- Aggarwal, A. ; Gupta, I. ; Garg, N. ; Goel, A. Deep learning approach to determine the impact of socio economic factors on bitcoin price prediction. 2019 En : 2019 Twelfth international conference on contemporary computing. IEEE:
Paper not yet in RePEc: Add citation now
Agnolucci, P. Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models. 2009 Energy Economics. 31 316-321
Akyildirim, E. ; Corbet, S. ; Lucey, B. ; Sensoy, A. ; Yarovaya, L. The relationship between implied volatility and cryptocurrency returns. 2020 Finance Research Letters. 33 -
- Alessandretti, L. ; ElBahrawy, A. ; Aiello, L.M. ; Baronchelli, A. Machine learning the cryptocurrency market. 2018 Complexity. 2018 -
Paper not yet in RePEc: Add citation now
Alexander, C. ; Dakos, M. A critical investigation of cryptocurrency data and analysis. 2020 Quantitative Finance. 20 173-188
Babaei, G. ; Giudici, P. ; Raffinetti, E. Explainable artificial intelligence for crypto asset allocation. 2022 Finance Research Letters. -
Baker, S.R. ; Bloom, N. ; Davis, S.J. Measuring economic policy uncertainty. 2016 Quarterly Journal of Economics. 131 1593-1636
- Bengio, Y. ; Goodfellow, I. ; Courville, A. . 2017 MIT press Cambridge: MA, USA
Paper not yet in RePEc: Add citation now
Bianchi, D. ; Büchner, M. ; Tamoni, A. Bond risk premiums with machine learning. 2021 The Review of Financial Studies. 34 1046-1089
- Bianchi, D. ; Guidolin, M. ; Pedio, M. The dynamics of returns predictability in cryptocurrency markets. 2022 The European Journal of Finance. 1-29
Paper not yet in RePEc: Add citation now
Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. 1986 Journal of Econometrics. 31 307-327
Bouktif, S. ; Fiaz, A. ; Ouni, A. ; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. 2018 Energies. 11 1636-
- Breiman, L. Random forests. 2001 Machine Learning. 45 5-32
Paper not yet in RePEc: Add citation now
- Catania, L. ; Grassi, S. Forecasting cryptocurrency volatility. 2022 International Journal of Forecasting. 38 878-894
Paper not yet in RePEc: Add citation now
Chen, W. ; Xu, H. ; Jia, L. ; Gao, Y. Machine learning model for bitcoin exchange rate prediction using economic and technology determinants. 2021 International Journal of Forecasting. 37 28-43
- Chen, Z. ; Li, C. ; Sun, W. Bitcoin price prediction using machine learning: An approach to sample dimension engineering. 2020 Journal of Computational and Applied Mathematics. 365 -
Paper not yet in RePEc: Add citation now
Cheng, H.-P. ; Yen, K.-C. The relationship between the economic policy uncertainty and the cryptocurrency market. 2020 Finance Research Letters. 35 -
Chung, H. ; Shin, K.-s. Genetic algorithm-optimized long short-term memory network for stock market prediction. 2018 Sustainability. 10 3765-
Conrad, C. ; Custovic, A. ; Ghysels, E. Long-and short-term cryptocurrency volatility components: A GARCH-MIDAS analysis. 2018 Journal of Risk and Financial Management. 11 23-
Corbet, S. ; Lucey, B. ; Yarovaya, L. Datestamping the bitcoin and ethereum bubbles. 2018 Finance Research Letters. 26 81-88
Fior, J. ; Cagliero, L. ; Garza, P. Leveraging explainable AI to support cryptocurrency investors. 2022 Future Internet. 14 251-
Fischer, T. ; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. 2018 European Journal of Operational Research. 270 654-669
- Gökbulut, R.I. ; Pekkaya, M. Estimating and forecasting volatility of financial markets using asymmetric GARCH models: An application on Turkish financial markets. 2014 International Journal of Economics and Finance. 6 23-35
Paper not yet in RePEc: Add citation now
- Goodfellow, I. ; Bengio, Y. ; Courville, A. Deep learning. 2016 MIT Press:
Paper not yet in RePEc: Add citation now
Gradojevic, N. ; Kukolj, D. ; Adcock, R. ; Djakovic, V. Forecasting bitcoin with technical analysis: A not-so-random forest?. 2023 International Journal of Forecasting. 39 1-17
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Computation. 9 1735-1780
Paper not yet in RePEc: Add citation now
- Holland, J.H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. 1992 MIT Press:
Paper not yet in RePEc: Add citation now
- Jalan, A. ; Matkovskyy, R. ; Urquhart, A. ; Yarovaya, L. The role of interpersonal trust in cryptocurrency adoption. 2022 :
Paper not yet in RePEc: Add citation now
- Karaboga, D. An idea based on honey bee swarm for numerical optimization. 2005 Erciyes university, engineering faculty, computer engineering department:
Paper not yet in RePEc: Add citation now
- Kumar, R. ; Kumar, P. ; Kumar, Y. Integrating big data driven sentiments polarity and ABC-optimized LSTM for time series forecasting. 2021 Multimedia Tools and Applications. 1-20
Paper not yet in RePEc: Add citation now
- Li, Z. ; Li, Z. ; Li, Z. ; Li, Y. Application of GA-LSTM model in cable joint temperature prediction. 2020 En : 2020 7th International forum on electrical engineering and automation. IEEE:
Paper not yet in RePEc: Add citation now
- Lim, B. ; Zohren, S. Time-series forecasting with deep learning: A survey. 2021 Philosophical Transactions of the Royal Society, Series A. 379 -
Paper not yet in RePEc: Add citation now
Liu, Y. ; Tsyvinski, A. Risks and returns of cryptocurrency. 2021 The Review of Financial Studies. 34 2689-2727
Liu, Y. ; Tsyvinski, A. ; Wu, X. Common risk factors in cryptocurrency. 2022 The Journal of Finance. 77 1133-1177
- Lundberg, S. M., & Lee, S. -I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st international conference on neural information processing systems (pp. 4768–4777).
Paper not yet in RePEc: Add citation now
Masini, R.P. ; Medeiros, M.C. ; Mendes, E.F. Machine learning advances for time series forecasting. 2023 Journal of Economic Surveys. 37 76-111
- McNally, S. ; Roche, J. ; Caton, S. Predicting the price of bitcoin using machine learning. 2018 En : 2018 26th Euromicro international conference on parallel, distributed and network-based processing. IEEE:
Paper not yet in RePEc: Add citation now
- Nti, I.K. ; Adekoya, A.F. ; Weyori, B.A. A systematic review of fundamental and technical analysis of stock market predictions. 2020 Artificial Intelligence Review. 53 3007-3057
Paper not yet in RePEc: Add citation now
Ozbayoglu, A.M. ; Gudelek, M.U. ; Sezer, O.B. Deep learning for financial applications: A survey. 2020 Applied Soft Computing. 93 -
- Patro, S. ; Sahu, K.K. Normalization: A preprocessing stage. 2015 :
Paper not yet in RePEc: Add citation now
- Peng, Y. ; Albuquerque, P.H.M. ; de Sá, J.M.C. ; Padula, A.J.A. ; Montenegro, M.R. The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with support vector regression. 2018 Expert Systems with Applications. 97 177-192
Paper not yet in RePEc: Add citation now
- Probst, P. ; Wright, M.N. ; Boulesteix, A.-L. Hyperparameters and tuning strategies for random forest. 2019 Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 9 -
Paper not yet in RePEc: Add citation now
Shen, D. ; Urquhart, A. ; Wang, P. Forecasting the volatility of bitcoin: The importance of jumps and structural breaks. 2020 European Financial Management. 26 1294-1323
- Shrikumar, A. ; Greenside, P. ; Kundaje, A. Learning important features through propagating activation differences. 2017 En : International conference on machine learning. PMLR:
Paper not yet in RePEc: Add citation now
Siami-Namini, S. ; Namin, A.S. Forecasting economics and financial time series: ARIMA vs. LSTM. 2018 :
Sigaki, H.Y.D. ; Perc, M. ; Ribeiro, H.V. Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market. 2019 Scientific Reports. 9 1-9
Sirignano, J. ; Cont, R. Universal features of price formation in financial markets: Perspectives from deep learning. 2019 Quantitative Finance. 19 1449-1459
- Smales, L.A. Investor attention in cryptocurrency markets. 2022 International Review of Financial Analysis. 79 -
Paper not yet in RePEc: Add citation now
Trucíos, C. Forecasting bitcoin risk measures: A robust approach. 2019 International Journal of Forecasting. 35 836-847
- Urquhart, A. ; Lucey, B. Crypto and digital currencies—nine research priorities. 2022 :
Paper not yet in RePEc: Add citation now
- van Binsbergen, J.H. ; Han, X. ; Lopez-Lira, A. Man vs. machine learning: The term structure of earnings expectations and conditional biases. 2022 The Review of Financial Studies. -
Paper not yet in RePEc: Add citation now
Wang, L. ; Ma, F. ; Liu, J. ; Yang, L. Forecasting stock price volatility: New evidence from the GARCH-MIDAS model. 2020 International Journal of Forecasting. 36 684-694
Yen, K.-C. ; Cheng, H.-P. Economic policy uncertainty and cryptocurrency volatility. 2021 Finance Research Letters. 38 -
- Yuliyono, A.D. ; Girsang, A.S. Artificial bee colony-optimized LSTM for bitcoin price prediction. 2019 Advances in Science, Technology and Engineering Systems Journal. 4 375-383
Paper not yet in RePEc: Add citation now
- Yun, K.K. ; Yoon, S.W. ; Won, D. Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process. 2021 Expert Systems with Applications. 186 -
Paper not yet in RePEc: Add citation now