- Adulyasak, Y. ; Cordeau, J.F. ; Jans, R. The production routing problem: a review of formulations and solution algorithms. 2015 Comput. Oper. Res.. 55 141-152
Paper not yet in RePEc: Add citation now
Ahmed, R. ; Heese, H.S. ; Kay, M. Designing a manufacturing network with additive manufacturing using stochastic optimisation. 2023 Int. J. Prod. Res.. 61 2267-2287
- Aswani, R. ; Kar, A.K. ; Vigneswara Ilavarasan, P. ; Krishna, R. Solving location based inventory routing problem in E-commerce using ant colony optimization. 2018 En : . Springer International Publishing:
Paper not yet in RePEc: Add citation now
- Bazrafshan, R. ; Hashemkhani Zolfani, S. ; Mirzapour Al-e-hashem, S.M.J. Comparison of the sub-tour elimination methods for the asymmetric traveling salesman problem applying the SECA method. 2021 Axioms. 10 19-
Paper not yet in RePEc: Add citation now
- Bello, I. ; Pham, H. ; Le, Q.V. ; Norouzi, M. ; Bengio, S. Neural combinatorial optimization with reinforcement learning. 2016 arXiv preprint arXiv:1611.09940. -
Paper not yet in RePEc: Add citation now
Bengio, Y. ; Lodi, A. ; Prouvost, A. Machine learning for combinatorial optimization: a methodological tour d’horizon. 2021 Eur. J. Oper. Res.. 290 405-421
- Bishop, C.M. Pattern Recognition and Machine Learning. 2006 springer:
Paper not yet in RePEc: Add citation now
- Bootaki, B. ; Mahdavi, I. ; Paydar, M.M. A hybrid GA-AUGMECON method to solve a cubic cell formation problem considering different worker skills. 2014 Comput. Ind. Eng.. 75 31-40
Paper not yet in RePEc: Add citation now
Boute, R. ; Gijsbrechts, J. ; Van Jaarsveld, W. ; Vanvuchelen, N. Deep reinforcement learning for inventory control: a roadmap. 2022 Eur. J. Oper. Res.. 298 401-412
- Bresson, X. ; Laurent, T. The transformer network for the traveling salesman problem. 2021 arXiv preprint arXiv:2103.03012. -
Paper not yet in RePEc: Add citation now
Cantini, A. ; Peron, M. ; De Carlo, F. ; Sgarbossa, F. A decision support system for configuring spare parts supply chains considering different manufacturing technologies. 2024 Int. J. Prod. Res.. 62 3023-3043
Cokyasar, T. ; Jin, M. Additive manufacturing capacity allocation problem over a network. 2023 IISE Transactions. 55 807-820
Darvish, M. ; Coelho, L.C. Sequential versus integrated optimization: production, location, inventory control, and distribution. 2018 Eur. J. Oper. Res.. 268 203-214
- de Brito, F.M. ; da Cruz, G. ; Frazzon, E.M. ; Basto, J.P.T.V. ; Alcalá, S.G.S. Design approach for additive manufacturing in spare part supply chains. 2020 IEEE Trans. Ind. Inf.. 17 757-765
Paper not yet in RePEc: Add citation now
- Demir, E. ; Eyers, D. ; Huang, Y. Competing through the last mile: strategic 3D printing in a city logistics context. 2021 Comput. Oper. Res.. 131 -
Paper not yet in RePEc: Add citation now
- Dittrich, M.A. ; Fohlmeister, S. A deep q-learning-based optimization of the inventory control in a linear process chain. 2021 J. Inst. Eng. Prod.. 15 35-43
Paper not yet in RePEc: Add citation now
- Emelogu, A. ; Chowdhury, S. ; Marufuzzaman, M. ; Bian, L. Distributed or centralized? A novel supply chain configuration of additively manufactured biomedical implants for southeastern US States. 2019 CIRP Journal of Manufacturing Science and Technology. 24 17-34
Paper not yet in RePEc: Add citation now
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning. 1989 Addison-Wesley: Boston, MA
Paper not yet in RePEc: Add citation now
- Grunewald, S.J. Former MakerBot Team Launches Voodoo Manufacturing 3D Printing Service Bureau. 2015 :
Paper not yet in RePEc: Add citation now
- Han, Z.H. ; Zhang, K.S. . 2012 :
Paper not yet in RePEc: Add citation now
- Hardalaç, F. Classification of educational backgrounds of students using musical intelligence and perception with the help of genetic neural networks. 2009 Expert Syst. Appl.. 36 6708-6713
Paper not yet in RePEc: Add citation now
- Hellingrath, B. ; Lechtenberg, S. Applications of artificial intelligence in supply chain management and logistics: focusing onto recognition for supply chain execution. 2019 The Art of Structuring: Bridging the Gap Between Information Systems Research and Practice. 283-296
Paper not yet in RePEc: Add citation now
- Hiassat, A. ; Diabat, A. ; Rahwan, I. A genetic algorithm approach for location-inventory-routing problem with perishable products. 2017 J. Manuf. Syst.. 42 93-103
Paper not yet in RePEc: Add citation now
- Horng, S.C. ; Lin, S.Y. Evolutionary algorithm assisted by surrogate model in the framework of ordinal optimization and optimal computing budget allocation. 2013 Inf. Sci.. 233 214-229
Paper not yet in RePEc: Add citation now
- Hrabec, D. ; Hvattum, L.M. ; Hoff, A. The value of integrated planning for production, inventory, and routing decisions: a systematic review and meta-analysis. 2022 Int. J. Prod. Econ.. 248 -
Paper not yet in RePEc: Add citation now
- Javaid, M. ; Haleem, A. ; Singh, R.P. ; Suman, R. 3D printing applications for healthcare research and development. 2022 Global Health Journal. 6 217-226
Paper not yet in RePEc: Add citation now
Jimo, A. ; Braziotis, C. ; Rogers, H. ; Pawar, K. Additive manufacturing: a framework for supply chain configuration. 2022 Int. J. Prod. Econ.. 253 -
- Jin, Y. ; Wang, H. ; Chugh, T. ; Guo, D. ; Miettinen, K. Data-driven evolutionary optimization: an overview and case studies. 2018 IEEE Trans. Evol. Comput.. 23 442-458
Paper not yet in RePEc: Add citation now
- Jin, Y. ; Wang, H. ; Sun, C. ; Jin, Y. ; Wang, H. ; Sun, C. Data-driven surrogate-assisted evolutionary optimization. 2021 Data-Driven Evolutionary Optimization: Integrating Evolutionary Computation, Machine Learning and Data Science. 147-172
Paper not yet in RePEc: Add citation now
- Karakostas, P. ; Sifaleras, A. ; Georgiadis, M.C. Variable neighborhood search-based solution methods for the pollution location-inventory-routing problem. 2022 Optimization Letters. 16 211-235
Paper not yet in RePEc: Add citation now
Karimi-Mamaghan, M. ; Mohammadi, M. ; Meyer, P. ; Karimi-Mamaghan, A.M. ; Talbi, E.G. Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art. 2022 Eur. J. Oper. Res.. 296 393-422
Karimi-Mamaghan, M. ; Mohammadi, M. ; Pasdeloup, B. ; Meyer, P. Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem. 2023 Eur. J. Oper. Res.. 304 1296-1330
Kechmane, L. ; Nsiri, B. ; Baalal, A. Optimization of a two-echelon location lot-sizing routing problem with deterministic demand. 2018 Math. Probl Eng.. 2018 -
- Koksal, E. ; Hegde, A.R. ; Pandiarajan, H.P. ; Veeravalli, B. Performance characterization of reinforcement learning-enabled evolutionary algorithms for integrated school bus routing and scheduling problem. 2021 International Journal of Cognitive Computing in Engineering. 2 47-56
Paper not yet in RePEc: Add citation now
- Koziel, S. ; Leifsson, L. Surrogate-based Modeling and Optimization: Applications in Engineering. 2013 Springer: New York
Paper not yet in RePEc: Add citation now
- Kudela, J. ; Matousek, R. Recent advances and applications of surrogate models for finite element method computations: a review. 2022 Soft Comput.. 26 13709-13733
Paper not yet in RePEc: Add citation now
- Lake, B.M. ; Ullman, T.D. ; Tenenbaum, J.B. ; Gershman, S.J. Building machines that learn and think like people. 2017 Behavioral and brain sciences. 40 e253-
Paper not yet in RePEc: Add citation now
- Lin, B. ; Ghaddar, B. ; Nathwani, J. Deep reinforcement learning for the electric vehicle routing problem with time windows. 2021 En : . :
Paper not yet in RePEc: Add citation now
- Liu, C.L. ; Chang, C.C. ; Tseng, C.J. Actor-critic deep reinforcement learning for solving job shop scheduling problems. 2020 IEEE Access. 8 71752-71762
Paper not yet in RePEc: Add citation now
Liu, L. ; Lee, L.S. ; Seow, H.V. ; Chen, C.Y. Logistics center location-inventory-routing problem optimization: a systematic review using PRISMA method. 2022 Sustainability. 14 -
- Liu, Z. ; Nishi, T. Surrogate-assisted evolutionary optimization for perishable inventory management in multi-echelon distribution systems. 2024 Expert Syst. Appl.. 238 -
Paper not yet in RePEc: Add citation now
Lodi, A. ; Zarpellon, G. On learning and branching: a survey. 2017 Top. 25 207-236
- Mao, C. ; Liu, Y. ; Shen, Z.J.M. Dispatch of autonomous vehicles for taxi services: a deep reinforcement learning approach. 2020 Transport. Res. C Emerg. Technol.. 115 -
Paper not yet in RePEc: Add citation now
- Mazyavkina, N. ; Sviridov, S. ; Ivanov, S. ; Burnaev, E. Reinforcement learning for combinatorial optimization: a survey. 2021 Comput. Oper. Res.. 134 -
Paper not yet in RePEc: Add citation now
- Naser, A.Z. ; Defersha, F. ; Xu, X. ; Yang, S. Automating life cycle assessment for additive manufacturing with machine learning: framework design, dataset buildup, and a case study. 2023 J. Manuf. Syst.. 71 504-526
Paper not yet in RePEc: Add citation now
- Nasimi, R. ; Irani, R. Combining a neural network with a genetic algorithm and particle swarm optimization for permeability estimation of the reservoir. 2015 Energy Sources, Part A Recovery, Util. Environ. Eff.. 37 384-391
Paper not yet in RePEc: Add citation now
- Nasr, N. ; Niaki, S.T.A. ; Hussenzadek Kashan, A. ; Seifbarghy, M. An efficient solution method for an agri-fresh food supply chain: hybridization of Lagrangian relaxation and genetic algorithm. 2021 Environ. Sci. Pollut. Control Ser.. 1-19
Paper not yet in RePEc: Add citation now
- Natural Resource Canada 2009 Canadian vehicle survey summary report. 2009 :
Paper not yet in RePEc: Add citation now
- Nazari, M. ; Oroojlooy, A. ; Snyder, L. ; Takác, M. Reinforcement learning for solving the vehicle routing problem. 2018 Adv. Neural Inf. Process. Syst.. 31 -
Paper not yet in RePEc: Add citation now
- Ni, D. ; Xiao, Z. ; Lim, M.K. A systematic review of the research trends of machine learning in supply chain management. 2020 International Journal of Machine Learning and Cybernetics. 11 1463-1482
Paper not yet in RePEc: Add citation now
- Oroojlooyjadid, A. ; Nazari, M. ; Snyder, L.V. ; Takáč, M. A deep q-network for the beer game: deep reinforcement learning for inventory optimization. 2022 Manuf. Serv. Oper. Manag.. 24 285-304
Paper not yet in RePEc: Add citation now
Qi, M. ; Shi, Y. ; Qi, Y. ; Ma, C. ; Yuan, R. ; Wu, D. ; Shen, Z.J. A practical end-to-end inventory management model with deep learning. 2023 Manag. Sci.. 69 759-773
- Qin, W. ; Zhuang, Z. ; Huang, Z. ; Huang, H. A novel reinforcement learning-based hyper-heuristic for heterogeneous vehicle routing problem. 2021 Comput. Ind. Eng.. 156 -
Paper not yet in RePEc: Add citation now
- Rafie-Majd, Z. ; Pasandideh, S.H.R. ; Naderi, B. Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. 2018 Comput. Chem. Eng.. 109 9-22
Paper not yet in RePEc: Add citation now
Ropke, S. ; Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. 2006 Transport. Sci.. 40 455-472
- Saragih, N.I. ; Bahagia, N. ; Syabri, I. A heuristic method for location-inventory-routing problem in a three-echelon supply chain system. 2019 Comput. Ind. Eng.. 127 875-886
Paper not yet in RePEc: Add citation now
- Schmidt, C. ; Finsterwalder, F. ; Griesbaum, R. ; Sehrt, J.T. Determination of factory locations for distributed additive manufacturing, considering pollution, resilience and costs. 2023 CIRP Journal of Manufacturing Science and Technology. 43 115-128
Paper not yet in RePEc: Add citation now
- Shaabani, H. A literature review of the perishable inventory routing problem. 2022 The Asian Journal of Shipping and Logistics. 38 143-161
Paper not yet in RePEc: Add citation now
Shang, X. ; Zhang, G. ; Jia, B. ; Almanaseer, M. The healthcare supply location-inventory-routing problem: a robust approach. 2022 Transport. Res. E Logist. Transport. Rev.. 158 -
Silver, D. ; Huang, A. ; Maddison, C.J. ; Guez, A. ; Sifre, L. ; Van Den Driessche, G. ; Schrittwieser, J. ; Antonoglou, I. ; Panneershelvam, V. ; Lanctot, M. ; Dieleman, S. Mastering the game of Go with deep neural networks and tree search. 2016 nature. 529 484-489
- Singh, N. ; Akcay, A. ; Dang, Q.V. ; Martagan, T. ; Adan, I. Dispatching AGVs with battery constraints using deep reinforcement learning. 2024 Comput. Ind. Eng.. 187 -
Paper not yet in RePEc: Add citation now
- Song, L. ; Wu, Z. An integrated approach for optimizing location-inventory and location-inventory-routing problem for perishable products. 2023 International Journal of Transportation Science and Technology. 12 148-172
Paper not yet in RePEc: Add citation now
- Strong, D. ; Kay, M. ; Conner, B. ; Wakefield, T. ; Manogharan, G. Hybrid manufacturing–integrating traditional manufacturers with additive manufacturing (AM) supply chain. 2018 Addit. Manuf.. 21 159-173
Paper not yet in RePEc: Add citation now
- Sutton, R.S. ; Barto, A.G. Reinforcement Learning: an Introduction. 2018 MIT press:
Paper not yet in RePEc: Add citation now
Tavana, M. ; Abtahi, A.R. ; Di Caprio, D. ; Hashemi, R. ; Yousefi-Zenouz, R. An integrated location-inventory-routing humanitarian supply chain network with pre-and post-disaster management considerations. 2018 Soc. Econ. Plann. Sci.. 64 21-37
- Thiruvady, D. ; Nguyen, S. ; Shiri, F. ; Zaidi, N. ; Li, X. Surrogate-assisted population based ACO for resource constrained job scheduling with uncertainty. 2022 Swarm Evol. Comput.. 69 -
Paper not yet in RePEc: Add citation now
- Vanvuchelen, N. ; Gijsbrechts, J. ; Boute, R. Use of proximal policy optimization for the joint replenishment problem. 2020 Comput. Ind.. 119 -
Paper not yet in RePEc: Add citation now
- Vinyals, O. ; Fortunato, M. ; Jaitly, N. Pointer networks. 2015 Adv. Neural Inf. Process. Syst.. 28 -
Paper not yet in RePEc: Add citation now
Wang, Y. ; Ropke, S. ; Wen, M. ; Bergh, S. The mobile production vehicle routing problem: using 3D printing in last mile distribution. 2023 Eur. J. Oper. Res.. 305 1407-1423
- Xiao, Z. ; Zhi, J. ; Keskin, B.B. Towards a machine learning-aided metaheuristic framework for a production/distribution system design problem. 2022 Comput. Oper. Res.. 146 -
Paper not yet in RePEc: Add citation now
- Xu, X. ; Liu, W. ; Jiang, M. ; Lin, Z. A multi-cycle and multi-echelon location-routing problem for integrated reverse logistics. 2022 Ind. Manag. Data Syst.. 122 2237-2260
Paper not yet in RePEc: Add citation now
Yan, Y. ; Chow, A.H. ; Ho, C.P. ; Kuo, Y.H. ; Wu, Q. ; Ying, C. Reinforcement learning for logistics and supply chain management: methodologies, state of the art, and future opportunities. 2022 Transport. Res. E Logist. Transport. Rev.. 162 -
Yilmaz, D. ; Büyüktahtakın, İ.E. An expandable machine learning-optimization framework to sequential decision-making. 2024 Eur. J. Oper. Res.. 314 280-296
Zhang, G. ; Yang, Y. ; Yang, G. Smart supply chain management in Industry 4.0: the review, research agenda and strategies in North America. 2023 Ann. Oper. Res.. 322 1075-1117
Zhang, Y. ; Bai, R. ; Qu, R. ; Tu, C. ; Jin, J. A deep reinforcement learning based hyper-heuristic for combinatorial optimisation with uncertainties. 2022 Eur. J. Oper. Res.. 300 418-427
Zheng, X. ; Yin, M. ; Zhang, Y. Integrated optimization of location, inventory and routing in supply chain network design. 2019 Transp. Res. Part B Methodol.. 121 1-20
- Zou, G. ; Tang, J. ; Yilmaz, L. ; Kong, X. Online food ordering delivery strategies based on deep reinforcement learning. 2022 Appl. Intell.. 1-13
Paper not yet in RePEc: Add citation now