- Abbasi, S.A. ; Ahmed, A. ; Noh, S. ; Gharamaleki, N.L. ; Kim, S. ; Chowdhury, A.M.M.B. ; Kim, J. ; Pané, S. ; Nelson, B.J. ; Choi, H. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. 2024 Nat. Mach. Intell.. 6 92-105
Paper not yet in RePEc: Add citation now
Bhandari, R. ; Shah, R.R. Hydrogen as energy carrier: techno-economic assessment of decentralized hydrogen production in Germany. 2021 Renew. Energy. 177 915-931
- Bocklisch, T. Hybrid energy storage approach for renewable energy applications. 2016 J. Energy Storage. 8 311-319
Paper not yet in RePEc: Add citation now
- Cao, D. ; Hu, W. ; Zhao, J. ; Zhang, G. ; Zhang, B. ; Liu, Z. ; Chen, Z. ; Blaabjerg, F. Reinforcement learning and its applications in modern power and energy systems: a review. 2020 Journal of Modern Power Systems and Clean Energy. 8 1029-1042
Paper not yet in RePEc: Add citation now
- Chen, T. ; Su, W. Indirect customer-to-customer energy trading with reinforcement learning. 2019 IEEE Trans. Smart Grid. 10 4338-4348
Paper not yet in RePEc: Add citation now
Chong, L.W. ; Wong, Y.W. ; Rajkumar, R.K. ; Rajkumar, R.K. ; Isa, D. Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems. 2016 Renew. Sustain. Energy Rev.. 66 174-189
Cosgrove, P. ; Roulstone, T. ; Zachary, S. Intermittency and periodicity in net-zero renewable energy systems with storage. 2023 Renew. Energy. 212 299-307
- Ding, W. ; Ming, Z. ; Wang, G. ; Yan, Y. System-of-systems approach to spatio-temporal crowdsourcing design using improved PPO algorithm based on an invalid action masking. 2024 Knowl. Base Syst.. 285 -
Paper not yet in RePEc: Add citation now
- Er, G. ; Soykan, G. ; Canakoglu, E. Stochastic optimal design of a rural microgrid with hybrid storage system including hydrogen and electric cars using vehicle-to-grid technology. 2024 J. Energy Storage. 75 -
Paper not yet in RePEc: Add citation now
Feng, S. ; Sun, H. ; Yan, X. ; Zhu, H. ; Zou, Z. ; Shen, S. ; Liu, H.X. Dense reinforcement learning for safety validation of autonomous vehicles. 2023 Nature. 615 620-627
Fúnez Guerra, C. ; Reyes-Bozo, L. ; Vyhmeister, E. ; Jaén Caparrós, M. ; Salazar, J.L. ; Clemente-Jul, C. Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. 2020 Renew. Energy. 157 404-414
- Gharibi, A. ; Doniavi, E. ; Hasanzadeh, R. A metaheuristic particle swarm optimization for enhancing energetic and exergetic performances of hydrogen energy production from plastic waste gasification. 2024 Energy Convers. Manag.. 308 -
Paper not yet in RePEc: Add citation now
Guo, C. ; Wang, X. ; Zheng, Y. ; Zhang, F. Real-time optimal energy management of microgrid with uncertainties based on deep reinforcement learning. 2022 Energy. 238 -
Guo, X. ; Yan, X. ; Chen, Z. ; Meng, Z. Research on energy management strategy of heavy-duty fuel cell hybrid vehicles based on dueling-double-deep Q-network. 2022 Energy. 260 -
Harrold, D.J.B. ; Cao, J. ; Fan, Z. Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning. 2022 Appl. Energy. 318 -
- He, K. ; Zhang, X. ; Ren, S. ; Sun, J. Deep residual learning for image recognition. 2016 En : 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, USA. :
Paper not yet in RePEc: Add citation now
Hemmati, R. ; Saboori, H. Emergence of hybrid energy storage systems in renewable energy and transport applications – a review. 2016 Renew. Sustain. Energy Rev.. 65 11-23
- Hourfar, F. ; Bidgoly, H.J. ; Moshiri, B. ; Salahshoor, K. ; Elkamel, A. A reinforcement learning approach for waterflooding optimization in petroleum reservoirs. 2019 Eng. Appl. Artif. Intell.. 77 98-116
Paper not yet in RePEc: Add citation now
- Hu, H. ; Yuan, W.-W. ; Su, M. ; Ou, K. Optimizing fuel economy and durability of hybrid fuel cell electric vehicles using deep reinforcement learning-based energy management systems. 2023 Energy Convers. Manag.. 291 -
Paper not yet in RePEc: Add citation now
- Huang, S. ; Ontañón, S. A closer look at invalid action masking in policy gradient algorithms. 2022 FLAIRS. 35 -
Paper not yet in RePEc: Add citation now
Huang, X. ; Zhang, J. ; Ou, K. ; Huang, Y. ; Kang, Z. ; Mao, X. ; Zhou, Y. ; Xuan, D. Deep reinforcement learning-based health-conscious energy management for fuel cell hybrid electric vehicles in model predictive control framework. 2024 Energy. -
- Huang, Y. ; Hu, H. ; Tan, J. ; Lu, C. ; Xuan, D. Deep reinforcement learning based energy management strategy for range extend fuel cell hybrid electric vehicle. 2023 Energy Convers. Manag.. 277 -
Paper not yet in RePEc: Add citation now
- Jiang, Y. ; Liu, J. ; Zheng, H. Optimal scheduling of distributed hydrogen refueling stations for fuel supply and reserve demand service with evolutionary transfer multi-agent reinforcement learning. 2024 Int. J. Hydrogen Energy. 54 239-255
Paper not yet in RePEc: Add citation now
- Jogunola, O. ; Adebisi, B. ; Ikpehai, A. ; Popoola, S.I. ; Gui, G. ; Gacanin, H. ; Ci, S. Consensus algorithms and deep reinforcement learning in energy market: a review. 2021 IEEE Internet Things J.. 8 4211-4227
Paper not yet in RePEc: Add citation now
- Kakavand, A. ; Sayadi, S. ; Tsatsaronis, G. ; Behbahaninia, A. Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran. 2023 Int. J. Hydrogen Energy. 48 14170-14191
Paper not yet in RePEc: Add citation now
- Kojima, Y. Safety of ammonia as a hydrogen energy carrier. 2024 Int. J. Hydrogen Energy. 50 732-739
Paper not yet in RePEc: Add citation now
Lan, P. ; Chen, S. ; Li, Q. ; Li, K. ; Wang, F. ; Zhao, Y. ; Wang, T. Comparison of different hydrogen-ammonia energy conversion pathways for renewable energy supply. 2024 Renew. Energy. 227 -
Lazzari, F. ; Mor, G. ; Cipriano, J. ; Solsona, F. ; Chemisana, D. ; Guericke, D. Optimizing planning and operation of renewable energy communities with genetic algorithms. 2023 Appl. Energy. 338 -
- Li, J. ; Cui, H. ; Jiang, W. ; Yu, H. A large-scale multi-agent deep reinforcement learning method for cooperative output voltage control of PEMFCs. 2024 IEEE Trans. Transp. Electrific.. 10 78-94
Paper not yet in RePEc: Add citation now
- Li, K. ; Chen, S. ; Li, M. ; Liu, L. ; Li, Y. ; Wang, F. Plasma-catalyzed ammonia synthesis over La(OH)3 catalyst: effects of basic sites, oxygen vacancies, and H2 plasma treatment. 2024 Int. J. Hydrogen Energy. 59 1287-1296
Paper not yet in RePEc: Add citation now
- Li, K. ; Zhou, J. ; Jia, C. ; Yi, F. ; Zhang, C. Energy sources durability energy management for fuel cell hybrid electric bus based on deep reinforcement learning considering future terrain information. 2024 Int. J. Hydrogen Energy. 52 821-833
Paper not yet in RePEc: Add citation now
Liang, T. ; Chai, L. ; Cao, X. ; Tan, J. ; Jing, Y. ; Lv, L. Real-time optimization of large-scale hydrogen production systems using off-grid renewable energy: scheduling strategy based on deep reinforcement learning. 2024 Renew. Energy. 224 -
May, R. ; Huang, P. A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets. 2023 Appl. Energy. 334 -
Mnih, V. ; Kavukcuoglu, K. ; Silver, D. ; Rusu, A.A. ; Veness, J. ; Bellemare, M.G. ; Graves, A. ; Riedmiller, M. ; Fidjeland, A.K. ; Ostrovski, G. ; Petersen, S. ; Beattie, C. ; Sadik, A. ; Antonoglou, I. ; King, H. ; Kumaran, D. ; Wierstra, D. ; Legg, S. ; Hassabis, D. Human-level control through deep reinforcement learning. 2015 Nature. 518 529-533
Moretti, L. ; Martelli, E. ; Manzolini, G. An efficient robust optimization model for the unit commitment and dispatch of multi-energy systems and microgrids. 2020 Appl. Energy. 261 -
Perera, A.T.D. ; Kamalaruban, P. Applications of reinforcement learning in energy systems. 2021 Renew. Sustain. Energy Rev.. 137 -
Perera, A.T.D. ; Wickramasinghe, P.U. ; Nik, V.M. ; Scartezzini, J.-L. Introducing reinforcement learning to the energy system design process. 2020 Appl. Energy. 262 -
Qi, Y. ; Xu, X. ; Liu, Y. ; Pan, L. ; Liu, J. ; Hu, W. Intelligent energy management for an on-grid hydrogen refueling station based on dueling double deep Q network algorithm with NoisyNet. 2024 Renew. Energy. 222 -
- Sánchez, A. ; Zhang, Q. ; Martín, M. ; Vega, P. Towards a new renewable power system using energy storage: an economic and social analysis. 2022 Energy Convers. Manag.. 252 -
Paper not yet in RePEc: Add citation now
Seo, J. ; Kim, S. ; Jalalvand, A. ; Conlin, R. ; Rothstein, A. ; Abbate, J. ; Erickson, K. ; Wai, J. ; Shousha, R. ; Kolemen, E. Avoiding fusion plasma tearing instability with deep reinforcement learning. 2024 Nature. 626 746-751
Tawalbeh, M. ; Murtaza, S.Z.M. ; Al-Othman, A. ; Alami, A.H. ; Singh, K. ; Olabi, A.G. Ammonia: a versatile candidate for the use in energy storage systems. 2022 Renew. Energy. 194 955-977
Turk, A. ; Wu, Q. ; Zhang, M. ; Østergaard, J. Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing. 2020 Energy. 196 -
Usman, M.R. Hydrogen storage methods: review and current status. 2022 Renew. Sustain. Energy Rev.. 167 -
- Van Hasselt, H. ; Guez, A. ; Silver, D. Deep reinforcement learning with double Q-learning. 2016 AAAI. 30 -
Paper not yet in RePEc: Add citation now
- Venkatasatish, R. ; Dhanamjayulu, C. Reinforcement learning based energy management systems and hydrogen refuelling stations for fuel cell electric vehicles: an overview. 2022 Int. J. Hydrogen Energy. 47 27646-27670
Paper not yet in RePEc: Add citation now
- Wang, J. ; Li, L. ; Zhang, J. Deep reinforcement learning for energy trading and load scheduling in residential peer-to-peer energy trading market. 2023 Int. J. Electr. Power Energy Syst.. 147 -
Paper not yet in RePEc: Add citation now
- Wang, Z. ; Schaul, T. ; Hessel, M. ; van Hasselt, H. ; Lanctot, M. ; de Freitas, N. Dueling network architectures for deep reinforcement learning. 2016 :
Paper not yet in RePEc: Add citation now
- Wang, Z.-Z. ; Zhang, K. ; Chen, G.-D. ; Zhang, J.-D. ; Wang, W.-D. ; Wang, H.-C. ; Zhang, L.-M. ; Yan, X. ; Yao, J. Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty. 2023 Petrol. Sci.. 20 261-276
Paper not yet in RePEc: Add citation now
- Wen, D. ; Aziz, M. Data-driven energy management system for flexible operation of hydrogen/ammonia-based energy hub: a deep reinforcement learning approach. 2023 Energy Convers. Manag.. 291 -
Paper not yet in RePEc: Add citation now
- Yan, Y. ; Zhang, H. ; Liao, Q. ; Liang, Y. ; Yan, J. Roadmap to hybrid offshore system with hydrogen and power co-generation. 2021 Energy Convers. Manag.. 247 -
Paper not yet in RePEc: Add citation now
- Yang, D. ; Wang, L. ; Yu, K. ; Liang, J. A reinforcement learning-based energy management strategy for fuel cell hybrid vehicle considering real-time velocity prediction. 2022 Energy Convers. Manag.. 274 -
Paper not yet in RePEc: Add citation now
- Ye, D. ; Liu, Z. ; Sun, M. ; Shi, B. ; Zhao, P. ; Wu, H. ; Yu, H. ; Yang, S. ; Wu, X. ; Guo, Q. ; Chen, Q. ; Yin, Y. ; Zhang, H. ; Shi, T. ; Wang, L. ; Fu, Q. ; Yang, W. ; Huang, L. Mastering complex control in MOBA games with deep reinforcement learning. 2020 AAAI. 34 6672-6679
Paper not yet in RePEc: Add citation now
- Yu, Z. ; Lin, J. ; Liu, F. ; Li, J. ; Zhao, Y. ; Song, Y. Optimal sizing of isolated renewable power systems with ammonia synthesis: model and solution approach. 2024 IEEE Trans. Power Syst.. 1-14
Paper not yet in RePEc: Add citation now
- Yuan, E. ; Cheng, S. ; Wang, L. ; Song, S. ; Wu, F. Solving job shop scheduling problems via deep reinforcement learning. 2023 Appl. Soft Comput.. 143 -
Paper not yet in RePEc: Add citation now
Yue, M. ; Lambert, H. ; Pahon, E. ; Roche, R. ; Jemei, S. ; Hissel, D. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. 2021 Renew. Sustain. Energy Rev.. 146 -
- Zhang, K. ; Wang, Z. ; Chen, G. ; Zhang, L. ; Yang, Y. ; Yao, C. ; Wang, J. ; Yao, J. Training effective deep reinforcement learning agents for real-time life-cycle production optimization. 2022 J. Petrol. Sci. Eng.. 208 -
Paper not yet in RePEc: Add citation now
- Zhang, Y. ; Zhang, C. ; Fan, R. ; Deng, C. ; Wan, S. ; Chaoui, H. Energy management strategy for fuel cell vehicles via soft actor-critic-based deep reinforcement learning considering powertrain thermal and durability characteristics. 2023 Energy Convers. Manag.. 283 -
Paper not yet in RePEc: Add citation now