create a website

Lifecycle forecast for consumer technology products with limited sales data. (2021). Yin, Ying ; Li, Xishu ; Back, Thomas ; Manrique, David Vergara.
In: International Journal of Production Economics.
RePEc:eee:proeco:v:239:y:2021:i:c:s0925527321001821.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 56

References cited by this document

Cocites: 27

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A dynamic surge pricing model throughout product lifecycle. (2024). Sun, Yanru ; Jin, Xuanzhu.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:226:y:2024:i:c:p:139-151.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Aggrawal, N. ; Arora, A. ; Jain, A. ; Rathor, D. Product Diffusion Pattern Analysis Model Based on User's Review of E-Commerce Application. 2017 Springer:
    Paper not yet in RePEc: Add citation now
  2. An, D. ; Ji, S. ; Jan, I.U. Investigating the determinants and barriers of purchase intention of innovative new products. 2021 Sustainability. 13 740-

  3. Arunraj, N.S. ; Ahrens, D. A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting. 2015 Int. J. Prod. Econ.. 170 321-335

  4. Bass, F.M. ; Krishnan, T.V. ; Jain, D.C. Why the bass model fits without decision variables. 1994 Market. Sci.. 13 203-223

  5. Berg, Achim ; Heyn, Miriam ; Rölkens, Felix ; Simon, Patrick Faster Fashion: How to Shorten the Apparel Calendar. 2018 :
    Paper not yet in RePEc: Add citation now
  6. Brillio, Choosing the Right Forecasting Technique. 2018 :
    Paper not yet in RePEc: Add citation now
  7. Chawla, A. ; Singh, A. ; Lamba, A. ; Gangwani, N. ; Soni, U. Demand forecasting using artificial neural networks—a case study of american retail corporation. 2019 En : Malik, H. ; Srivastava, S. ; Sood, Y.R. ; Ahmad, A. Applications of Artificial Intelligence Techniques in Engineering. Springer:
    Paper not yet in RePEc: Add citation now
  8. Chen, I.F. ; Lu, C.J. Sales forecasting by combining clustering and machine-learning techniques for computer retailing. 2017 Neural Comput. Appl.. 28 2633-2647
    Paper not yet in RePEc: Add citation now
  9. Chien, S.C. ; Wang, T.Y. ; Lin, S.L. Application of neuro-fuzzy networks to forecast innovation performance – the example of taiwanese manufacturing industry. 2010 Expert Syst. Appl.. 37 1086-1095
    Paper not yet in RePEc: Add citation now
  10. Claessens, M. Market Diffusion Process and its Marketing Implications. 2017 :
    Paper not yet in RePEc: Add citation now
  11. ConvergeOne, End-of-life (EoL) vs. End-Of-Sale (EoS): What's the Difference?. 2018 :
    Paper not yet in RePEc: Add citation now
  12. De Gooijer, J.G. Elements of Nonlinear Time Series Analysis and Forecasting. 2017 Springer:
    Paper not yet in RePEc: Add citation now
  13. Deepa, C. ; Gerard, T. A critical review of marketing research on diffusion of new products. 2007 En : Malhotra, Naresh K. Review Of Marketing Research, Volume 3 of Review Of Marketing Research. Emerald Group Publishing Limited):
    Paper not yet in RePEc: Add citation now
  14. Dev, N.K. ; Shankar, R. ; Swami, S. Diffusion of green products in industry 4.0: reverse logistics issues during design of inventory and production planning system. 2020 Int. J. Prod. Econ.. 223 107519-

  15. Fisher, M.L. What is the right supply chain for your product?. 1997 Harv. Bus. Rev.. 75 105-117
    Paper not yet in RePEc: Add citation now
  16. Gaimon, C. ; Singhal, V. Flexibility and the choice of manufacturing facilities under short product life cycles. 1992 Eur. J. Oper. Res.. 60 211-223

  17. Ganjeizadeh, F. ; Lei, H. ; Goraya, P. ; Olivar, E. Applying looks-like analysis and bass diffusion model techniques to forecast a neurostimulator device with no historical data. 2017 Procedia Manufacturing. 11 1916-1924
    Paper not yet in RePEc: Add citation now
  18. Guo, X. A novel bass-type model for product life cycle quantification using aggregate market data. 2014 Int. J. Prod. Econ.. 158 208-216

  19. Hahn, M. ; Park, S. ; Krishnamurthi, L. ; Zoltners, A.A. Analysis of new product diffusion using a four-segment trial-repeat model. 1994 Market. Sci.. 13 224-247

  20. Hiranya Pemathilake, R.G. ; Karunathilake, S.P. ; Achira Jeewaka Shamal, J.L. ; Ganegoda, G.U. Sales forecasting based on autoregressive integrated moving average and recurrent neural network hybrid model. 2018 En : 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :
    Paper not yet in RePEc: Add citation now
  21. Hu, K. ; Acimovic, J. ; Erize, F. ; Thomas, D.J. ; Van Mieghem, J.A. Forecasting new product life cycle curves: practical approach and empirical analysis. 2019 Manuf. Serv. Oper. Manag.. 21 66-85

  22. Ismail, Z. ; Abu, N. New car demand modeling and forecasting using bass diffusion model. 2013 Am. J. Appl. Sci.. 10 536-541
    Paper not yet in RePEc: Add citation now
  23. Jain, A. ; Rudi, N. ; Wang, T. Demand estimation and ordering under censoring: stock-out timing is (almost) all you need. 2015 Oper. Res.. 63 134-150

  24. Katz, M.L. ; Shapiro, C. Network externalities, competition, and compatibility. 1985 Am. Econ. Rev.. 75 424-440

  25. Kohli, S. ; Godwin, G.T. ; Urolagin, S. Sales prediction using linear and KNN regression. 2021 En : Patnaik, S. ; Yang, X.S. ; Sethi, I.K. Advances In Machine Learning And Computational Intelligence. Springer Singapore:
    Paper not yet in RePEc: Add citation now
  26. Larina, Y. Innovation and marketing strategies of enterprises on the innovative food products market. 2017 Annals of Marketing Management and Economics. 3 33-47
    Paper not yet in RePEc: Add citation now
  27. Lawrence, K.D. ; Lawton, W.H. Applications of diffusion models: some empirical results. 1981 New product forecasting. 529-541
    Paper not yet in RePEc: Add citation now
  28. Lee, C.Y. ; Huh, S.Y. Technology forecasting using a diffusion model incorporating replacement purchases. 2017 Sustainability. 9 1038-

  29. Lei, N. ; Moon, S.K. A decision support system for market-driven product positioning and design. 2015 Decis. Support Syst.. 69 82-91
    Paper not yet in RePEc: Add citation now
  30. Lilien, G.L. ; Rangaswamy, A. ; De Bruyn, A. Principles of Marketing Engineering and Analytics. 2017 :
    Paper not yet in RePEc: Add citation now
  31. Lletí, R. ; Ortiz, M. ; Sarabia, L. ; Sánchez, M. Selecting variables for k-means cluster analysis by using a genetic algorithm that optimises the silhouettes. 2004 Anal. Chim. Acta. 515 87-100
    Paper not yet in RePEc: Add citation now
  32. Loureiro, A. ; Miguéis, V. ; da Silva, L.F. Exploring the use of deep neural networks for sales forecasting in fashion retail. 2018 Decis. Support Syst.. 114 81-93
    Paper not yet in RePEc: Add citation now
  33. Lu, C.J. ; Wang, Y.W. Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. 2010 Int. J. Prod. Econ.. 128 603-613

  34. Ma, S. ; Fildes, R. ; Huang, T. Demand forecasting with high dimensional data: the case of SKU retail sales forecasting with intra- and inter-category promotional information. 2016 Eur. J. Oper. Res.. 249 245-257

  35. Mahajan, V. ; Muller, E. ; Bass, F.M. . 1993 Elsevier:
    Paper not yet in RePEc: Add citation now
  36. Massiani, J. ; Gohs, A. The choice of bass model coefficients to forecast diffusion for innovative products: an empirical investigation for new automotive technologies. 2015 Res. Transport. Econ.. 50 17-28

  37. Miao, H. ; Li, A. ; Davis, L.S. ; Deshpande, A. Towards unified data and lifecycle management for deep learning. 2017 En : 2017 IEEE 33rd International Conference on Data Engineering (ICDE). :
    Paper not yet in RePEc: Add citation now
  38. Nagler, M.G. Negative externalities, competition and consumer choice. 2011 J. Ind. Econ.. 59 396-421

  39. Pal, S. ; Mahapatra, G. ; Samanta, G. An epq model of ramp type demand with weibull deterioration under inflation and finite horizon in crisp and fuzzy environment. 2014 Int. J. Prod. Econ.. 156 159-166

  40. Pavlyshenko, B. Machine-learning models for sales time series forecasting. 2019 Data. 4 15-
    Paper not yet in RePEc: Add citation now
  41. Pongdatu, G.A.N. ; Putra, Y.H. Seasonal time series forecasting using SARIMA and holt winter's exponential smoothing. 2018 En : . :
    Paper not yet in RePEc: Add citation now
  42. Punia, S. ; Nikolopoulos, K. ; Singh, S.P. ; Madaan, J.K. ; Litsiou, K. Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail. 2020 Int. J. Prod. Res.. 58 4964-4979

  43. Qin, R. ; Nembhard, D.A. Demand modeling of stochastic product diffusion over the life cycle. 2012 Int. J. Prod. Econ.. 137 201-210

  44. Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. 1987 J. Comput. Appl. Math.. 20 53-65
    Paper not yet in RePEc: Add citation now
  45. Saaksvuori, A. ; Immonen, A. Product Lifecycle Management. 2008 Springer:

  46. Seol, H. ; Park, G. ; Lee, H. ; Yoon, B. Demand forecasting for new media services with consideration of competitive relationships using the competitive bass model and the theory of the niche. 2012 Technol. Forecast. Soc. Change. 79 1217-1228

  47. Song, Y. ; Lee, S. ; Zo, H. ; Lee, H. A hybrid bass–markov model for the diffusion of a dual-type device-based telecommunication service: the case of WiBro service in korea. 2015 Comput. Ind. Eng.. 79 85-94
    Paper not yet in RePEc: Add citation now
  48. Spirtes, P. ; Zhang, K. Causal discovery and inference: concepts and recent methodological advances. 2016 Appl. Inf.. 3 3-
    Paper not yet in RePEc: Add citation now
  49. Srinivasan, V. ; Mason, C.H. Technical note—nonlinear least squares estimation of new product diffusion models. 1986 Market. Sci.. 5 169-178
    Paper not yet in RePEc: Add citation now
  50. Tseng, F.M. ; Lin, Y.T. ; Yang, S.C. Combining conjoint analysis, scenario analysis, the delphi method, and the innovation diffusion model to analyze the development of innovative products in taiwan's tv market. 2012 Technol. Forecast. Soc. Change. 79 1462-1473

  51. Tsoumakas, G. A survey of machine learning techniques for food sales prediction. 2019 Artif. Intell. Rev.. 52 441-447
    Paper not yet in RePEc: Add citation now
  52. Van de Bulte, C. Technical report: want to know how diffusion speed varies across countries and products? try using a bass model. 2002 Visions Magazine. 26 12-15
    Paper not yet in RePEc: Add citation now
  53. Varian, H.R. Causal inference in economics and marketing. 2016 Proc. Natl. Acad. Sci. Unit. States Am.. 113 7310-7315
    Paper not yet in RePEc: Add citation now
  54. Velasco, L. ; Shariati, B. ; Boitier, F. ; Layec, P. ; Ruiz, M. Learning life cycle to speed up autonomic optical transmission and networking adoption. 2019 J. Opt. Commun. Netw.. 11 226-237
    Paper not yet in RePEc: Add citation now
  55. Villegas, M.A. ; Pedregal, D.J. ; Trapero, J.R. A support vector machine for model selection in demand forecasting applications. 2018 Comput. Ind. Eng.. 121 1-7
    Paper not yet in RePEc: Add citation now
  56. Xiao, Y. ; Han, J. Forecasting new product diffusion with agent-based models. 2016 Technol. Forecast. Soc. Change. 105 167-178

Cocites

Documents in RePEc which have cited the same bibliography

  1. Parametric quantile autoregressive moving average models with exogenous terms. (2024). Saulo, Helton ; Dasilva, Alan ; Vila, Roberto ; Pal, Suvra ; Fiorucci, Jose A.
    In: Statistical Papers.
    RePEc:spr:stpapr:v:65:y:2024:i:3:d:10.1007_s00362-023-01459-4.

    Full description at Econpapers || Download paper

  2. Designing an adaptive and deep learning based control framework for modular production systems. (2024). Panzer, Marcel ; Gronau, Norbert.
    In: Journal of Intelligent Manufacturing.
    RePEc:spr:joinma:v:35:y:2024:i:8:d:10.1007_s10845-023-02249-3.

    Full description at Econpapers || Download paper

  3. Data-driven optimization models for inventory and financing decisions in online retailing platforms. (2024). Gong, Yeming ; Rekik, Yacine ; Xu, Xianhao ; Yang, Bingnan.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05234-4.

    Full description at Econpapers || Download paper

  4. Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales. (2024). Hassan, M. Kabir ; Hajek, Petr ; Abedin, Mohammad Zoynul ; Alam, Md Iftekharul ; al Jaber, MD ; Aditya, Shuvra ; Azad, Rahat Uddin.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04838-6.

    Full description at Econpapers || Download paper

  5. Sales prediction hybrid models for retails using promotional pricing strategy as a key demand driver. (2024). Phupaichitkun, Nichakan ; Phumchusri, Naragain.
    In: Journal of Revenue and Pricing Management.
    RePEc:pal:jorapm:v:23:y:2024:i:5:d:10.1057_s41272-024-00477-7.

    Full description at Econpapers || Download paper

  6. Proactive Resource Request for Disaster Response: A Deep Learning-Based Optimization Model. (2024). Zhao, Xiaohang ; Fang, Xiao ; Zhang, Hongzhe ; Chen, Bintong.
    In: Information Systems Research.
    RePEc:inm:orisre:v:35:y:2024:i:2:p:528-550.

    Full description at Econpapers || Download paper

  7. The Antecedents of the Willingness to Adopt and Pay for Climate-Smart Agricultural Technology Among Cooperatives in China. (2024). Zailani, Suhaiza ; Feng, Xiaoxue.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2024:i:1:p:19-:d:1551705.

    Full description at Econpapers || Download paper

  8. Mining spatial-temporal patterns from customer data to improve forecasting of customer flow across multiple sites. (2024). Liu, Hsiu-Wen.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:79:y:2024:i:c:s0969698924001644.

    Full description at Econpapers || Download paper

  9. The perfect combination to win the competition: Bringing sustainability and customer experience together. (2024). Bağcı, Rıfgı Buğra ; Unal, Umut ; Baci, Rifgi Bura ; Taiolu, Mertcan.
    In: Business Strategy and the Environment.
    RePEc:bla:bstrat:v:33:y:2024:i:5:p:4806-4824.

    Full description at Econpapers || Download paper

  10. A theory of predictive sales analytics adoption. (2023). Alavi, Sascha ; Heinitz, Nicolas ; Habel, Johannes.
    In: AMS Review.
    RePEc:spr:amsrev:v:13:y:2023:i:1:d:10.1007_s13162-022-00252-0.

    Full description at Econpapers || Download paper

  11. Food Waste in Distribution: Causes and Gaps to Be Filled. (2023). Borchardt, Miriam ; de Souza, Michele ; Trento, Luiz Reni ; Pereira, Giancarlo Medeiros ; Milan, Gabriel Sperandio ; Vaz, Francisco Carlos.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:4:p:3598-:d:1069681.

    Full description at Econpapers || Download paper

  12. Analysis of the propensity of Italian and German forest owners towards forest certification for ecosystem services. (2023). Lombardo, Emanuela.
    In: Journal of Forest Science.
    RePEc:caa:jnljfs:v:69:y:2023:i:6:id:193-2022-jfs.

    Full description at Econpapers || Download paper

  13. Consumers’ Purchase Intention of Suboptimal Food Using Behavioral Reasoning Theory: A Food Waste Reduction Strategy. (2022). Ramzan, Sidra ; Shahid, Rana Muhammad ; Refat, Moamen S ; Tufail, Hafiza Sobia ; Alsuhaibani, Amnah Mohammed.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:14:p:8905-:d:867473.

    Full description at Econpapers || Download paper

  14. Dynamic Model Selection Based on Demand Pattern Classification in Retail Sales Forecasting. (2022). Tao, YE ; Tian, Xin ; Yu, Ming.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:17:p:3179-:d:905933.

    Full description at Econpapers || Download paper

  15. Retail forecasting: Research and practice. (2022). Kolassa, Stephan ; Ma, Shaohui ; Fildes, Robert.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:38:y:2022:i:4:p:1283-1318.

    Full description at Econpapers || Download paper

  16. Classification-based model selection in retail demand forecasting. (2022). Langrock, Roland ; Senge, Robin ; Pesch, Robert ; Ulrich, Matthias ; Jahnke, Hermann.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:38:y:2022:i:1:p:209-223.

    Full description at Econpapers || Download paper

  17. A digitally enabled circular economy for mitigating food waste: Understanding innovative marketing strategies in the context of an emerging economy. (2021). de Souza, Michele ; Trento, Luiz Reni ; Zvirtes, Leandro ; Pereira, Giancarlo Medeiros ; Chiappetta, Charbel Jose ; Lopes, Ana Beatriz ; Borchardt, Miriam.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:173:y:2021:i:c:s0040162521004947.

    Full description at Econpapers || Download paper

  18. Lifecycle forecast for consumer technology products with limited sales data. (2021). Yin, Ying ; Li, Xishu ; Back, Thomas ; Manrique, David Vergara.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:239:y:2021:i:c:s0925527321001821.

    Full description at Econpapers || Download paper

  19. Intraday shelf replenishment decision support for perishable goods. (2021). Huber, Jakob ; Stuckenschmidt, Heiner.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320301985.

    Full description at Econpapers || Download paper

  20. Retail sales forecasting with meta-learning. (2021). Ma, Shaohui ; Fildes, Robert.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:288:y:2021:i:1:p:111-128.

    Full description at Econpapers || Download paper

  21. Fiscal goals of regulating the activities of the institute of controlled foreign companies in the digital economy. (2020). Voronkova, Olga ; Kashirskaya, Liudmila V ; Vasyutkina, Lidia ; Spabekov, Galymzhan O ; Dudukalov, Egor V ; Sevbitov, Andrei V.
    In: Entrepreneurship and Sustainability Issues.
    RePEc:ssi:jouesi:v:8:y:2020:i:2:p:972-983.

    Full description at Econpapers || Download paper

  22. RETRACTED ARTICLE: Research on sales information prediction system of e-commerce enterprises based on time series model. (2020). Xu, YI ; Zhang, Lanping ; Liu, Jian.
    In: Information Systems and e-Business Management.
    RePEc:spr:infsem:v:18:y:2020:i:4:d:10.1007_s10257-019-00399-7.

    Full description at Econpapers || Download paper

  23. Daily retail demand forecasting using machine learning with emphasis on calendric special days. (2020). Huber, Jakob ; Stuckenschmidt, Heiner.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:4:p:1420-1438.

    Full description at Econpapers || Download paper

  24. Forecasting third-party mobile payments with implications for customer flow prediction. (2020). Ma, Shaohui ; Fildes, Robert.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:3:p:739-760.

    Full description at Econpapers || Download paper

  25. Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective. (2020). Lemahieu, Wilfried ; van Calster, Tine ; van den Bossche, Filip ; Baesens, Bart.
    In: Papers.
    RePEc:arx:papers:2002.00949.

    Full description at Econpapers || Download paper

  26. Retail forecasting: research and practice. (2019). Kolassa, Stephan ; Ma, Shaohui ; Fildes, Robert.
    In: MPRA Paper.
    RePEc:pra:mprapa:89356.

    Full description at Econpapers || Download paper

  27. Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research. (2017). Chan, Hau-Ling ; Shen, Bin.
    In: Asia-Pacific Journal of Operational Research (APJOR).
    RePEc:wsi:apjorx:v:34:y:2017:i:01:n:s0217595917400012.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 23:47:22 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.