- Aggrawal, N. ; Arora, A. ; Jain, A. ; Rathor, D. Product Diffusion Pattern Analysis Model Based on User's Review of E-Commerce Application. 2017 Springer:
Paper not yet in RePEc: Add citation now
An, D. ; Ji, S. ; Jan, I.U. Investigating the determinants and barriers of purchase intention of innovative new products. 2021 Sustainability. 13 740-
Arunraj, N.S. ; Ahrens, D. A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. 2015 Int. J. Prod. Econ.. 170 321-335
Bass, F.M. ; Krishnan, T.V. ; Jain, D.C. Why the bass model fits without decision variables. 1994 Market. Sci.. 13 203-223
- Berg, Achim ; Heyn, Miriam ; Rölkens, Felix ; Simon, Patrick Faster Fashion: How to Shorten the Apparel Calendar. 2018 :
Paper not yet in RePEc: Add citation now
- Brillio, Choosing the Right Forecasting Technique. 2018 :
Paper not yet in RePEc: Add citation now
- Chawla, A. ; Singh, A. ; Lamba, A. ; Gangwani, N. ; Soni, U. Demand forecasting using artificial neural networks—a case study of american retail corporation. 2019 En : Malik, H. ; Srivastava, S. ; Sood, Y.R. ; Ahmad, A. Applications of Artificial Intelligence Techniques in Engineering. Springer:
Paper not yet in RePEc: Add citation now
- Chen, I.F. ; Lu, C.J. Sales forecasting by combining clustering and machine-learning techniques for computer retailing. 2017 Neural Comput. Appl.. 28 2633-2647
Paper not yet in RePEc: Add citation now
- Chien, S.C. ; Wang, T.Y. ; Lin, S.L. Application of neuro-fuzzy networks to forecast innovation performance – the example of taiwanese manufacturing industry. 2010 Expert Syst. Appl.. 37 1086-1095
Paper not yet in RePEc: Add citation now
- Claessens, M. Market Diffusion Process and its Marketing Implications. 2017 :
Paper not yet in RePEc: Add citation now
- ConvergeOne, End-of-life (EoL) vs. End-Of-Sale (EoS): What's the Difference?. 2018 :
Paper not yet in RePEc: Add citation now
- De Gooijer, J.G. Elements of Nonlinear Time Series Analysis and Forecasting. 2017 Springer:
Paper not yet in RePEc: Add citation now
- Deepa, C. ; Gerard, T. A critical review of marketing research on diffusion of new products. 2007 En : Malhotra, Naresh K. Review Of Marketing Research, Volume 3 of Review Of Marketing Research. Emerald Group Publishing Limited):
Paper not yet in RePEc: Add citation now
Dev, N.K. ; Shankar, R. ; Swami, S. Diffusion of green products in industry 4.0: reverse logistics issues during design of inventory and production planning system. 2020 Int. J. Prod. Econ.. 223 107519-
- Fisher, M.L. What is the right supply chain for your product?. 1997 Harv. Bus. Rev.. 75 105-117
Paper not yet in RePEc: Add citation now
Gaimon, C. ; Singhal, V. Flexibility and the choice of manufacturing facilities under short product life cycles. 1992 Eur. J. Oper. Res.. 60 211-223
- Ganjeizadeh, F. ; Lei, H. ; Goraya, P. ; Olivar, E. Applying looks-like analysis and bass diffusion model techniques to forecast a neurostimulator device with no historical data. 2017 Procedia Manufacturing. 11 1916-1924
Paper not yet in RePEc: Add citation now
Guo, X. A novel bass-type model for product life cycle quantification using aggregate market data. 2014 Int. J. Prod. Econ.. 158 208-216
Hahn, M. ; Park, S. ; Krishnamurthi, L. ; Zoltners, A.A. Analysis of new product diffusion using a four-segment trial-repeat model. 1994 Market. Sci.. 13 224-247
- Hiranya Pemathilake, R.G. ; Karunathilake, S.P. ; Achira Jeewaka Shamal, J.L. ; Ganegoda, G.U. Sales forecasting based on autoregressive integrated moving average and recurrent neural network hybrid model. 2018 En : 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :
Paper not yet in RePEc: Add citation now
Hu, K. ; Acimovic, J. ; Erize, F. ; Thomas, D.J. ; Van Mieghem, J.A. Forecasting new product life cycle curves: practical approach and empirical analysis. 2019 Manuf. Serv. Oper. Manag.. 21 66-85
- Ismail, Z. ; Abu, N. New car demand modeling and forecasting using bass diffusion model. 2013 Am. J. Appl. Sci.. 10 536-541
Paper not yet in RePEc: Add citation now
Jain, A. ; Rudi, N. ; Wang, T. Demand estimation and ordering under censoring: stock-out timing is (almost) all you need. 2015 Oper. Res.. 63 134-150
Katz, M.L. ; Shapiro, C. Network externalities, competition, and compatibility. 1985 Am. Econ. Rev.. 75 424-440
- Kohli, S. ; Godwin, G.T. ; Urolagin, S. Sales prediction using linear and KNN regression. 2021 En : Patnaik, S. ; Yang, X.S. ; Sethi, I.K. Advances In Machine Learning And Computational Intelligence. Springer Singapore:
Paper not yet in RePEc: Add citation now
- Larina, Y. Innovation and marketing strategies of enterprises on the innovative food products market. 2017 Annals of Marketing Management and Economics. 3 33-47
Paper not yet in RePEc: Add citation now
- Lawrence, K.D. ; Lawton, W.H. Applications of diffusion models: some empirical results. 1981 New product forecasting. 529-541
Paper not yet in RePEc: Add citation now
Lee, C.Y. ; Huh, S.Y. Technology forecasting using a diffusion model incorporating replacement purchases. 2017 Sustainability. 9 1038-
- Lei, N. ; Moon, S.K. A decision support system for market-driven product positioning and design. 2015 Decis. Support Syst.. 69 82-91
Paper not yet in RePEc: Add citation now
- Lilien, G.L. ; Rangaswamy, A. ; De Bruyn, A. Principles of Marketing Engineering and Analytics. 2017 :
Paper not yet in RePEc: Add citation now
- Lletí, R. ; Ortiz, M. ; Sarabia, L. ; Sánchez, M. Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. 2004 Anal. Chim. Acta. 515 87-100
Paper not yet in RePEc: Add citation now
- Loureiro, A. ; Miguéis, V. ; da Silva, L.F. Exploring the use of deep neural networks for sales forecasting in fashion retail. 2018 Decis. Support Syst.. 114 81-93
Paper not yet in RePEc: Add citation now
Lu, C.J. ; Wang, Y.W. Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. 2010 Int. J. Prod. Econ.. 128 603-613
Ma, S. ; Fildes, R. ; Huang, T. Demand forecasting with high dimensional data: the case of SKU retail sales forecasting with intra- and inter-category promotional information. 2016 Eur. J. Oper. Res.. 249 245-257
- Mahajan, V. ; Muller, E. ; Bass, F.M. . 1993 Elsevier:
Paper not yet in RePEc: Add citation now
Massiani, J. ; Gohs, A. The choice of bass model coefficients to forecast diffusion for innovative products: an empirical investigation for new automotive technologies. 2015 Res. Transport. Econ.. 50 17-28
- Miao, H. ; Li, A. ; Davis, L.S. ; Deshpande, A. Towards unified data and lifecycle management for deep learning. 2017 En : 2017 IEEE 33rd International Conference on Data Engineering (ICDE). :
Paper not yet in RePEc: Add citation now
Nagler, M.G. Negative externalities, competition and consumer choice. 2011 J. Ind. Econ.. 59 396-421
Pal, S. ; Mahapatra, G. ; Samanta, G. An epq model of ramp type demand with weibull deterioration under inflation and finite horizon in crisp and fuzzy environment. 2014 Int. J. Prod. Econ.. 156 159-166
- Pavlyshenko, B. Machine-learning models for sales time series forecasting. 2019 Data. 4 15-
Paper not yet in RePEc: Add citation now
- Pongdatu, G.A.N. ; Putra, Y.H. Seasonal time series forecasting using SARIMA and holt winter's exponential smoothing. 2018 En : . :
Paper not yet in RePEc: Add citation now
Punia, S. ; Nikolopoulos, K. ; Singh, S.P. ; Madaan, J.K. ; Litsiou, K. Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail. 2020 Int. J. Prod. Res.. 58 4964-4979
Qin, R. ; Nembhard, D.A. Demand modeling of stochastic product diffusion over the life cycle. 2012 Int. J. Prod. Econ.. 137 201-210
- Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. 1987 J. Comput. Appl. Math.. 20 53-65
Paper not yet in RePEc: Add citation now
Saaksvuori, A. ; Immonen, A. Product Lifecycle Management. 2008 Springer:
Seol, H. ; Park, G. ; Lee, H. ; Yoon, B. Demand forecasting for new media services with consideration of competitive relationships using the competitive bass model and the theory of the niche. 2012 Technol. Forecast. Soc. Change. 79 1217-1228
- Song, Y. ; Lee, S. ; Zo, H. ; Lee, H. A hybrid bass–markov model for the diffusion of a dual-type device-based telecommunication service: the case of WiBro service in korea. 2015 Comput. Ind. Eng.. 79 85-94
Paper not yet in RePEc: Add citation now
- Spirtes, P. ; Zhang, K. Causal discovery and inference: concepts and recent methodological advances. 2016 Appl. Inf.. 3 3-
Paper not yet in RePEc: Add citation now
- Srinivasan, V. ; Mason, C.H. Technical note—nonlinear least squares estimation of new product diffusion models. 1986 Market. Sci.. 5 169-178
Paper not yet in RePEc: Add citation now
Tseng, F.M. ; Lin, Y.T. ; Yang, S.C. Combining conjoint analysis, scenario analysis, the delphi method, and the innovation diffusion model to analyze the development of innovative products in taiwan's tv market. 2012 Technol. Forecast. Soc. Change. 79 1462-1473
- Tsoumakas, G. A survey of machine learning techniques for food sales prediction. 2019 Artif. Intell. Rev.. 52 441-447
Paper not yet in RePEc: Add citation now
- Van de Bulte, C. Technical report: want to know how diffusion speed varies across countries and products? try using a bass model. 2002 Visions Magazine. 26 12-15
Paper not yet in RePEc: Add citation now
- Varian, H.R. Causal inference in economics and marketing. 2016 Proc. Natl. Acad. Sci. Unit. States Am.. 113 7310-7315
Paper not yet in RePEc: Add citation now
- Velasco, L. ; Shariati, B. ; Boitier, F. ; Layec, P. ; Ruiz, M. Learning life cycle to speed up autonomic optical transmission and networking adoption. 2019 J. Opt. Commun. Netw.. 11 226-237
Paper not yet in RePEc: Add citation now
- Villegas, M.A. ; Pedregal, D.J. ; Trapero, J.R. A support vector machine for model selection in demand forecasting applications. 2018 Comput. Ind. Eng.. 121 1-7
Paper not yet in RePEc: Add citation now
Xiao, Y. ; Han, J. Forecasting new product diffusion with agent-based models. 2016 Technol. Forecast. Soc. Change. 105 167-178