- Abedinia, O. ; Bagheri, M. ; Naderi, M.S. ; Ghadimi, N. A new Combinatory approach for wind power forecasting. 2020 IEEE Syst. J.. 14 4614-4625
Paper not yet in RePEc: Add citation now
Ahmed, A. ; Khalid, M. A review on the selected applications of forecasting models in renewable power systems. 2019 Renew. Sustain. Energy Rev.. 100 9-21
- Ak, R. ; Fink, O. ; Zio, E. Two machine learning approaches for short-term wind speed time-series prediction. 2016 IEEE Transact. Neural Networks Learn. Syst.. 27 1734-1747
Paper not yet in RePEc: Add citation now
Al-Yahyai, S. ; Charabi, Y. ; Gastli, A. Review of the use of numerical weather prediction (NWP) models for wind energy assessment. 2010 Renew. Sustain. Energy Rev.. 14 3192-3198
Barrows, S.E. ; Homer, J.S. ; Orrell, A.C. Valuing wind as a distributed energy resource: a literature review. 2021 Renew. Sustain. Energy Rev.. 152 -
- Beauson, J. ; Laurent, A. ; Rudolph, D. ; Jensen, J. The complex end-of-life of wind turbine blades: a review of the European context. 2021 Renew. Sustain. Energy Rev.. -
Paper not yet in RePEc: Add citation now
- Cao, Z. ; Wan, C. ; Zhang, Z. ; Li, F. ; Song, Y. Hybrid ensemble deep learning for deterministic and probabilistic low-voltage load forecasting. 2020 IEEE Trans. Power Syst.. 35 1881-1897
Paper not yet in RePEc: Add citation now
- Chen, H. ; Li, F. ; Wang, Y. Wind power forecasting based on outlier smooth transition autoregressive GARCH model. 2018 Journal of Modern Power Systems and Clean Energy. 6 532-539
Paper not yet in RePEc: Add citation now
Dhiman, H.S. ; Deb, D. ; Guerrero, J.M. Hybrid machine intelligent SVR variants for wind forecasting and ramp events. 2019 Renew. Sustain. Energy Rev.. 108 369-379
Dong, L. ; Wang, L. ; Khahro, S. ; Gao, S. ; Liao, X. Wind power day-ahead prediction with cluster analysis of NWP. 2016 Renew. Sustain. Energy Rev.. 60 1206-1212
- Dowell, J. ; Pinson, P. Very-short-term probabilistic wind power forecasts by sparse vector autoregression. 2016 IEEE Trans. Smart Grid. 7 763-770
Paper not yet in RePEc: Add citation now
Erdem, E. ; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. 2011 Appl. Energy. 88 1405-1414
González-Sopeña, J.M. ; Pakrashi, V. ; Ghosh, B. An overview of performance evaluation metrics for short-term statistical wind power forecasting. 2021 Renew. Sustain. Energy Rev.. 138 -
- He, Z. ; Chen, Y. ; Shang, Z. ; Li, C. ; Li, L. ; Xu, M. A novel wind speed forecasting model based on moving window and multi-objective particle swarm optimization algorithm. 2019 Appl. Math. Model.. 76 717-740
Paper not yet in RePEc: Add citation now
Himeur, Y. ; Ghanem, K. ; Alsalemi, A. ; Bensaali, F. ; Amira, A. Artificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectives. 2021 Appl. Energy. 287 -
- Jiang, P. ; Liu, Z. Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting. 2019 Appl. Soft Comput.. 82 -
Paper not yet in RePEc: Add citation now
- Kim, H. ; Lee, D. Probabilistic solar power forecasting based on bivariate conditional solar irradiation distributions. 2021 IEEE Trans. Sustain. Energy. 12 2031-2041
Paper not yet in RePEc: Add citation now
- Liu, H. ; Wu, H. ; Li, Y. Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction. 2018 Energy Convers. Manag.. 161 266-283
Paper not yet in RePEc: Add citation now
Liu, Z. ; Jiang, P. ; Zhang, L. ; Niu, X. A combined forecasting model for time series: application to short-term wind speed forecasting. 2020 Appl. Energy. 259 -
Lu, H. ; Ma, X. ; Huang, K. ; Azimi, M. Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer. 2020 Renew. Sustain. Energy Rev.. 127 -
Lu, P. ; Ye, L. ; Tang, Y. ; Zhao, Y. ; Zhong, W. ; Qu, Y. ; Zhai, B. Ultra-short-term combined prediction approach based on kernel function switch mechanism. 2021 Renew. Energy. 164 842-866
Lu, P. ; Ye, L. ; Zhao, Y. ; Dai, B. ; Pei, M. ; Li, Z. Feature extraction of meteorological factors for wind power prediction based on variable weight combined method. 2021 Renew. Energy. 179 1925-1939
Lu, P. ; Ye, L. ; Zhao, Y. ; Dai, B. ; Pei, M. ; Tang, Y. Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges. 2021 Appl. Energy. 301 -
- Lydia, M. ; Kumar, S. ; Selvakumar, A. ; Kumar, G. Linear and non-linear autoregressive models for short-term wind speed forecasting. 2016 Energy Convers. Manag.. 112 115-124
Paper not yet in RePEc: Add citation now
- Marugán, A.P. ; Márquez, F.P.G. ; Perez, J.M.P. ; Ruiz-Hernández, D. A survey of artificial neural network in wind energy systems. 2018 Appl. Energy. 228 1822-1836
Paper not yet in RePEc: Add citation now
Messner, J.W. ; Pinson, P. Online adaptive lasso estimation in vector autoregressive models for high dimensional wind power forecasting. 2019 Int. J. Forecast.. 35 1485-1498
- Ozkan, M.B. ; Karagoz, P. A novel wind power forecast model: statistical hybrid wind power forecast technique (SHWIP). 2015 IEEE Trans. Ind. Inf.. 11 375-387
Paper not yet in RePEc: Add citation now
- Qu, Z. ; Zhang, K. ; Mao, W. ; Wang, J. ; Liu, C. ; Zhang, W. Research and application of ensemble forecasting based on a novel multi-objective optimization algorithm for wind-speed forecasting. 2017 Energy Convers. Manag.. 154 440-454
Paper not yet in RePEc: Add citation now
- Ruiz, L.G.B. ; Rueda, R. ; Cuéllar, M.P. ; Pegalajar, M.C. Energy consumption forecasting based on Elman neural networks with evolutive optimization. 2018 Expert Syst. Appl.. 92 380-389
Paper not yet in RePEc: Add citation now
- Santamaria-Bonfil, G. ; Reyes-Ballesteros, A. ; Gershenson, C. Wind speed forecasting for wind farms: a method based on support vector regression. 2016 Renew. Energy. 85 790-809
Paper not yet in RePEc: Add citation now
- Scardapane, S. ; Comminiello, D. ; Scarpiniti, M. ; Uncini, A. Online sequential extreme learning machine with kernels. 2015 IEEE Transact. Neural Networks Learn. Syst.. 26 2214-2220
Paper not yet in RePEc: Add citation now
Tawn, R. ; Browell, J. A review of very short-term wind and solar power forecasting. 2022 Renew. Sustain. Energy Rev.. 153 -
Wang, B. ; Guo, Q. ; Yang, T. ; Xu, L. ; Sun, H. Data valuation for decision-making with uncertainty in energy transactions: a case of the two-settlement market system. 2021 Appl. Energy. 288 -
Wang, D. ; Luo, H. ; Grunder, O. ; Lin, Y. ; Guo, H. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. 2017 Appl. Energy. 190 390-407
Wang, J. ; Du, P. ; Niu, T. ; Yang, W. A novel hybrid system based on a new proposed algorithm—multi-objective whale optimization algorithm for wind speed forecasting. 2017 Appl. Energy. 208 344-360
- Wang, J. ; Niu, T. ; Lu, H. ; Yang, W. ; Du, P. A novel framework of reservoir computing for deterministic and probabilistic wind power forecasting. 2020 IEEE Trans. Sustain. Energy. 11 337-349
Paper not yet in RePEc: Add citation now
Wang, S. ; Li, B. ; Li, G. ; Yao, B. ; Wu, J. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration. 2021 Appl. Energy. 292 -
- Ye, L. ; Zhao, Y. ; Zeng, C. ; Zhang, C. Short-term wind power predidion based on spatial model. 2017 Renew. Energy. 101 1067-1074
Paper not yet in RePEc: Add citation now
- Yongning, Ye L. ; Pinson, P. ; Tang, Y. ; Lu, P. Correlation-constrained and sparsity-controlled vector autoregressive model for spatio-temporal wind power forecasting. 2018 IEEE Trans. Power Syst.. 33 5029-5040
Paper not yet in RePEc: Add citation now
- Zhang, H. ; Yan, J. ; Liu, Y. ; Gao, Y. ; Han, S. ; Li, L. Multi-source and temporal attention network for probabilistic wind power prediction. 2021 IEEE Trans. Sustain. Energy. 12 2205-2218
Paper not yet in RePEc: Add citation now
Zhao, Y. ; Ye, L. ; Li, Z. ; Song, X. ; Lang, Y. ; Su, J. A novel bidirectional mechanism based on time series model for wind power forecasting. 2016 Appl. Energy. 177 793-803