Andersen, T.G. ; Bollerslev, T. Answering the skeptics: yes, standard volatility models do provide accurate forecasts. 1998 Int. Econ. Rev.. 885-905
Andersen, T.G. ; Bollerslev, T. ; Diebold, F.X. Roughing it up: including jump components in the measurement, modeling, and forecasting of return volatility. 2007 Rev. Econ. Stat.. 89 701-720
- Barsky, R.B. ; Kilian, L. Oil and the macroeconomy since the 1970s. 2002 J. Econ. Perspect.. 18 115-134
Paper not yet in RePEc: Add citation now
Basak, S. ; Pavlova, A. A model of financialization of commodities. 2016 J. Finance. 71 1511-1556
Bollerslev, T. ; Patton, A.J. ; Quaedvlieg, R. Multivariate leverage effects and realized semicovariance GARCH models. 2020 J. Econom.. 217 411-430
Bouoiyour, J. ; Selmi, R. ; Hammoudeh, S. ; Wohar, M.E. What are the categories of geopolitical risks that could drive oil prices higher? Acts or threats?. 2019 Energy Econ.. 84 -
Brandt, M.W. ; Gao, L. Macro fundamentals or geopolitical events? A textual analysis of news events for crude oil. 2019 J. Empir. Finance. 51 64-94
Bucci, A. Realized volatility forecasting with neural networks. 2020 J. Financ. Econom.. 18 502-531
Caldara, D. ; Iacoviello, M. Measuring geopolitical risk. 2022 Am. Econ. Rev.. 112 1194-1225
Campbell, J.Y. ; Thompson, S.B. Predicting excess stock returns out of sample: can anything beat the historical average?. 2008 Rev. Financ. Stud.. 21 1509-1531
- Chen, L. ; Pelger, M. ; Zhu, J. Deep learning in asset pricing. 2024 Manag. Sci.. 70 714-750
Paper not yet in RePEc: Add citation now
Cheng, F. ; Li, T. ; Wei, Y.M. ; Fan, T. The VEC-NAR model for short-term forecasting of oil prices. 2019 Energy Econ.. 78 656-667
- Christensen, K. ; Siggaard, M. ; Veliyev, B. A machine learning approach to volatility forecasting. 2022 J. Financ. Econom.. -
Paper not yet in RePEc: Add citation now
Clark, T. ; West, K. Approximately normal tests for equal predictive accuracy in nested models. 2007 J. Econom.. 138 291-311
Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 1995 J. Bus. Econ. Stat.. 13 253-263
Driesprong, G. ; Jacobsen, B. ; Maat, B. Striking oil: another puzzle?. 2008 J. Financ. Econ.. 89 307-327
Forbes, K.J. ; Warnock, F.E. Capital flow waves: surges, stops, flight, and retrenchment. 2012 J. Int. Econ.. 88 235-251
Ghoddusi, H. ; Creamer, G.G. ; Rafizadeh, N. Machine learning in energy economics and finance: a review. 2019 Energy Econ.. 81 709-727
Goulet Coulombe, P. ; Leroux, M. ; Stevanovic, D. ; Surprenant, S. How is machine learning useful for macroeconomic forecasting?. 2022 J. Appl. Econom.. 37 920-964
Gu, S. ; Kelly, B. ; Xiu, D. Empirical asset pricing via machine learning. 2020 Rev. Financ. Stud.. 33 2223-2273
Guo, Y. ; He, F. ; Liang, C. ; Ma, F. Oil price volatility predictability: new evidence from a scaled PCA approach. 2022 Energy Econ.. 105 -
Hamilton, J.D. Causes and Consequences of the Oil Shock of 2007-08 (No. W15002). 2009 National Bureau of Economic Research:
Hansen, P.R. ; Lunde, A. ; Nason, J.M. The model confidence set. 2011 Econometrica. 79 453-497
- Hinton, G.E. ; Srivastava, N. ; Krizhevsky, A. ; Sutskever, I. ; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. 2012 arXiv preprint arXiv:1207.0580. -
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput.. 9 1735-1780
Paper not yet in RePEc: Add citation now
- Hornik, K. ; Stinchcombe, M. ; White, H. Multilayer feedforward networks are universal approximators. 1989 Neural Network.. 2 359-366
Paper not yet in RePEc: Add citation now
- Islam, S. ; Elmekki, H. ; Elsebai, A. ; Bentahar, J. ; Drawel, N. ; Rjoub, G. ; Pedrycz, W. A comprehensive survey on applications of transformers for deep learning tasks. 2023 Expert Syst. Appl.. 122666 -
Paper not yet in RePEc: Add citation now
Kilian, L. Not all oil price shocks are alike: disentangling demand and supply shocks in the crude oil market. 2009 Am. Econ. Rev.. 99 1053-1069
- Kollias, C. ; Kyrtsou, C. ; Papadamou, S. The effects of terrorism and war on the oil price–stock index relationship. 2013 Energy Econ.. 40 743-752
Paper not yet in RePEc: Add citation now
Leippold, M. ; Wang, Q. ; Zhou, W. Machine learning in the Chinese stock market. 2022 J. Financ. Econ.. 145 64-82
- Li, S. ; Jin, X. ; Xuan, Y. ; Zhou, X. ; Chen, W. ; Wang, Y.X. ; Yan, X. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. 2019 Adv. Neural Inf. Process. Syst.. 32 -
Paper not yet in RePEc: Add citation now
Li, S. ; Tu, D. ; Zeng, Y. ; Gong, C. ; Yuan, D. Does geopolitical risk matter in crude oil and stock markets? Evidence from disaggregated data. 2022 Energy Econ.. 113 -
Mei, D. ; Ma, F. ; Liao, Y. ; Wang, L. Geopolitical risk uncertainty and oil future volatility: evidence from MIDAS models. 2020 Energy Econ.. 86 -
Monge, M. ; Cristóbal, E. Terrorism and the behavior of oil production and prices in OPEC. 2021 Resour. Pol.. 74 -
Neely, C.J. ; Rapach, D.E. ; Tu, J. ; Zhou, G. Forecasting the equity risk premium: the role of technical indicators. 2014 Manag. Sci.. 60 1772-1791
Nelson, D.B. Conditional heteroskedasticity in asset returns: a new approach. 1991 Econom. J. Econom. Soc.. 347-370
Newey, W.K. ; West, K.D. Hypothesis testing with efficient method of moments estimation. 1987 Int. Econ. Rev.. 777-787
Niu, Z. ; Demirer, R. ; Suleman, M.T. ; Zhang, H. ; Zhu, X. Do industries predict stock market volatility? Evidence from machine learning models. 2024 J. Int. Financ. Mark. Inst. Money. 90 -
Niu, Z. ; Wang, C. ; Zhang, H. Forecasting stock market volatility with various geopolitical risks categories: new evidence from machine learning models. 2023 Int. Rev. Financ. Anal.. 89 -
Omar, A.M. ; Wisniewski, T.P. ; Nolte, S. Diversifying away the risk of war and cross-border political crisis. 2017 Energy Econ.. 64 494-510
Pettenuzzo, D. ; Timmermann, A. ; Valkanov, R. Forecasting stock returns under economic constraints. 2014 J. Financ. Econ.. 114 517-553
Phan, D.H.B. ; Narayan, P.K. ; Gong, Q. Terrorist attacks and oil prices: hypothesis and empirical evidence. 2021 Int. Rev. Financ. Anal.. 74 -
Qin, Y. ; Hong, K. ; Chen, J. ; Zhang, Z. Asymmetric effects of geopolitical risks on energy returns and volatility under different market conditions. 2020 Energy Econ.. 90 -
Rapach, D.E. ; Ringgenberg, M.C. ; Zhou, G. Short interest and aggregate stock returns. 2016 J. Financ. Econ.. 121 46-65
Rapach, D.E. ; Strauss, J.K. ; Zhou, G. Out-of-sample equity premium prediction: combination forecasts and links to the real economy. 2010 Rev. Financ. Stud.. 23 821-862
Salisu, A.A. ; Pierdzioch, C. ; Gupta, R. Geopolitical risk and forecastability of tail risk in the oil market: evidence from over a century of monthly data. 2021 Energy. 235 -
- Shapley, L.S. A Value for N-Person Games. Contribution. 1953 to Theory Games:
Paper not yet in RePEc: Add citation now
- Shrikumar, A. ; Greenside, P. ; Kundaje, A. Learning important features through propagating activation differences. 2017 En : International Conference on Machine Learning. PMlR:
Paper not yet in RePEc: Add citation now
- Tibshirani, R. Regression shrinkage and selection via the lasso. 1996 J. Roy. Stat. Soc. B Stat. Methodol.. 58 267-288
Paper not yet in RePEc: Add citation now
Varian, H.R. Big data: new tricks for econometrics. 2014 J. Econ. Perspect.. 28 3-28
- Vaswani, A. ; Shazeer, N. ; Parmar, N. ; Uszkoreit, J. ; Jones, L. ; Gomez, A.N. Attention is all you need. 2017 Adv. Neural Inf. Process. Syst.. 30 -
Paper not yet in RePEc: Add citation now
- Wang, C. ; Chen, Y. ; Zhang, S. ; Zhang, Q. Stock market index prediction using deep Transformer model. 2022 Expert Syst. Appl.. 208 -
Paper not yet in RePEc: Add citation now
Wang, Y. ; Wei, Y. ; Wu, C. ; Yin, L. Oil and the short-term predictability of stock return volatility. 2018 J. Empir. Finance. 47 90-104
Welch, I. ; Goyal, A. A comprehensive look at the empirical performance of equity premium prediction. 2008 Rev. Financ. Stud.. 21 1455-1508
Xiao, J. ; Wen, F. ; He, Z. Impact of geopolitical risks on investor attention and speculation in the oil market: evidence from nonlinear and time-varying analysis. 2023 Energy. 267 -
Yang, C. ; Niu, Z. ; Gao, W. The time-varying effects of trade policy uncertainty and geopolitical risks shocks on the commodity market prices: evidence from the TVP-VAR-SV approach. 2022 Resour. Pol.. 76 -
Zhang, Y. ; Ma, F. ; Wang, Y. Forecasting crude oil prices with a large set of predictors: can LASSO select powerful predictors?. 2019 J. Empir. Finance. 54 97-117
Zhang, Y. ; Wahab, M.I.M. ; Wang, Y. Forecasting crude oil market volatility using variable selection and common factor. 2023 Int. J. Forecast.. 39 486-502
Zhang, Y. ; Wei, Y. ; Zhang, Y. ; Jin, D. Forecasting oil price volatility: forecast combination versus shrinkage method. 2019 Energy Econ.. 80 423-433
- Zhang, Y.J. ; Chevallier, J. ; Guesmi, K. “De-financialization” of commodities? Evidence from stock, crude oil and natural gas markets. 2017 Energy Econ.. 68 228-239
Paper not yet in RePEc: Add citation now
Zhang, Z. ; Wang, Y. ; Xiao, J. ; Zhang, Y. Not all geopolitical shocks are alike: identifying price dynamics in the crude oil market under tensions. 2023 Resour. Pol.. 80 -
Zou, H. ; Hastie, T. Regularization and variable selection via the elastic net. 2005 J. Roy. Stat. Soc. B Stat. Methodol.. 67 301-320