Bhattacharyya, S.C. ; Timilsina, G.R. Energy demand models for policy formulation: a comparative study of energy demand models. 2009 World Bank Policy Research Working Paper. 4866 -
- Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
Paper not yet in RePEc: Add citation now
- Brillinger, M. ; Wuwer, M. ; Hadi, M.A. ; Haas, F. Energy prediction for CNC machining with machine learning. 2021 CIRP J Manufacturing Sci Technol. 35 715-723
Paper not yet in RePEc: Add citation now
- Chen, L. ; Msigwa, G. ; Yang, M. ; Osman, A.I. ; Fawzy, S. ; Rooney, D.W. ; Yap, P.S. Strategies to achieve a carbon neutral society: a review. 2022 Environ Chem Lett. 20 2277-2310
Paper not yet in RePEc: Add citation now
- Chen, T. ; Guestrin, C. Xgboost: a scalable tree boosting system. 2016 En : Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining Pedregosa. :
Paper not yet in RePEc: Add citation now
Duan, H. ; Pang, X. A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China. 2021 Energy. 229 -
Dwivedi, Y.K. ; Hughes, L. ; Kar, A.K. ; Baabdullah, A.M. ; Grover, P. ; Abbas, R. ; Wade, M. Climate change and COP26: are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. 2022 Int J Inf Manag. 63 -
Fais, B. ; Sabio, N. ; Strachan, N. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets. 2016 Appl Energy. 162 699-712
- Farhangfar, A. ; Kurgan, L.A. ; Pedrycz, W. A novel framework for imputation of missing values in databases. 2007 IEEE Trans Syst Man Cybern Syst Hum. 37 692-709
Paper not yet in RePEc: Add citation now
- Freund, Y. ; Mason, L. The alternating decision tree learning algorithm. 1999 icml. 99 124-133
Paper not yet in RePEc: Add citation now
Friedman, J.H. Stochastic gradient boosting. 2002 Comput Stat Data Anal. 38 367-378
- Ghaderi, S.F. ; Sohrabkhani, S. Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. 2008 Energy Convers Manag. 49 2272-2278
Paper not yet in RePEc: Add citation now
- Gonzalez-Briones, A. ; Hernandez, G. ; Corchado, J.M. ; Omatu, S. ; Mohamad, M.S. Machine learning models for electricity consumption forecasting: a review. 2019, May En : 2019 2nd international conference on computer applications & information security (ICCAIS). IEEE:
Paper not yet in RePEc: Add citation now
Hao, X. ; Guo, T. ; Huang, G. ; Shi, X. ; Zhao, Y. ; Yang, Y. Energy consumption prediction in cement calcination process: a method of deep belief network with sliding window. 2020 Energy. 207 -
He, Y. ; Wu, P. ; Li, Y. ; Wang, Y. ; Tao, F. ; Wang, Y. A generic energy prediction model of machine tools using deep learning algorithms. 2020 Appl Energy. 275 -
- Heathers, J.A. ; Anaya, J. ; van der Zee, T. ; Brown, N.J. Recovering data from summary statistics: Sample parameter reconstruction via iterative techniques (SPRITE) (No. e26968v1). 2018 PeerJ Preprints. -
Paper not yet in RePEc: Add citation now
- Heo, S. Current status and implications of energy efficiency in domestic and overseas manufacturing using FEMS. 2017 Monthly KIET Industrial Economics. 228 37-48
Paper not yet in RePEc: Add citation now
- Hooker, S. ; Erhan, D. ; Kindermans, P.J. ; Kim, B. Evaluating feature importance estimates. 2018 arXiv preprint arXiv:1806.10758. 2-
Paper not yet in RePEc: Add citation now
- Hu, Y. ; Li, J. ; Hong, M. ; Ren, J. ; Man, Y. Industrial artificial intelligence based energy management system: integrated framework for electricity load forecasting and fault prediction. 2022 Energy. 244 -
Paper not yet in RePEc: Add citation now
Hyndman, R.J. ; Koehler, A.B. Another look at measures of forecast accuracy. 2006 Int J Forecast. 22 679-688
- Jadhav, A. ; Pramod, D. ; Ramanathan, K. Comparison of performance of data imputation methods for numeric dataset. 2019 Appl Artif Intell. 33 913-933
Paper not yet in RePEc: Add citation now
Kapp, S. ; Choi, J.K. ; Hong, T. Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters. 2023 Renew Sustain Energy Rev. 172 -
- Korea Energy Agency (KEA) 2021 annual end-use energy statistics. 2022 KEA. -
Paper not yet in RePEc: Add citation now
- Korea Energy Agency (KEA) Industry sector energy and GHG emission statistics. 2020 KEA. -
Paper not yet in RePEc: Add citation now
- Korea Energy Agency (KEA) Industry sector energy and GHG emission statistics. 2021 KEA. -
Paper not yet in RePEc: Add citation now
- Korea Energy Economics Institute (KEEI) Yearbook of energy statistics. 2022 KEEI:
Paper not yet in RePEc: Add citation now
- Kwon, O. ; Park, Y. ; Lee, S. Estimating missing data of industrial energy consumption using a multiple imputation method. 2016 Korean Energy Economic Review. 15 121-146
Paper not yet in RePEc: Add citation now
Lambert, P. Moment-based density and risk estimation from grouped summary statistics. 2021 arXiv preprint arXiv:2107.03883. -
- Lane, D. ; Scott, D. ; Hebl, M. ; Guerra, R. ; Osherson, D. ; Zimmer, H. Introduction to statistics. 2017 Independent:
Paper not yet in RePEc: Add citation now
Lee, H. ; Kim, D. ; Gu, J.H. Prediction of food factory energy consumption using MLP and SVR algorithms. 2023 Energies. 16 1550-
- Loyola-Gonzalez, O. Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. 2019 IEEE Access. 7 154096-154113
Paper not yet in RePEc: Add citation now
- Lu, F. ; Zhou, G. ; Liu, Y. ; Zhang, C. Ensemble transfer learning for cutting energy consumption prediction of aviation parts towards green manufacturing. 2022 J Clean Prod. 331 -
Paper not yet in RePEc: Add citation now
- Lundberg, S.M. ; Erion, G.G. ; Lee, S.I. Consistent individualized feature attribution for tree ensembles. 2018 arXiv preprint arXiv:1802.03888. -
Paper not yet in RePEc: Add citation now
- Lundberg, S.M. ; Lee, S.I. A unified approach to interpreting model predictions. 2017 Adv Neural Inf Process Syst. 30 -
Paper not yet in RePEc: Add citation now
- Ma, S. ; Zhang, Y. ; Lv, J. ; Ge, Y. ; Yang, H. ; Li, L. Big data driven predictive production planning for energy-intensive manufacturing industries. 2020 Energy. 211 -
Paper not yet in RePEc: Add citation now
Maaouane, M. ; Zouggar, S. ; Krajačić, G. ; Zahboune, H. Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods. 2021 Energy. 225 -
- Masson-Delmotte, V. ; Zhai, P. ; Pörtner, H.O. ; Roberts, D. ; Skea, J. ; Shukla, P.R. Global Warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change. 2022 En : Sustainable development, and efforts to eradicate poverty. Cambridge University Press:
Paper not yet in RePEc: Add citation now
- Önüt, S. ; Soner, S. Analysis of energy use and efficiency in Turkish manufacturing sector SMEs. 2007 Energy Convers Manag. 48 384-394
Paper not yet in RePEc: Add citation now
- Palamutçu, S. Electric energy consumption in the cotton textile processing stages. 2010 Energy. 35 2945-2952
Paper not yet in RePEc: Add citation now
- Park, H. Carbon neutrality promotion strategies and policy tasks for the domestic textile and paper industry. 2022 KIET. 1-118
Paper not yet in RePEc: Add citation now
- Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. ; Duchesnay, E. Scikit-learn: machine learning in Python. 2011 J Mach Learn Res. 12 2825-2830
Paper not yet in RePEc: Add citation now
Phylipsen, G.J.M. ; Blok, K. ; Worrell, E. International comparisons of energy efficiency-Methodologies for the manufacturing industry. 1997 Energy Pol. 25 715-725
- Reinhardt, H. ; Bergmann, J.P. ; Münnich, M. ; Rein, D. ; Putz, M. A survey on modeling and forecasting the energy consumption in discrete manufacturing. 2020 Procedia CIRP. 90 443-448
Paper not yet in RePEc: Add citation now
- Rengasamy, D. ; Mase, J.M. ; Kumar, A. ; Rothwell, B. ; Torres, M.T. ; Alexander, M.R. ; Figueredo, G.P. Feature importance in machine learning models: a fuzzy information fusion approach. 2022 Neurocomputing. 511 163-174
Paper not yet in RePEc: Add citation now
- Rhodes, C.J. The 2015 Paris climate change conference: COP21. 2016 Sci Prog. 99 97-104
Paper not yet in RePEc: Add citation now
- Sathishkumar, V.E. ; Lee, M.B. ; Lim, J.H. ; Shin, C.S. ; Park, C.W. ; Cho, Y.Y. Hourly steel industry energy consumption prediction using machine learning algorithms. 2019 En : In proceedings of the Korea information processing society conference. Korea Information Processing Society:
Paper not yet in RePEc: Add citation now
- Scornet, E. Trees, forests, and impurity-based variable importance in regression. 2023 Annales de l'Institut Henri Poincare (B) Probabilites et statistiques. 59 21-52
Paper not yet in RePEc: Add citation now
- Seo, J. ; Noh, N. Study on securing feasibility of business related to gas AMI distribution. 2017 KEEI. 21 -
Paper not yet in RePEc: Add citation now
- Shapley, L. A value for n-person games. 1953 En : Kuhn, Tucker Contributions to the theory of games II. Princeton University Press:
Paper not yet in RePEc: Add citation now
- Song, H. ; Lee, J. A study on household DSR distribution estimation using a nonparametric approach. 2013 :
Paper not yet in RePEc: Add citation now
- Tanaka, K. Review of policies and measures for energy efficiency in industry sector. 2011 Energy Pol. 39 6532-6550
Paper not yet in RePEc: Add citation now
- Wang, T. ; Leung, H. ; Zhao, J. ; Wang, W. Multiseries featural LSTM for partial periodic time-series prediction: a case study for steel industry. 2020 IEEE Trans Instrum Meas. 69 5994-6003
Paper not yet in RePEc: Add citation now
Xiong, P.P. ; Dang, Y.G. ; Yao, T.X. ; Wang, Z.X. Optimal modeling and forecasting of the energy consumption and production in China. 2014 Energy. 77 623-634
Zhao, H.X. ; Magoulès, F. A review on the prediction of building energy consumption. 2012 Renew Sustain Energy Rev. 16 3586-3592