create a website

A comprehensive framework of the decomposition-based hybrid method for ultra-short-term wind power forecasting with on-site application. (2024). Zhou, Jiaxuan ; Yang, Shixi ; Duan, Jiangman ; Mei, Yiming ; Gu, Xiwen.
In: Energy.
RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036892.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 39

References cited by this document

Cocites: 24

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A novel perspective for equivalent aggregation of wind farm: Measuring the dynamic similarity between output time-series. (2025). Li, Wei ; Wang, Song-Kai ; Jia, Rong ; Cao, GE ; Guo, YI ; Ming, BO.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006889.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. A novel EMD and causal convolutional network integrated with Transformer for ultra short-term wind power forecasting. 2023 Int J Electr Power Energy Syst. 154 -
    Paper not yet in RePEc: Add citation now
  2. Banik, A. ; Behera, C. ; Sarathkumar, TirunagaruV. ; Goswami, A.K. Uncertain wind power forecasting using LSTM-based prediction interval. 2020 IET Renew Power Gener. 14 2657-2667
    Paper not yet in RePEc: Add citation now
  3. Chen, P. ; Pedersen, T. ; Bak-Jensen, B. ; Chen, Z. ARIMA-based time series model of stochastic wind power generation. 2010 IEEE Trans Power Syst. 25 667-676
    Paper not yet in RePEc: Add citation now
  4. Chen, Y. ; Yu, S. ; Islam, S. ; Lim, C.P. ; Muyeen, S.M. Decomposition-based wind power forecasting models and their boundary issue: an in-depth review and comprehensive discussion on potential solutions. 2022 Energy Rep. 8 8805-8820
    Paper not yet in RePEc: Add citation now
  5. Cong, Z. ; Yu, Y. ; Li, L. ; Yan, J. Wind power time series simulation model based on typical daily output processes and Markov algorithm. 2022 Global Energy Interconnection. 5 44-54
    Paper not yet in RePEc: Add citation now
  6. Dai, X. ; Liu, G.-P. ; Hu, W. An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting. 2023 Energy. 272 -

  7. Deng, Y. ; Wang, B. ; Lu, Z. A hybrid model based on data preprocessing strategy and error correction system for wind speed forecasting. 2020 Energy Convers Manag. 212 -
    Paper not yet in RePEc: Add citation now
  8. Dong, Y. ; Zhang, H. ; Wang, C. ; Zhou, X. Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm. 2021 Neurocomputing. 462 169-184
    Paper not yet in RePEc: Add citation now
  9. Dragomiretskiy, K. ; Zosso, D. Variational mode decomposition. 2014 IEEE Trans Signal Process. 62 531-544
    Paper not yet in RePEc: Add citation now
  10. Du, K. ; Zhao, Y. ; Lei, J. The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series. 2017 J Hydrol. 552 44-51
    Paper not yet in RePEc: Add citation now
  11. Fan, H. ; Zhen, Z. ; Liu, N. ; Sun, Y. ; Chang, X. ; Li, Y. Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method. 2023 Energy. 266 -

  12. Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput. 9 1735-1780
    Paper not yet in RePEc: Add citation now
  13. Hou, G. ; Wang, J. ; Fan, Y. Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction. 2024 Energy. 286 -

  14. Jiang, Y. ; Chen, X. ; Yu, K. ; Liao, Y. Short-term wind power forecasting using hybrid method based on enhanced boosting algorithm. 2017 Journal of Modern Power Systems and Clean Energy. 5 126-133
    Paper not yet in RePEc: Add citation now
  15. Kisvari, A. ; Lin, Z. ; Liu, X. Wind power forecasting – a data-driven method along with gated recurrent neural network. 2021 Renew Energy. 163 1895-1909

  16. Lai, G. ; Chang, W.-C. ; Yang, Y. ; Liu, H. Modeling long- and short-term temporal patterns with deep neural networks. 2018 ACM: Ann Arbor MI USA
    Paper not yet in RePEc: Add citation now
  17. Lea, C. ; Flynn, M.D. ; Vidal, R. ; Reiter, A. ; Hager, G.D. Temporal convolutional networks for action segmentation and detection. 2017 :
    Paper not yet in RePEc: Add citation now
  18. Li, K. ; Shen, R. ; Wang, Z. ; Yan, B. ; Yang, Q. ; Zhou, X. An efficient wind speed prediction method based on a deep neural network without future information leakage. 2023 Energy. 267 -

  19. Liu, Z.-H. ; Wang, C.-T. ; Wei, H.-L. ; Zeng, B. ; Li, M. ; Song, X.-P. A wavelet-LSTM model for short-term wind power forecasting using wind farm SCADA data. 2024 Expert Syst Appl. 247 -
    Paper not yet in RePEc: Add citation now
  20. Pang, J. ; Dong, S. A novel ensemble system for short-term wind speed forecasting based on hybrid decomposition approach and artificial intelligence models optimized by self-attention mechanism. 2024 Energy Convers Manag. 307 -
    Paper not yet in RePEc: Add citation now
  21. Qu, K. ; Si, G. ; Shan, Z. ; Kong, X. ; Yang, X. Short-term forecasting for multiple wind farms based on transformer model. 2022 Energy Rep. 8 483-490
    Paper not yet in RePEc: Add citation now
  22. Qu, Z. ; Hou, X. ; Li, J. ; Hu, W. Short-term wind farm cluster power prediction based on dual feature extraction and quadratic decomposition aggregation. 2024 Energy. 290 -

  23. Ribeiro, M.H.D.M. ; da Silva, R.G. ; Moreno, S.R. ; Canton, C. ; Larcher, J.H.K. ; Stefenon, S.F. Variational mode decomposition and bagging extreme learning machine with multi-objective optimization for wind power forecasting. 2024 Appl Intell. 1-16
    Paper not yet in RePEc: Add citation now
  24. Shang, Z. ; Chen, Y. ; Chen, Y. ; Guo, Z. ; Yang, Y. Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism. 2023 Expert Syst Appl. 223 -
    Paper not yet in RePEc: Add citation now
  25. Tsai, W.-C. ; Hong, C.-M. ; Tu, C.-S. ; Lin, W.-M. ; Chen, C.-H. A review of modern wind power generation forecasting technologies. 2023 Sustainability. 15 -

  26. Wang, J. ; Tang, X. An intensive decomposition integration paradigm for short-term wind power forecasting based on feature extraction and optimal weighted combination strategy. 2023 Measurement. 223 -
    Paper not yet in RePEc: Add citation now
  27. Wang, S. ; Sun, Y. ; Wang, J. ; Hou, D. ; Zhang, L. ; Zhou, Y. Very short-term prediction for wind power based on BiLSTM-attention. 2021 IEEE: Nanjing, China
    Paper not yet in RePEc: Add citation now
  28. Wang, Y. ; Wu, L. On practical challenges of decomposition-based hybrid forecasting algorithms for wind speed and solar irradiation. 2016 Energy. 112 208-220

  29. Wang, Y. ; Zou, R. ; Liu, F. ; Zhang, L. ; Liu, Q. A review of wind speed and wind power forecasting with deep neural networks. 2021 Appl Energy. 304 -

  30. Xiang, L. ; Liu, J. ; Yang, X. ; Hu, A. ; Su, H. Ultra-short term wind power prediction applying a novel model named SATCN-LSTM. 2022 Energy Convers Manag. 252 -
    Paper not yet in RePEc: Add citation now
  31. Xie, Y. ; Li, C. ; Li, M. ; Liu, F. ; Taukenova, M. An overview of deterministic and probabilistic forecasting methods of wind energy. 2023 iScience. 26 -
    Paper not yet in RePEc: Add citation now
  32. Yang, T. ; Yang, Z. ; Li, F. ; Wang, H. A short-term wind power forecasting method based on multivariate signal decomposition and variable selection. 2024 Appl Energy. 360 -

  33. Yu, G.Z. ; Lu, L. ; Tang, B. ; Wang, S.Y. ; Chung, C.Y. Ultra-short-term wind power subsection forecasting method based on extreme weather. 2023 IEEE Trans Power Syst. 38 5045-5056
    Paper not yet in RePEc: Add citation now
  34. Zha, W. ; Liu, J. ; Li, Y. ; Liang, Y. Ultra-short-term power forecast method for the wind farm based on feature selection and temporal convolution network. 2022 ISA (Instrum Soc Am) Trans. 129 405-414
    Paper not yet in RePEc: Add citation now
  35. Zhang, Y. ; Kong, X. ; Wang, J. ; Wang, H. ; Cheng, X. Wind power forecasting system with data enhancement and algorithm improvement. 2024 Renew Sustain Energy Rev. 196 -

  36. Zhang, Y. ; Li, Y. ; Song, J. ; Chen, X. ; Lu, Y. ; Wang, W. Pearson correlation coefficient of current derivatives based pilot protection scheme for long-distance LCC-HVDC transmission lines. 2020 Int J Electr Power Energy Syst. 116 -
    Paper not yet in RePEc: Add citation now
  37. Zhang, Y. ; Zhang, J. ; Yu, L. ; Pan, Z. ; Feng, C. ; Sun, Y. A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique. 2022 Energy. 254 -

  38. Zhao, Y. ; Pan, S. ; Zhao, Y. ; Liao, H. ; Ye, L. ; Zheng, Y. Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration. 2024 Energy. 288 -

  39. Zhou, Y. ; Wang, J. ; Lu, H. ; Zhao, W. Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition. 2022 Chaos, Solit Fractals. 157 -

Cocites

Documents in RePEc which have cited the same bibliography

  1. Enhancing Wind Power Forecasting Accuracy Based on OPESC-Optimized CNN-BiLSTM-SA Model. (2025). Zhang, Dongqing ; Wang, Lele.
    In: Mathematics.
    RePEc:gam:jmathe:v:13:y:2025:i:13:p:2174-:d:1693918.

    Full description at Econpapers || Download paper

  2. Online decoupling feature framework for optimal probabilistic load forecasting in concept drift environments. (2025). Cao, Chaojin ; He, Yaoyao ; Yang, Xiaodong.
    In: Applied Energy.
    RePEc:eee:appene:v:392:y:2025:i:c:s0306261925006828.

    Full description at Econpapers || Download paper

  3. Wind power forecasting system with data enhancement and algorithm improvement. (2024). Zhang, Yagang ; Kong, Xue ; Cheng, Xiaodan ; Wang, Jingchao.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:196:y:2024:i:c:s1364032124000728.

    Full description at Econpapers || Download paper

  4. Characterizing ramp events in floating offshore wind power through a fully coupled electrical-mechanical mathematical model. (2024). Chen, Lingte ; Yang, Jin ; Lou, Chengwei.
    In: Renewable Energy.
    RePEc:eee:renene:v:221:y:2024:i:c:s0960148123017184.

    Full description at Econpapers || Download paper

  5. Quantile-transformed multi-attention residual framework (QT-MARF) for medium-term PV and wind power prediction. (2024). Shu, Zhaokun ; Ling, Qiang ; Usman, Muhammad ; Mansoor, Majad ; Mirza, Adeel Feroz.
    In: Renewable Energy.
    RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015197.

    Full description at Econpapers || Download paper

  6. A transferable federated learning approach for wind power prediction based on active privacy clustering and knowledge merge. (2024). Wu, Rong ; Cong, Feiyun ; Lin, Xiaojie ; Zhong, Wei.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038222.

    Full description at Econpapers || Download paper

  7. A comprehensive framework of the decomposition-based hybrid method for ultra-short-term wind power forecasting with on-site application. (2024). Zhou, Jiaxuan ; Yang, Shixi ; Duan, Jiangman ; Mei, Yiming ; Gu, Xiwen.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036892.

    Full description at Econpapers || Download paper

  8. Wind farm cluster power prediction based on graph deviation attention network with learnable graph structure and dynamic error correction during load peak and valley periods. (2024). Fang, Guozhong ; Ma, Chenglian ; Huang, Tao ; Guo, Yunfeng ; Yang, Mao.
    In: Energy.
    RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034236.

    Full description at Econpapers || Download paper

  9. Very short-term wind power forecasting considering static data: An improved transformer model. (2024). Srinivasan, Dipti ; Chung, C Y ; Zhang, Wenjie ; Sun, Yonghui ; Wang, Sen.
    In: Energy.
    RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033553.

    Full description at Econpapers || Download paper

  10. Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering. (2024). Guo, Yunfeng ; Huang, Tao ; Yang, Mao ; Fan, Fulin.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015706.

    Full description at Econpapers || Download paper

  11. Probabilistic wind power forecasting resilient to missing values: An adaptive quantile regression approach. (2024). Wen, Honglin.
    In: Energy.
    RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013173.

    Full description at Econpapers || Download paper

  12. Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy. (2024). Hao, Yan ; Wang, Xiaodi ; Yang, Wendong.
    In: Energy.
    RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009150.

    Full description at Econpapers || Download paper

  13. An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model. (2024). Lv, Yunlong ; Wu, Yufan ; Hu, Qin ; Lin, Huiyao ; Xu, Hang.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224005231.

    Full description at Econpapers || Download paper

  14. Fractional-order long-term price guidance mechanism based on bidirectional prediction with attention mechanism for electric vehicle charging. (2024). Cao, YI ; Yin, Linfei ; Hu, Likun.
    In: Energy.
    RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004110.

    Full description at Econpapers || Download paper

  15. Wind power forecasting based on manifold learning and a double-layer SWLSTM model. (2024). He, Yan ; Ma, Ping ; Zhang, Hong-Li ; Wang, Cong.
    In: Energy.
    RePEc:eee:energy:v:290:y:2024:i:c:s0360544223034709.

    Full description at Econpapers || Download paper

  16. Ultra-short-term wind power forecasting based on personalized robust federated learning with spatial collaboration. (2024). Zhao, Yuan ; Zheng, Yingying ; Pan, Shiji ; Ye, Lin ; Liao, Haohan.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032413.

    Full description at Econpapers || Download paper

  17. High and low frequency wind power prediction based on Transformer and BiGRU-Attention. (2024). Yang, Wei ; Wang, Shuangxin ; Yin, Qingyan ; Shi, Jiarong.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s036054422303147x.

    Full description at Econpapers || Download paper

  18. Auditory-circuit-motivated deep network with application to short-term electricity price forecasting. (2024). Liang, Yan ; Gao, Xiao-Zhi ; Du, Pei ; Wu, Han.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031237.

    Full description at Econpapers || Download paper

  19. A novel ultra-short-term wind power prediction model jointly driven by multiple algorithm optimization and adaptive selection. (2024). Li, Xuefeng ; Lin, Qingcheng ; Xiao, Hui ; Cai, Huiling ; Liu, Hanwei.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031183.

    Full description at Econpapers || Download paper

  20. A privacy-preserving framework integrating federated learning and transfer learning for wind power forecasting. (2024). Zhang, Zhen ; Tang, Yugui.
    In: Energy.
    RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030335.

    Full description at Econpapers || Download paper

  21. A novel chaotic time series wind power point and interval prediction method based on data denoising strategy and improved coati optimization algorithm. (2024). Wang, Zewei ; Yuan, Yue ; Fu, Xiaoling ; Yang, Ming ; Lin, Hong.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009949.

    Full description at Econpapers || Download paper

  22. Multi-market P2P trading of cooling–heating-power-hydrogen integrated energy systems: An equilibrium-heuristic online prediction optimization approach. (2024). Bu, Siqi ; Zhang, Rongquan ; Li, Gangqiang.
    In: Applied Energy.
    RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007359.

    Full description at Econpapers || Download paper

  23. Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research. (2023). Fan, Yisa ; Li, Songyin ; Shangguan, Linjian ; Peng, Han ; Zhang, Hai.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:10:p:8333-:d:1151548.

    Full description at Econpapers || Download paper

  24. Electrical load forecasting based on variable T-distribution and dual attention mechanism. (2023). Wang, Yingzhou ; Zhang, Xiuyu.
    In: Energy.
    RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019631.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 10:42:15 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.