Aneiros-Pérezmm, G. ; Vieu, P. Semi-functional partial linear regression. 2006 Stat. Probab. Lett.. 76 1102-1110
- Bickel, P.J. One-step huber estimates in the linear model. 1975 J. Am. Stat. Assoc.. 70 428-434
Paper not yet in RePEc: Add citation now
Boente, G. ; Salibian-Barrera, M. ; Vena, P. Robust estimation for semi-functional linear regression models. 2020 Comput. Stat. Data Anal.. 152 -
- Bosq, D. Linear Processes in Function Spaces: Theory and Applications. 2000 Springer: New York
Paper not yet in RePEc: Add citation now
- Bradic, J. ; Fan, J. ; Wang, W. Penalized composite quasi-likelihood for ultrahigh dimensional variable selection. 2011 J. R. Stat. Soc. Ser. B (Stat. Methodol.). 73 325-349
Paper not yet in RePEc: Add citation now
- Cai, T. ; Hall, P. Prediction in functional linear regression. 2006 Ann. Stat.. 34 2159-2179
Paper not yet in RePEc: Add citation now
Cardot, H. ; Ferraty, F. ; Sarda, P. Functional linear model. 1999 Statist. Probab. Lett.. 45 11-22
- Cuesta-Albertos, J.A. ; Garcia-Portugués, E. ; Febrero-Bande, M. ; González-Manteiga, W. Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes. 2019 Ann. Stat.. 47 439-467
Paper not yet in RePEc: Add citation now
Cui, X. ; Lin, H. ; Lian, H. Partially functional linear regression in reproducing kernel Hilbert spaces. 2020 Comput. Stat. Data Anal.. 150 -
- Ferraty, F. ; Vieu, P. Nonparametric Functional Data Analysis: Theory and Practice. 2006 Springer: New York
Paper not yet in RePEc: Add citation now
- Ghosal, R. Hypothesis Testing and Variable Selection in Functional Concurrent Regression Model. 2019 North Carolina State University:
Paper not yet in RePEc: Add citation now
- Gu, Y. ; Zou, H. High-dimensional generalizations of asymmetric least squares regression and their applications. 2016 Ann. Stat.. 44 2661-2694
Paper not yet in RePEc: Add citation now
- Hall, P. ; Horowitz, J.L. Methodology and convergence rates for functional linear regression. 2007 Ann. Stat.. 35 70-91
Paper not yet in RePEc: Add citation now
- Horváth, L. ; Kokoszka, P. Inference for Functional Data with Applications. 2012 Springer: New York
Paper not yet in RePEc: Add citation now
Jiang, J. ; Jiang, X. ; Song, X. Weighted composite quantile regression estimation of DTARCH models. 2014 Econom. J.. 17 1-23
Jiang, R. ; Hu, X. ; Yu, K. Single-index expectile models for estimating conditional value at risk and expected shortfall. 2022 J. Financial Econom.. 20 345-366
- Jiang, X. ; Jiang, J. ; Song, X. Oracle model selection for nonlinear models based on weighted composite quantile regression. 2012 Statist. Sinica. 22 1479-1506
Paper not yet in RePEc: Add citation now
- Kato, K. Estimation in functional linear quantile regression. 2012 Ann. Stat.. 40 3108-3136
Paper not yet in RePEc: Add citation now
- Kim, J.S. ; Staicu, A.M. ; Maity, A. ; Carroll, R.J. ; Ruppert, D. Additive function-on-function regression. 2018 J. Comput. Graph. Statist.. 27 234-244
Paper not yet in RePEc: Add citation now
Koenker, R. A note on L-estimates for linear models. 1984 Stat. Probab. Lett.. 2 323-325
Koenker, R. ; Bassett, G. Regression quantiles. 1978 Econometrica. 46 33-50
- Kokoszka, P. ; Reimherr, M. Introduction To Functional Data Analysis. 2017 CRC Press: Boca Raton
Paper not yet in RePEc: Add citation now
Kong, D. ; Ibrahim, J.G. ; Lee, E. ; Zhu, H. FLCRM: Functional linear cox regression model. 2018 Biometrics. 74 109-117
Kong, D. ; Xue, K. ; Yao, F. ; Zhang, H. Partially functional linear regression in high dimensions. 2016 Biometrika. 103 147-159
Lei, J. Adaptive global testing for functional linear models. 2014 J. Am. Stat. Assoc.. 109 624-634
Liao, L. ; Park, C. ; Choi, H. Penalized expectile regression an alternative to penalized quantile regression. 2019 Ann. Inst. Stat. Math.. 71 409-438
- Müller, H.G. ; Stadtmüller, U. Generalized functional linear models. 2005 Ann. Stat.. 32 774-805
Paper not yet in RePEc: Add citation now
Newey, W.K. ; Powell, J.L. Asymmetric least squares estimation and testing. 1987 Econometrica. 55 819-847
- Ramsay, J.O. ; Dalzell, C.J. Some tools for functional data analysis. 1991 J. R. Stat. Soc. Ser. B (Methodological). 55 539-561
Paper not yet in RePEc: Add citation now
Schnabel, S.K. ; Eilers, P.H.C Optimal expectile smoothing. 2009 Comput. Stat. Data Anal.. 53 4168-4177
- Shin, H. Partial functional linear regression. 2009 J. Stat. Plann. Inference. 139 3405-3418
Paper not yet in RePEc: Add citation now
Shin, H. ; Lee, M.H. On prediction rate in partial functional linear regression. 2012 J. Multivariate Anal.. 103 93-106
- Sobotka, F. ; Kauermann, G. ; Waltrup, L.S. ; Kneib, T. On confidence intervals for semiparametric expectile regression. 2013 Stat. Comput.. 23 135-148
Paper not yet in RePEc: Add citation now
- Spiegel, E. ; Sobotka, F. ; Kneib, T. Model selection in semiparametric expectile regression. 2017 Electron. J. Stat.. 11 3008-3038
Paper not yet in RePEc: Add citation now
- Tang, Q. ; Cheng, L. Partial functional linear quantile regression. 2014 Sci. China Math.. 57 2589-2608
Paper not yet in RePEc: Add citation now
- Tang, Y. ; Wang, H.J. ; Liang, H. Composite estimation for single-index models with responses subject to detection limits. 2018 Scand. J. Stat.. 45 444-464
Paper not yet in RePEc: Add citation now
- Wang, K. ; Wang, H.J. Optimally combined estimation for tail quantile regression. 2016 Statist. Sinica. 26 295-311
Paper not yet in RePEc: Add citation now
- Xiao, J.X. ; Yu, P. ; Song, X.Y. ; Zhang, Z.Z. Statistical inference in partial functional linear expectile regression model. 2022 Sci. China Math.. 65 2601-2630
Paper not yet in RePEc: Add citation now
Yu, P. ; Zhang, Z.Z. ; Du, J. A test of linearity in partial functional linear regression. 2016 Metrika. 79 953-969
Yu, P. ; Zhu, Z.Y. ; Zhang, Z.Z. Robust exponential squared loss-based estimation in semi-functional linear regression models. 2019 Comput. Stat.. 4 503-525
Zhao, Z. ; Xiao, Z. Efficient regressions via optimally combining quantile information. 2014 Econom. Theory. 30 1272-1314
Zhou, J. ; Chen, Z. ; Peng, Q. Polynomial spline estimation for partial functional linear regression models. 2016 Comput. Stat.. 30 1107-1129
Zhu, H. ; Zhang, R. ; Yu, Z. ; Liu, Y. Estimation and testing for partially functional linear errors-in-variables models. 2019 J. Multivariate Anal.. 170 296-314
- Zou, H. ; Yuan, M. Composite quantile regression and the oracle model selection theory. 2008 Ann. Stat.. 36 1108-1126
Paper not yet in RePEc: Add citation now