘just transition’ should support nature-based solutions. 2023 Energy Res Social Sci. 98 -
Paper not yet in RePEc: Add citation now
Aminu, N. Energy prices volatility and the United Kingdom: evidence from a dynamic stochastic general equilibrium model. 2019 Energy. 172 487-497
- Ashraf, W.M. ; Uddin, G.M. ; Arafat, S.M. Strategic-level performance enhancement of a 660 MWe supercritical power plant and emissions reduction by AI approach. 2021 Energy Convers Manag. 250 -
Paper not yet in RePEc: Add citation now
- Bai S, Kolter J Z, Koltun V. Trellis Networks for Sequence Modeling 2018. https://arxiv.org/abs/1810.06682.
Paper not yet in RePEc: Add citation now
- Bisoi, R. ; Dash, P.K. ; Parida, A.K. Hybrid variational mode decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis. 2019 Appl Soft Comput. 74 652-678
Paper not yet in RePEc: Add citation now
Brabec, M. ; Konár, O. ; Pelikán, E. ; Malý, M. A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers. 2008 Int J Forecast. 24 659-678
Cao, J. ; Li, Z. ; Li, J. Financial time series forecasting model based on CEEMDAN and LSTM. 2019 Physical A. 519 127-139
- Cho, K. ; Van Merrienboer, B. ; Gulcehre, C. Learning Phrase representations using RNN encoder-decoder for statistical machine translation. 2014 Computer Science. -
Paper not yet in RePEc: Add citation now
- Colominas, M.A. ; Schlotthauer, G. ; Torres, M.E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing. 2014 Biomed Signal Process Control. 14 19-29
Paper not yet in RePEc: Add citation now
Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 1995 J Bus Econ Stat. 13 253-263
- Dragomiretskiy, K. ; Zosso, D. Variational mode decomposition. 2014 IEEE Trans Signal Process. 62 531-544
Paper not yet in RePEc: Add citation now
Du, P. ; Guo, J.E. ; Sun, S. ; Wang, S. ; Wu, J. Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm. 2021 Resour Pol. 74 -
- Du, P. ; Wang, J. ; Hao, Y. ; Niu, T. ; Yang, W. A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2.5 and PM10 forecasting. 2020 Appl Soft Comput. 96 -
Paper not yet in RePEc: Add citation now
- Fayed, H.A. ; Atiya, A.F. Speed up grid-search for parameter selection of support vector machines. 2019 Appl Soft Comput. 80 202e10-
Paper not yet in RePEc: Add citation now
- Ferreira, L.B. ; da Cunha, F.F. Multi-step ahead forecasting of daily reference evapotranspiration using deep learning. 2020 Comput Electron Agric. 178 -
Paper not yet in RePEc: Add citation now
Harvey, D.I. ; Leybourne, S.J. ; Whitehouse, E.J. Forecast evaluation tests and negative long-run variance estimates in small samples. 2017 Int J Forecast. 33 833-847
- He, X. ; Zhao, K. ; Chu, X. AutoML: a survey of the state-of-the-art. 2021 Knowl Base Syst. 212 -
Paper not yet in RePEc: Add citation now
- Hélyette, G. ; Steve, O. Forward curves, scarcity and price volatility in oil and natural gas markets. 2009 Energy Econ. 31 576-585
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput. 9 1735-1780
Paper not yet in RePEc: Add citation now
Hou, A. ; Suardi, S. A nonparametric GARCH model of crude oil price return volatility. 2012 Energy Econ. 34 618-626
- Huang, Y. ; He, Z. Carbon price forecasting with optimization prediction method based on unstructured combination. 2020 Sci Total Environ. 725 -
Paper not yet in RePEc: Add citation now
Huang, Y.M. ; Dai, X.Y. ; Wang, Q.W. ; Zhou, D.Q. A hybrid model for carbon price forecasting using GARCH and long short-term memory network. 2021 Appl Energy. 285 -
Jammazi, R. ; Aloui, C. Crude oil price forecasting: experimental evidence from wavelet decomposition and neural network modeling. 2012 Energy Econ. 34 828-841
Ji, Q. ; Zhang, H. ; Geng, J.B. What drives natural gas prices in the United States? - a directed acyclic graph approach. 2018 Energy Econ. 69 79-88
- Jin, Z.Z. ; He, D.Q. ; Wei, Z.X. Intelligent fault diagnosis of train axle box bearing based on parameter optimization VMD and improved DBN. 2022 Eng Appl Artif Intell. 110 -
Paper not yet in RePEc: Add citation now
- Kasmaiee, S. ; Kasmaiee, S. ; Homayounpour, M. Correcting spelling mistakes in Persian texts with rules and deep learning methods. 2023 Sci Rep. 13 -
Paper not yet in RePEc: Add citation now
- Kasmaiee, S. ; Tadjfar, M. ; Kasmaiee, S. Machine learning-based optimization of a pitching airfoil performance in dynamic stall conditions using a suction controller. 2023 Phys Fluids. 35 -
Paper not yet in RePEc: Add citation now
- Kasmaiee, S. ; Tadjfar, M. ; Kasmaiee, S. Optimization of blowing jet performance on wind turbine airfoil under dynamic stall conditions using active machine learning and computational intelligence. 2023 Arabian J Sci Eng. 1-25
Paper not yet in RePEc: Add citation now
- Kiranyaz, S. ; Avci, O. ; Abdeljaber, O. ; Ince, T. ; Gabbouj, M. ; Inman, D.J. 1D convolutional neural networks and applications: a survey. 2021 Mech Syst Signal Process. 151 -
Paper not yet in RePEc: Add citation now
- Kisvari, A. ; Lin, Z. ; Liu, X.L. Wind power forecasting — a data-driven method along with gated recurrent neural network. 2021 Renew Energy. 163 1895-1909
Paper not yet in RePEc: Add citation now
- Kristjanpoller, W. ; Minutolo, M.C. Gold price volatility: a forecasting approach using the Artificial Neural Network-GARCH model. 2015 Expert Syst Appl. 42 7245-7251
Paper not yet in RePEc: Add citation now
- Lea, C. ; Vidal, R. ; Reiter, A. Temporal convolutional networks: a unified approach to action segmentation. 2016 :
Paper not yet in RePEc: Add citation now
- Lecun, Y. ; Bengio, Y. ; Hinton, G. Deep learning. 2015 Nature. 521 436-444
Paper not yet in RePEc: Add citation now
- Li, P. ; Li, Y. ; Xiong, Q. ; Chai, Y. ; Zhang, Y. Application of a hybrid quantized Elman neural network in short-term load forecasting. 2014 Int J Electr Power Energy Syst. 55 749-759
Paper not yet in RePEc: Add citation now
- Liang, Y.H. ; Lin, Y. ; Lu, Q. Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. 2022 Expert Syst Appl. 206 -
Paper not yet in RePEc: Add citation now
- Lin, T. ; Horne, B. ; Giles, C. How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies. 1998 Neural Network. 11 861-868
Paper not yet in RePEc: Add citation now
Lin, Y. ; Liao, Q.D. ; Lin, Z.X. A novel hybrid model integrating modified ensemble empirical mode decomposition and LSTM neural network for multi-step precious metal prices prediction. 2022 Resour Pol. 78 -
Lin, Y. ; Yan, Y. ; Xu, J.L. ; Liao, Y. ; Ma, F. Forecasting stock index price using the CEEMDAN-LSTM model. 2021 N Am J Econ Finance. 57 -
- Liu, H. ; Mi, X.W. ; Li, Y.F. Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM. 2018 Energy Convers Manag. 159 54-64
Paper not yet in RePEc: Add citation now
Nguyen, H.P. ; Baraldi, P. ; Zio, E. Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants. 2021 Appl Energy. 283 -
Niu, D. ; Yu, M. ; Sun, L. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. 2022 Appl Energy. 313 -
- Ozan, N. Carbon price prediction using multiple hybrid machine learning models optimized by genetic algorithm. 2023 J Environ Manag. 342 -
Paper not yet in RePEc: Add citation now
- Pang, X. ; Zhou, Y. ; Wang, P. An innovative neural network approach for stock market prediction. 2018 J Supercomput. 76 2098-2118
Paper not yet in RePEc: Add citation now
- Pirani, M. ; Thakkar, P. ; Jivrani, P. A comparative analysis of ARIMA, GRU, LSTM and BiLSTM on financial time series forecasting. 2022 IEEE:
Paper not yet in RePEc: Add citation now
- Richman, J.S. ; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. 2000 Am J Physiol Heart Circ Physiol. 278 2039-2049
Paper not yet in RePEc: Add citation now
- Sharma, R.K. Forecasting volatility of crude oil prices using Box-Jenkins’s autoregressive moving average: evidence from Indian chemical industry. 2019 Int J Recent Technol Eng. 8 229-234
Paper not yet in RePEc: Add citation now
- Skrobek, D. ; Krzywanski, J. ; Sosnowski, M. Implementation of deep learning methods in prediction of adsorption processes. 2022 Adv Eng Software. 173 -
Paper not yet in RePEc: Add citation now
- Sun, W. ; Xu, C. Carbon price prediction based on modified wavelet least square support vector machine. 2021 Sci Total Environ. 754 -
Paper not yet in RePEc: Add citation now
Wang, B. ; Wang, J. Energy futures price prediction and evaluation model with deep bi-directional gated recurrent unit neural network and RIF-based algorithm. 2021 Energy. 216 -
- Wang, D. ; Yue, C. ; Wei, S. Performance analysis of four decomposition-ensemble models for one-day-ahead agricultural commodity futures price forecasting. 2017 Algorithms. 10 108-132
Paper not yet in RePEc: Add citation now
Wang, J. ; Li, Y. Multi-step ahead wind speed prediction based on optimal feature extraction, long short-term memory neural network and error correction strategy. 2018 Appl Energy. 230 429-443
- Wang, J. ; Sun, X. ; Cheng, Q. An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting. 2020 Sci Total Environ. 762 -
Paper not yet in RePEc: Add citation now
Wang, J. ; Wang, J. Forecasting energy market indices with recurrent neural networks: case study of crude oil price fluctuations. 2016 Energy. 102 365-374
- Yamashita, R. ; Nishio, M. ; Do, R.K.G. ; Togashi, K. Convolutional neural networks: an overview and application in radiology. 2018 Insights into Imaging. 611-629
Paper not yet in RePEc: Add citation now
- Yu, L. ; Zhang, X. ; Wang, S. Assessing potentiality of support vector machine method in crude oil price forecasting. 2017 Eurasia J Math Sci Technol Educ. 13 7893-7904
Paper not yet in RePEc: Add citation now
Zhang, K.F. ; Cao, H. A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms. 2022 Appl Energy. 306 -
Zhang, T. ; Tang, Z. ; Wu, J. ; Du, X. ; Chen, K. Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm. 2021 Energy. 229 -
- Zhang, X. ; Yang, K.L. ; Lu, Q. Predicting carbon futures prices based on a new hybrid machine learning: comparative study of carbon prices in different periods. 2023 J Environ Manag. 346 -
Paper not yet in RePEc: Add citation now
- Zhang, Y.D. ; Li, X. ; Zhang, Y.W. A novel integrated optimization model for carbon emission prediction: a case study on the group of 20. 2023 J Environ Manag. 344 -
Paper not yet in RePEc: Add citation now
- Zhu, Q. ; Zhang, F. ; Liu, S. ; Wu, Y.Q. ; Wang, L. A hybrid VMD-BiGRU model for rubber futures time series forecasting. 2019 Applied Soft Computing Journal. 84 -
Paper not yet in RePEc: Add citation now