- A novel EMD and causal convolutional network integrated with Transformer for ultra short-term wind power forecasting. 2023 Int J Electr Power Energy Syst. 154 -
Paper not yet in RePEc: Add citation now
- Banik, A. ; Behera, C. ; Sarathkumar, TirunagaruV. ; Goswami, A.K. Uncertain wind power forecasting using LSTM-based prediction interval. 2020 IET Renew Power Gener. 14 2657-2667
Paper not yet in RePEc: Add citation now
- Chen, P. ; Pedersen, T. ; Bak-Jensen, B. ; Chen, Z. ARIMA-based time series model of stochastic wind power generation. 2010 IEEE Trans Power Syst. 25 667-676
Paper not yet in RePEc: Add citation now
- Chen, Y. ; Yu, S. ; Islam, S. ; Lim, C.P. ; Muyeen, S.M. Decomposition-based wind power forecasting models and their boundary issue: an in-depth review and comprehensive discussion on potential solutions. 2022 Energy Rep. 8 8805-8820
Paper not yet in RePEc: Add citation now
- Cong, Z. ; Yu, Y. ; Li, L. ; Yan, J. Wind power time series simulation model based on typical daily output processes and Markov algorithm. 2022 Global Energy Interconnection. 5 44-54
Paper not yet in RePEc: Add citation now
Dai, X. ; Liu, G.-P. ; Hu, W. An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting. 2023 Energy. 272 -
- Deng, Y. ; Wang, B. ; Lu, Z. A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting. 2020 Energy Convers Manag. 212 -
Paper not yet in RePEc: Add citation now
- Dong, Y. ; Zhang, H. ; Wang, C. ; Zhou, X. Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm. 2021 Neurocomputing. 462 169-184
Paper not yet in RePEc: Add citation now
- Dragomiretskiy, K. ; Zosso, D. Variational mode decomposition. 2014 IEEE Trans Signal Process. 62 531-544
Paper not yet in RePEc: Add citation now
- Du, K. ; Zhao, Y. ; Lei, J. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series. 2017 J Hydrol. 552 44-51
Paper not yet in RePEc: Add citation now
Fan, H. ; Zhen, Z. ; Liu, N. ; Sun, Y. ; Chang, X. ; Li, Y. Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method. 2023 Energy. 266 -
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput. 9 1735-1780
Paper not yet in RePEc: Add citation now
Hou, G. ; Wang, J. ; Fan, Y. Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction. 2024 Energy. 286 -
- Jiang, Y. ; Chen, X. ; Yu, K. ; Liao, Y. Short-term wind power forecasting using hybrid method based on enhanced boosting algorithm. 2017 Journal of Modern Power Systems and Clean Energy. 5 126-133
Paper not yet in RePEc: Add citation now
Kisvari, A. ; Lin, Z. ; Liu, X. Wind power forecasting – a data-driven method along with gated recurrent neural network. 2021 Renew Energy. 163 1895-1909
- Lai, G. ; Chang, W.-C. ; Yang, Y. ; Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. 2018 ACM: Ann Arbor MI USA
Paper not yet in RePEc: Add citation now
- Lea, C. ; Flynn, M.D. ; Vidal, R. ; Reiter, A. ; Hager, G.D. Temporal convolutional networks for action segmentation and detection. 2017 :
Paper not yet in RePEc: Add citation now
Li, K. ; Shen, R. ; Wang, Z. ; Yan, B. ; Yang, Q. ; Zhou, X. An efficient wind speed prediction method based on a deep neural network without future information leakage. 2023 Energy. 267 -
- Liu, Z.-H. ; Wang, C.-T. ; Wei, H.-L. ; Zeng, B. ; Li, M. ; Song, X.-P. A wavelet-LSTM model for short-term wind power forecasting using wind farm SCADA data. 2024 Expert Syst Appl. 247 -
Paper not yet in RePEc: Add citation now
- Pang, J. ; Dong, S. A novel ensemble system for short-term wind speed forecasting based on hybrid decomposition approach and artificial intelligence models optimized by self-attention mechanism. 2024 Energy Convers Manag. 307 -
Paper not yet in RePEc: Add citation now
- Qu, K. ; Si, G. ; Shan, Z. ; Kong, X. ; Yang, X. Short-term forecasting for multiple wind farms based on transformer model. 2022 Energy Rep. 8 483-490
Paper not yet in RePEc: Add citation now
Qu, Z. ; Hou, X. ; Li, J. ; Hu, W. Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation. 2024 Energy. 290 -
- Ribeiro, M.H.D.M. ; da Silva, R.G. ; Moreno, S.R. ; Canton, C. ; Larcher, J.H.K. ; Stefenon, S.F. Variational mode decomposition and bagging extreme learning machine with multi-objective optimization for wind power forecasting. 2024 Appl Intell. 1-16
Paper not yet in RePEc: Add citation now
- Shang, Z. ; Chen, Y. ; Chen, Y. ; Guo, Z. ; Yang, Y. Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism. 2023 Expert Syst Appl. 223 -
Paper not yet in RePEc: Add citation now
Tsai, W.-C. ; Hong, C.-M. ; Tu, C.-S. ; Lin, W.-M. ; Chen, C.-H. A review of modern wind power generation forecasting technologies. 2023 Sustainability. 15 -
- Wang, J. ; Tang, X. An intensive decomposition integration paradigm for short-term wind power forecasting based on feature extraction and optimal weighted combination strategy. 2023 Measurement. 223 -
Paper not yet in RePEc: Add citation now
- Wang, S. ; Sun, Y. ; Wang, J. ; Hou, D. ; Zhang, L. ; Zhou, Y. Very short-term prediction for wind power based on BiLSTM-attention. 2021 IEEE: Nanjing, China
Paper not yet in RePEc: Add citation now
Wang, Y. ; Wu, L. On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation. 2016 Energy. 112 208-220
Wang, Y. ; Zou, R. ; Liu, F. ; Zhang, L. ; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. 2021 Appl Energy. 304 -
- Xiang, L. ; Liu, J. ; Yang, X. ; Hu, A. ; Su, H. Ultra-short term wind power prediction applying a novel model named SATCN-LSTM. 2022 Energy Convers Manag. 252 -
Paper not yet in RePEc: Add citation now
- Xie, Y. ; Li, C. ; Li, M. ; Liu, F. ; Taukenova, M. An overview of deterministic and probabilistic forecasting methods of wind energy. 2023 iScience. 26 -
Paper not yet in RePEc: Add citation now
Yang, T. ; Yang, Z. ; Li, F. ; Wang, H. A short-term wind power forecasting method based on multivariate signal decomposition and variable selection. 2024 Appl Energy. 360 -
- Yu, G.Z. ; Lu, L. ; Tang, B. ; Wang, S.Y. ; Chung, C.Y. Ultra-short-term wind power subsection forecasting method based on extreme weather. 2023 IEEE Trans Power Syst. 38 5045-5056
Paper not yet in RePEc: Add citation now
- Zha, W. ; Liu, J. ; Li, Y. ; Liang, Y. Ultra-short-term power forecast method for the wind farm based on feature selection and temporal convolution network. 2022 ISA (Instrum Soc Am) Trans. 129 405-414
Paper not yet in RePEc: Add citation now
Zhang, Y. ; Kong, X. ; Wang, J. ; Wang, H. ; Cheng, X. Wind power forecasting system with data enhancement and algorithm improvement. 2024 Renew Sustain Energy Rev. 196 -
- Zhang, Y. ; Li, Y. ; Song, J. ; Chen, X. ; Lu, Y. ; Wang, W. Pearson correlation coefficient of current derivatives based pilot protection scheme for long-distance LCC-HVDC transmission lines. 2020 Int J Electr Power Energy Syst. 116 -
Paper not yet in RePEc: Add citation now
Zhang, Y. ; Zhang, J. ; Yu, L. ; Pan, Z. ; Feng, C. ; Sun, Y. A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique. 2022 Energy. 254 -
Zhao, Y. ; Pan, S. ; Zhao, Y. ; Liao, H. ; Ye, L. ; Zheng, Y. Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration. 2024 Energy. 288 -
Zhou, Y. ; Wang, J. ; Lu, H. ; Zhao, W. Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition. 2022 Chaos, Solit Fractals. 157 -