- Akaike, H. On the likelihood of a time series model. 1978 Journal of the Royal Statistical Society: Series D. 27 217-235
Paper not yet in RePEc: Add citation now
- Almon, S. The distributed lag between capital appropriations and expenditures. 1965 Econometrica. 33 178-196
Paper not yet in RePEc: Add citation now
Andersen, J.J. ; Aslaksen, S. Oil and political survival. 2013 Journal of Development Economics. 100 89-106
Asgharian, H. ; Hou, A.J. ; Javed, F. The importance of the macroeconomic variables in forecasting stock return variance: A GARCH-MIDAS approach. 2013 Journal of Forecasting. 32 600-612
Barsky, R.B. ; Kilian, L. Oil and the macroeconomy since the 1970s. 2004 Journal of Economic Perspectives. 18 115-134
Bekiros, S. ; Gupta, R. ; Paccagnini, A. Oil price forecastability and economic uncertainty. 2015 Economics Letters. 132 125-128
- Bildirici, M. ; Ersin, Ö.Ö. Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul stock exchange. 2009 Expert Systems with Applications. 36 7355-7362
Paper not yet in RePEc: Add citation now
- Boffelli, S. ; Skintzi, V.D. ; Urga, G. High- and low-frequency correlations in European government bond spreads and their macroeconomic drivers. 2016 Journal of Financial Econometrics. 15 62-105
Paper not yet in RePEc: Add citation now
Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. 1986 Journal of Econometrics. 31 307-327
Bucci, A. Realized volatility forecasting with neural networks. 2020 Journal of Financial Econometrics. 18 502-531
Chen, Y.-C. ; Rogoff, K.S. ; Rossi, B. Can exchange rates forecast commodity prices. 2010 Journal of Econometrics. 125 1145-1194
- Choi, S. ; Furceri, D. ; Loungani, P. ; Mishra, S. ; Poplawski-Ribeiro, M. Oil prices and information dynamics: Evidence from advanced and developing economies. 2018 Journal of International Money and Finance. 82 71-96
Paper not yet in RePEc: Add citation now
Conrad, C. ; Loch, K. Anticipating long-term stock market volatility. 2015 Journal of Applied Econometrics. 30 1090-1114
Conrad, C. ; Loch, K. ; Rittler, D. On the macroeconomic determinants of long-term volatilities and correlations in US stock and crude oil markets. 2014 Journal of Empirical Finance. 29 26-40
Corsi, F. A simple approximate long-memory model of realized volatility. 2009 Journal of Financial Econometrics. 7 174-196
- Da, Z. ; Tang, K. ; Tao, Y. ; Yang, L. Financialization and commodity market serial dependence. 2023 Management Science. -
Paper not yet in RePEc: Add citation now
Degiannakis, S. ; Filis, G. Oil price volatility forecasts: What do investors need to know?. 2022 Journal of International Money and Finance. 123 -
Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 1995 Journal of Business & Economic Statistics. 13 253-263
Donaldson, R.G. ; Kamstra, M. An artificial neural network-GARCH model for international stock return volatility. 1997 Journal of Empirical Finance. 4 17-46
- Donaldson, R.G. ; Kamstra, M. Forecast combining with neural networks. 1996 Journal of Forecasting. 15 49-61
Paper not yet in RePEc: Add citation now
Elder, J. ; Serletis, A. Oil price uncertainty. 2010 Journal of Money, Credit, and Banking. 42 1137-1159
Engle, R.F. ; Ghysels, E. ; Sohn, B. Stock market volatility and macroeconomic fundamentals. 2013 The Review of Economics and Statistics. 95 776-797
Fan, Y. ; Tang, C.Y. Tuning parameter selection in high dimensional penalized likelihood. 2013 Journal of the Royal Statistical Society. Series B. Statistical Methodology. 75 531-552
Fang, T. ; Lee, T.-H. ; Su, Z. Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection. 2020 Journal of Empirical Finance. 58 36-49
Finn, M.G. Perfect competition and the effects of energy price increase on economic activity. 2000 Journal of Money, Credit, and Banking. 32 400-416
Ghysels, E. ; Santa-Clara, P. ; Valkanov, R. Predicting volatility: Getting the most out of return data sampled at different frequencies. 2006 Journal of Econometrics. 131 59-95
Ghysels, E. ; Sinko, A. ; Valkanov, R. MIDAS regressions: Further results and new directions. 2007 Econometric Reviews. 26 53-90
Gu, S. ; Kelly, B. ; Xiu, D. Empirical asset pricing via machine learning. 2020 The Review of Financial Studies. 33 2223-2273
Guo, Y. ; Ma, F. ; Li, H. ; Lai, X. Oil price volatility predictability based on global economic conditions. 2022 International Review of Financial Analysis. 82 -
Hamilton, J.D. What is an oil shock?. 2003 Journal of Econometrics. 113 363-398
Hassani, H. ; Yeganeji, M.R. ; Gupta, R. ; Demirer, R. Forecasting stock mrket (realized) volatility in the United Kingdom: Is there a role of inequality?. 2022 International Journal of Finance & Econoimcs. 27 2146-2152
- Herrera, A.M. ; Hu, L. ; Pastor, D. Forecasting crude oil price volatility. 2018 International Journal of Forecasting. 34 622-635
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Computation. 9 1735-1780
Paper not yet in RePEc: Add citation now
Huang, R.D. ; Masulis, R.W. ; Stoll, H.R. Energy shocks and financial markets. 1996 Journal of Futures Markets. 16 1-27
Ivan, M.-D. ; Banti, C. ; Kellard, N. Prime money market funds regulation, global liquidity, and the crude oil market. 2022 Journal of International Money and Finance. 127 -
Jurado, K. ; Ludvigson, S.C. ; Ng, S. Measuring uncertainty. 2015 American Economic Review. 105 1177-1216
- Kellner, R. ; Nagl, M. ; Rösch, D. Opening the black box–Quantile neural networks for loss given default prediction. 2022 Journal of Banking & Finance. 134 -
Paper not yet in RePEc: Add citation now
- Killian, L. The economic effect of energy price shocks. 2008 Journal of Economic Literature. 46 871-909
Paper not yet in RePEc: Add citation now
- Kim, H.Y. ; Won, C.H. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type models. 2018 Expert Systems with Applications. 103 25-37
Paper not yet in RePEc: Add citation now
Kim, I.-M. ; Loungani, P. The role of energy in real business cycle models. 1992 Journal of Monetary Economics. 29 173-189
- Li, C. ; Zhang, X. ; Qaosar, M. ; Ahmed, S. ; Alam, K.M.R. ; Morimoto, Y. Multi-factor based stock price prediction using hybrid neural networks with attention mechanism. 2019 En : 2019 IEEE intl conf on dependable, autonomic and secure computing, intl conf on pervasive intelligence and computing, intl conf on cloud and big data computing, intl conf on cyber science and technology congress (DASC/PiCom/CBDCom/CyberSciTech). IEEE:
Paper not yet in RePEc: Add citation now
Li, Y. ; Jiang, S. ; Li, X. ; Wang, S. The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach. 2021 Energy Economics. 95 -
- Lin, T.-W. ; Yu, C.-C. Forecasting stock market with neural networks. 2009 :
Paper not yet in RePEc: Add citation now
Lu, F. ; Ma, F. ; Li, P. ; Huang, D. Natural gas volatility predictability in a data-rich world. 2022 International Review of Financial Analysis. 83 -
Ma, F. ; Guo, Y. ; Chevallier, J. ; Huang, D. Macroeconomic attention, economic policy uncertainty, and stock volatility predictability. 2022 International Review of Financial Analysis. 84 -
Merton, R.C. On estimating the expected return on the market: An exploratory investigation. 1980 Journal of Financial Economics. 8 323-361
Merton, R.C. On the pricing of corporate debt: The risk structure of interest rates. 1974 The Journal of Finance. 29 449-470
Nazemi, A. ; Baumann, F. ; Fabozzi, F.J. Intertemporal defaulted bond recoveries prediction via machine learning. 2022 European Journal of Operational Research. 297 1162-1177
Neely, C.J. ; Rapach, D.E. ; Tu, J. ; Zhou, G. Forecasting the equity risk premium: the role of technical indicators. 2014 Management Science. 60 1772-1791
Pan, Z. ; Wang, Y. ; Wu, C. ; Yin, L. Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model. 2017 Journal of Empirical Finance. 43 130-142
Patton, A.J. Volatility forecast comparison using imperfect volatility proxies. 2011 Journal of Econometrics. 160 246-256
Rapach, D.E. ; Strauss, J.K. ; Zhou, G. Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. 2010 The Review of Financial Studies. 23 821-862
Ready, R.C. Oil prices and the stock market. 2018 Review of Finance. 22 155-176
- Schwarz, G. Estimating the dimension of a model. 1978 The Annals of Statistics. 461-464
Paper not yet in RePEc: Add citation now
- Schwert, G.W. Why does stock market volatility change over time?. 1989 The Journal of Finance. 44 1115-1153
Paper not yet in RePEc: Add citation now
Song, Y. ; Tang, X. ; Wang, H. ; Ma, Z. Volatility forecasting for stock market incorporating macroeconomic variables based on GARCH-MIDAS and deep learning models. 2023 Journal of Forecasting. 42 51-59
- Tang, K. ; Xiong, W. Index investment and the financialization of commodities. 2012 Financial Analysts Journal. 68 54-74
Paper not yet in RePEc: Add citation now
Taylor, S.J. Modeling stochastic volatility: A review and comparative study. 1994 Mathematical Finance. 4 183-204
Wang, Y. ; Ma, F. ; Wei, Y. ; Wu, C. Forecasting realized volatility in a changing world: A dynamic model averaging approach. 2016 Journal of Banking & Finance. 64 136-149
- Xiong, R. ; Nichols, E.P. ; Shen, Y. Deep learning stock volatility with Google domestic trends. 2015 :
Paper not yet in RePEc: Add citation now
Ye, W. ; Guo, R. ; Deschamps, B. ; Jiang, Y. ; Liu, X. Macroeconomic forecasts and commodity futures volatility. 2021 Economic Modelling. 94 981-994
Zhai, J. ; Cai, Y. ; Liu, X. A neural network enhanced volatility component model. 2020 Quantitative Finance. 20 783-797