create a website

Automatic hourly solar forecasting using machine learning models. (2019). Yagli, Gokhan Mert ; Srinivasan, Dipti ; Yang, Dazhi.
In: Renewable and Sustainable Energy Reviews.
RePEc:eee:rensus:v:105:y:2019:i:c:p:487-498.

Full description at Econpapers || Download paper

Cited: 49

Citations received by this document

Cites: 83

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Modeling Parametric Forecasts of Solar Energy over Time in the Mid-North Area of Mozambique. (2025). Magaia, Loureno Lzaro ; Santos, Carlos Augusto ; Mucomole, Fernando Venncio.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:6:p:1469-:d:1614023.

    Full description at Econpapers || Download paper

  2. Experimental Parametric Forecast of Solar Energy over Time: Sample Data Descriptor. (2025). Santos, Carlos Augusto ; Mucomole, Fernando Venncio ; Magaia, Loureno Lzaro.
    In: Data.
    RePEc:gam:jdataj:v:10:y:2025:i:3:p:37-:d:1613980.

    Full description at Econpapers || Download paper

  3. A multiscale network with mixed features and extended regional weather forecasts for predicting short-term photovoltaic power. (2025). Zhang, Ruoyang ; Wu, YU ; Xu, Chongbin ; Wang, Zeyu ; Sun, Xiaomin ; Zuo, Xin ; Chen, Qian.
    In: Energy.
    RePEc:eee:energy:v:318:y:2025:i:c:s0360544225004347.

    Full description at Econpapers || Download paper

  4. Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems. (2024). Gao, Yunzhu ; Guo, Lin ; Wang, Jun ; Peng, Hong.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:4:p:1709-:d:1341730.

    Full description at Econpapers || Download paper

  5. Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer. (2024). Yan, Zixuan ; Niu, Yisen ; Lin, Xilong ; Tang, Ping ; Zou, Lianglin ; Song, Jifeng.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:14:p:6102-:d:1436965.

    Full description at Econpapers || Download paper

  6. Short-Term Irradiance Prediction Based on Transformer with Inverted Functional Area Structure. (2024). Yu, Cilong ; Wang, Huaizhi ; Zhuang, Zhenyuan.
    In: Mathematics.
    RePEc:gam:jmathe:v:12:y:2024:i:20:p:3213-:d:1498340.

    Full description at Econpapers || Download paper

  7. Improving Solar Radiation Forecasting in Cloudy Conditions by Integrating Satellite Observations. (2024). Luo, Fei ; Zhuang, Shuyi ; Bu, Qiangsheng ; Ye, Zhigang ; Yuan, Yubo ; Ma, Tianrui ; Da, Tao.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:24:p:6222-:d:1540673.

    Full description at Econpapers || Download paper

  8. Spatial solar forecast verification with the neighborhood method and automatic threshold segmentation. (2024). Xia, Xiangao ; Li, Mengying ; Wang, Jingnan ; Zhang, Hao ; Yang, Dazhi ; Liu, Bai ; Chu, Yinghao.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124003812.

    Full description at Econpapers || Download paper

  9. A review of distributed solar forecasting with remote sensing and deep learning. (2024). Chu, Yinghao ; Wang, Yiling ; Chen, Shanlin ; Li, Mengying ; Yang, Dazhi.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:198:y:2024:i:c:s136403212400114x.

    Full description at Econpapers || Download paper

  10. A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model. (2024). Wu, Ji ; Wang, Zhenyu ; Zhang, Yunpeng ; Zhou, Hai ; Li, Guorong.
    In: Renewable Energy.
    RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004324.

    Full description at Econpapers || Download paper

  11. Solar power forecasting using domain knowledge. (2024). Kr, Surajit ; Mondal, Rakesh ; Giri, Chandan.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014828.

    Full description at Econpapers || Download paper

  12. Medium-term forecasting of global horizontal solar radiation in Brazil using machine learning-based methods. (2024). da Silva, Diogo Nunes ; Moreira, Davidson Martins ; Lago, Yasmin Kaore ; Cotta, Arthur Lucide ; Jacondino, William Duarte ; Dos, Thalyta Soares ; Araujo, Allan Cavalcante ; Pedruzzi, Rizzieri ; Bandeira, Alex Alisson ; Saraiva, Mirella Lima ; de Carvalho, Marcio ; Melgao, Luana Kruger ; de Melo, Jose Bione ; Lopes, Francisco Jose.
    In: Energy.
    RePEc:eee:energy:v:300:y:2024:i:c:s0360544224013227.

    Full description at Econpapers || Download paper

  13. Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data. (2024). Halgamuge, Saman ; Perera, Maneesha ; Bandara, Kasun ; de Hoog, Julian ; Senanayake, Damith.
    In: Applied Energy.
    RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003544.

    Full description at Econpapers || Download paper

  14. Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting. (2023). Mekhilef, Saad ; Liyana, Putri Nor ; Shah, Noraisyah Mohamed ; Akhter, Muhammad Naveed.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:4:p:2942-:d:1059527.

    Full description at Econpapers || Download paper

  15. Six Days Ahead Forecasting of Energy Production of Small Behind-the-Meter Solar Sites. (2023). Menezes, Hugo Bezerra ; Zareipour, Hamidreza.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:3:p:1533-:d:1057124.

    Full description at Econpapers || Download paper

  16. Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm. (2023). Ayub, Yousaf ; Shen, Weifeng ; Shi, Tao ; Ren, Jingzheng.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027256.

    Full description at Econpapers || Download paper

  17. Stacking Model for Photovoltaic-Power-Generation Prediction. (2022). Zhu, Tengteng ; Zhang, Hongchao.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:9:p:5669-:d:810783.

    Full description at Econpapers || Download paper

  18. An Integrated Framework Based on an Improved Gaussian Process Regression and Decomposition Technique for Hourly Solar Radiation Forecasting. (2022). Hao, Xiangmiao ; Jiang, Wei ; Peng, Tian ; Zhang, Shuai ; Sun, NA.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:22:p:15298-:d:976158.

    Full description at Econpapers || Download paper

  19. Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China. (2022). Zhou, Zhigao ; Wang, Lunche ; He, Lijie ; Lin, Aiwen.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:9:p:3463-:d:811731.

    Full description at Econpapers || Download paper

  20. BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones. (2022). Sulaiman, Shaharin Anwar ; Naz, Muhammad Yasin ; Bou-Rabee, Mohammed A ; Ed, Imad.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2226-:d:774209.

    Full description at Econpapers || Download paper

  21. Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique. (2022). Hasan, Shazia ; Michael, Neethu Elizabeth ; Mishra, Manohar ; Al-Durra, Ahmed.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2150-:d:771767.

    Full description at Econpapers || Download paper

  22. A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends. (2022). Tightiz, Lilia ; Yoo, Joon.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:22:p:8739-:d:978985.

    Full description at Econpapers || Download paper

  23. SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting. (2022). Hasan, Syed Hamid ; Mehmood, Rashid ; Alkhayat, Ghadah.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6659-:d:912883.

    Full description at Econpapers || Download paper

  24. Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering. (2022). Roy, Sugata Sen ; Malakar, Sourav ; Goswami, Saptarsi ; Boopathi, K ; Ganguli, Bhaswati ; Chakrabarti, Amlan ; Rangaraj, A G.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:10:p:3568-:d:814752.

    Full description at Econpapers || Download paper

  25. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. (2022). Mayer, Martin Janos ; Markovics, David.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s136403212200274x.

    Full description at Econpapers || Download paper

  26. Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels. (2022). Yagli, Gokhan Mert ; Srinivasan, Dipti ; Yang, Dazhi.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011734.

    Full description at Econpapers || Download paper

  27. Solar forecasting with hourly updated numerical weather prediction. (2022). Galanis, George ; Zhang, Gang ; Androulakis, Emmanouil ; Yang, Dazhi.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010364.

    Full description at Econpapers || Download paper

  28. Deep learning and statistical methods for short- and long-term solar irradiance forecasting for Islamabad. (2022). Ayaz, Yasar ; Haider, Syed Altan ; Sajid, Muhammad ; Uddin, Emad.
    In: Renewable Energy.
    RePEc:eee:renene:v:198:y:2022:i:c:p:51-60.

    Full description at Econpapers || Download paper

  29. EGD-SNet: A computational search engine for predicting an end-to-end machine learning pipeline for Energy Generation & Demand Forecasting. (2022). Mahmood, Waqar ; Shahzadi, Rehab ; Ghani, Muhammad Usman ; Asim, Muhammad Nabeel ; Ghafoor, Hina ; Mehmood, Faiza.
    In: Applied Energy.
    RePEc:eee:appene:v:324:y:2022:i:c:s0306261922010388.

    Full description at Econpapers || Download paper

  30. Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting. (2022). Liu, Yongqian ; Ren, Xiaoying ; Zhu, Honglu ; Zhang, Fei.
    In: Applied Energy.
    RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009801.

    Full description at Econpapers || Download paper

  31. Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain. (2022). Carneiro, Tatiane C ; Fernandez-Ramirez, Luis M.
    In: Applied Energy.
    RePEc:eee:appene:v:314:y:2022:i:c:s0306261922003555.

    Full description at Econpapers || Download paper

  32. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. (2022). Li, Zhiwu ; Zhou, Yilin ; Wang, Jianzhou.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001830.

    Full description at Econpapers || Download paper

  33. Prediction of Solar Power Using Near-Real Time Satellite Data. (2021). Kay, Merlinde ; Prasad, Abhnil Amtesh.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5865-:d:636858.

    Full description at Econpapers || Download paper

  34. MPF-Net: A computational multi-regional solar power forecasting framework. (2021). Mahmood, Waqar ; Shahzadi, Rehab ; Ghani, Muhammad Usman ; Asim, Muhammad Nabeel ; Mehmood, Faiza.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008376.

    Full description at Econpapers || Download paper

  35. Post-processing in solar forecasting: Ten overarching thinking tools. (2021). van der Meer, Dennis ; Yang, Dazhi.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:140:y:2021:i:c:s1364032121000307.

    Full description at Econpapers || Download paper

  36. Hybrid deep neural model for hourly solar irradiance forecasting. (2021). Huang, Xiaoqiao ; Liu, Wuming ; Zhang, Jun ; Shi, Junsheng ; Gao, Bixuan ; Chen, Zaiqing ; Tai, Yonghang.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:1041-1060.

    Full description at Econpapers || Download paper

  37. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information. (2021). Ji, Zhengsen ; Shi, Yucheng ; Xu, Xiaomin ; Wang, Keke ; Zhen, Hao ; Niu, Dongxiao.
    In: Energy.
    RePEc:eee:energy:v:231:y:2021:i:c:s0360544221011567.

    Full description at Econpapers || Download paper

  38. Prediction of solar energy guided by pearson correlation using machine learning. (2021). Kabbaj, Mohammed Issam ; Jebli, Imane ; Belouadha, Fatima-Zahra ; Tilioua, Amine.
    In: Energy.
    RePEc:eee:energy:v:224:y:2021:i:c:s0360544221003583.

    Full description at Econpapers || Download paper

  39. Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions. (2021). Bellido-Jimenez, Juan Antonio ; Gualda, Javier Estevez ; Garcia-Marin, Amanda Penelope.
    In: Applied Energy.
    RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006358.

    Full description at Econpapers || Download paper

  40. Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. (2021). Strauss, J M ; Rix, A J ; du Plessis, A A.
    In: Applied Energy.
    RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317657.

    Full description at Econpapers || Download paper

  41. Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction. (2020). McCandless, Tyler ; Dettling, Susan ; Haupt, Sue Ellen.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:3:p:689-:d:316869.

    Full description at Econpapers || Download paper

  42. Intra-day solar irradiation forecast using RLS filters and satellite images. (2020). Alonso-Suarez, Rodrigo ; Marchesoni-Acland, Franco.
    In: Renewable Energy.
    RePEc:eee:renene:v:161:y:2020:i:c:p:1140-1154.

    Full description at Econpapers || Download paper

  43. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. (2020). Wei, Zhinong ; Sun, LI ; Liu, Ling ; Cheng, Lilin ; Zang, Haixiang.
    In: Renewable Energy.
    RePEc:eee:renene:v:160:y:2020:i:c:p:26-41.

    Full description at Econpapers || Download paper

  44. A novel electrical net-load forecasting model based on deep neural networks and wavelet transform integration. (2020). Niknam, Taher ; Hashemi, Sattar ; Norouzi, Mohammadali ; Alipour, Mohammadali ; Lehtonen, Matti ; Aghaei, Jamshid.
    In: Energy.
    RePEc:eee:energy:v:205:y:2020:i:c:s0360544220312135.

    Full description at Econpapers || Download paper

  45. Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors. (2020). Wang, Zhi-Wei ; Li, Qin.
    In: Energy.
    RePEc:eee:energy:v:200:y:2020:i:c:s0360544220305673.

    Full description at Econpapers || Download paper

  46. Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?. (2020). Gandhi, Oktoviano ; Yagli, Gokhan Mert ; Srinivasan, Dipti ; Yang, Dazhi.
    In: Applied Energy.
    RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318094.

    Full description at Econpapers || Download paper

  47. Time series prediction for output of multi-region solar power plants. (2020). Zheng, Taicheng ; Liao, QI ; Zhang, Haoran ; Wang, Bohong ; Dai, Yuanhao ; Liang, Yongtu ; Song, Xuan.
    In: Applied Energy.
    RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316885.

    Full description at Econpapers || Download paper

  48. Photovoltaic power forecasting based LSTM-Convolutional Network. (2019). Qi, Xiaoxia ; Wang, Kejun ; Liu, Hongda.
    In: Energy.
    RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319206.

    Full description at Econpapers || Download paper

  49. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network. (2019). Qi, Xiaoxia ; Wang, Kejun ; Liu, Hongda.
    In: Applied Energy.
    RePEc:eee:appene:v:251:y:2019:i:c:30.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Alfadda, A. ; Rahman, S. ; Pipattanasomporn, M. Solar irradiance forecast using aerosols measurements: a data driven approach. 2018 Sol Energy. 170 924-939
    Paper not yet in RePEc: Add citation now
  2. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. 1992 Am Stat. 46 175-185
    Paper not yet in RePEc: Add citation now
  3. Augustine, J.A. ; DeLuisi, J.J. ; Long, C.N. SURFRAD-A national surface radiation budget network for atmospheric research. 2000 Bull Am Meteorol Soc. 81 2341-2358
    Paper not yet in RePEc: Add citation now
  4. Bergstra, J. ; Bengio, Y. Random search for hyper-parameter optimization. 2012 J Mach Learn Res. 13 281-305
    Paper not yet in RePEc: Add citation now
  5. Bolstad, W.M. ; Curran, J.M. Introduction to Bayesian statistics. 2016 John Wiley & Sons:
    Paper not yet in RePEc: Add citation now
  6. Bouzgou, H. ; Gueymard, C.A. Minimum redundancy-maximum relevance with extreme learning machines for global solar radiation forecasting: Toward an optimized dimensionality reduction for solar time series. 2017 Sol Energy. 158 595-609
    Paper not yet in RePEc: Add citation now
  7. Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
    Paper not yet in RePEc: Add citation now
  8. Cannon, A.J. Quantile regression neural networks: implementation in R and application to precipitation downscaling. 2011 Comput Geosci. 37 1277-1284
    Paper not yet in RePEc: Add citation now
  9. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, ACM; New York, NY, USA: 2016. pp. 785–94. 〈https://doi.org/10.1145/2939672.2939785〉.
    Paper not yet in RePEc: Add citation now
  10. Chun, H. ; KeleÅŸ, S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. 2010 J R Stat Soc Ser B (Stat Methodol). 72 3-25

  11. Deo, R.C. ; Åžahin, M. Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. 2017 Renew Sustain Energy Rev. 72 828-848

  12. Drucker, H. ; Burges, C.J.C. ; Kaufman, L. ; Smola, A.J. ; Vapnik, V. Support vector regression machines. 1997 En : Mozer, M.C. ; Jordan, M.I. ; Petsche, T. Advances in Neural Information Processing Systems 9. MIT Press:
    Paper not yet in RePEc: Add citation now
  13. Efron, B. ; Hastie, T. ; Johnstone, I. ; Tibshirani, R. Least angle regression. 2004 Ann Stat. 32 407-499
    Paper not yet in RePEc: Add citation now
  14. Efron, B. ; Tibshirani, R.J. An introduction to the bootstrap. 1994 CRC Press:
    Paper not yet in RePEc: Add citation now
  15. Fox, J. Applied regression analysis and generalized linear models. 2015 Sage Publications:
    Paper not yet in RePEc: Add citation now
  16. Freedman, D.A. Statistical models: theory and practice. 2009 Cambridge University Press:
    Paper not yet in RePEc: Add citation now
  17. Friedman, J.H. Greedy function approximation: a gradient boosting machine. 2001 Ann Stat. 29 1189-1232
    Paper not yet in RePEc: Add citation now
  18. Friedman, J.H. Multivariate adaptive regression splines. 1991 Ann Stat. 19 1-67
    Paper not yet in RePEc: Add citation now
  19. Friedman, J.H. Stochastic gradient boosting. 2002 Comput Stat Data Anal. 38 367-378

  20. Friedman, J.H. ; Stuetzle, W. Projection pursuit regression. 1981 J Am Stat Assoc. 76 817-823
    Paper not yet in RePEc: Add citation now
  21. Fu, W.J. Penalized regressions: the bridge versus the lasso. 1998 J Comput Graph Stat. 7 397-416
    Paper not yet in RePEc: Add citation now
  22. Gala, Y. ; Fernández, Á. ; Díaz, J. ; Dorronsoro, J.R. Hybrid machine learning forecasting of solar radiation values. 2016 Neurocomputing. 176 48-59
    Paper not yet in RePEc: Add citation now
  23. Geurts, P. ; Ernst, D. ; Wehenkel, L. Extremely randomized trees. 2006 Mach Learn. 63 3-42
    Paper not yet in RePEc: Add citation now
  24. Gigoni, L. ; Betti, A. ; Crisostomi, E. ; Franco, A. ; Tucci, M. ; Bizzarri, F. Day-ahead hourly forecasting of power generation from photovoltaic plants. 2018 IEEE Trans Sustain Energy. 9 831-842
    Paper not yet in RePEc: Add citation now
  25. Golub, G.H. ; Heath, M. ; Wahba, G. Generalized cross-validation as a method for choosing a good ridge parameter. 1979 Technometrics. 21 215-223
    Paper not yet in RePEc: Add citation now
  26. Grubinger, T. ; Zeileis, A. ; Pfeiffer, K.-P. evtree: Evolutionary learning of globally optimal classification and regression trees in R. 2014 J Stat Softw Artic. 61 1-29

  27. Gueymard, C.A. REST2: High‐performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation-Validation with a benchmark dataset. 2008 Sol Energy. 82 272-285
    Paper not yet in RePEc: Add citation now
  28. Gueymard, C.A. ; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. 2016 Sol Energy. 128 1-30
    Paper not yet in RePEc: Add citation now
  29. Hand, D.J. Classifier technology and the illusion of progress. 2006 Stat Sci. 21 1-14
    Paper not yet in RePEc: Add citation now
  30. Hoerl, A.E. ; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. 1970 Technometrics. 12 55-67
    Paper not yet in RePEc: Add citation now
  31. Ibrahim, I.A. ; Khatib, T. A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. 2017 Energy Convers Manag. 138 413-425
    Paper not yet in RePEc: Add citation now
  32. Jolliffe, I. Principal component analysis. 2011 En : Lovric, M. International encyclopedia of statistical science. Springer Berlin Heidelberg: Berlin, Heidelberg
    Paper not yet in RePEc: Add citation now
  33. Köppen-Geiger climate classification USA image. 〈http://koeppen-geiger.vu-wien.ac.at/pics/KG_USA_5min.jpg〉. [Accessed 11 October 2018].
    Paper not yet in RePEc: Add citation now
  34. Köppen-Geiger climate classification. 〈http://koeppen-geiger.vu-wien.ac.at/present.htm〉. [Accessed 11 October 2018].
    Paper not yet in RePEc: Add citation now
  35. Koenker, R. ; Hallock, K.F. Quantile regression. 2001 J Econ Perspect. 15 143-156

  36. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence - volume 2, IJCAI'95, Morgan Kaufmann Publishers Inc: San Francisco, CA, USA; 1995. pp. 1137–43. URL 〈http://dl.acm.org/citation.cfm?id=1643031.1643047〉.
    Paper not yet in RePEc: Add citation now
  37. Kohonen, T. The self-organizing map. 1990 Proc IEEE. 78 1464-1480
    Paper not yet in RePEc: Add citation now
  38. Kottek, M. ; Grieser, J. ; Beck, C. ; Rudolf, B. ; Rubel, F. World map of the Köppen-Geiger climate classification updated. 2006 Meteorol Z. 15 259-263
    Paper not yet in RePEc: Add citation now
  39. Kuhn, M. Building predictive models in R using the caret package. 2008 J Stat Softw. 1-26

  40. Lago, J. ; Brabandere, K.D. ; Ridder, F.D. ; Schutter, B.D. Short-term forecasting of solar irradiance without local telemetry: a generalized model using satellite data. 2018 Sol Energy. 173 566-577
    Paper not yet in RePEc: Add citation now
  41. Lang, B. Monotonic multi-layer perceptron networks as universal approximators. 2005 En : Artificial neural networks: formal models and their applications–ICANN 2005. Springer Berlin Heidelberg: Berlin, Heidelberg
    Paper not yet in RePEc: Add citation now
  42. Lawson, C. ; Hanson, R. . 1995 Society for Industrial and Applied Mathematics:
    Paper not yet in RePEc: Add citation now
  43. Lee T-W. Independent component analysis. In: Proceeedings of the independent component analysis. Springer: 1998. pp. 27–66.
    Paper not yet in RePEc: Add citation now
  44. Leva, S. ; Dolara, A. ; Grimaccia, F. ; Mussetta, M. ; Ogliari, E. Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. 2017 Math Comput Simul. 131 88-100

  45. MacKay, D.J.C. Bayesian interpolation. 1992 Neural Comput. 4 415-447
    Paper not yet in RePEc: Add citation now
  46. Marzo, A. ; Trigo-Gonzalez, M. ; Alonso-Montesinos, J. ; Martínez-Durbán, M. ; López, G. ; Ferrada, P. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. 2017 Renew Energy. 113 303-311

  47. Massidda, L. ; Marrocu, M. Use of multilinear adaptive regression splines and numerical weather prediction to forecast the power output of a PV plant in Borkum, Germany. 2017 Sol Energy. 146 141-149
    Paper not yet in RePEc: Add citation now
  48. McCullagh, P. ; Nelder, J.A. Generalized linear models. 1989 CRC Press:
    Paper not yet in RePEc: Add citation now
  49. Meenal, R. ; Selvakumar, A.I. Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. 2018 Renew Energy. 121 324-343

  50. Meinshausen, N. Node harvest. 2010 Ann Appl Stat. 4 2049-2072
    Paper not yet in RePEc: Add citation now
  51. Meinshausen, N. Quantile regression forests. 2006 J Mach Learn Res. 7 983-999
    Paper not yet in RePEc: Add citation now
  52. Meinshausen, N. Relaxed lasso. 2007 Comput Stat Data Anal. 52 374-393
    Paper not yet in RePEc: Add citation now
  53. MKC from Jed Wing, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B. The R Core Team, Benesty, M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, Hunt T. caret: Classification and Regression Training. R package version 6.0-80 (2018). URL 〈https://CRAN.R-project.org/package=caret〉.
    Paper not yet in RePEc: Add citation now
  54. Molinaro, A.M. ; Lostritto, K. ; van der Laan, M. partDSA: deletion/substitution/addition algorithm for partitioning the covariate space in prediction. 2010 Bioinformatics. 26 1357-1363
    Paper not yet in RePEc: Add citation now
  55. Park, T. ; Casella, G. The Bayesian lasso. 2008 J Am Stat Assoc. 103 681-686

  56. Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. Scikit-learn: Machine learning in Python. 2011 J Mach Learn Res. 12 2825-2830
    Paper not yet in RePEc: Add citation now
  57. Pedro, H.T. ; Coimbra, C.F. ; David, M. ; Lauret, P. Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts. 2018 Renew Energy. 123 191-203

  58. Perez R, Schlemmer J, Hemker K, Kivalov S, Kankiewicz A, Dise J. Solar energy forecast validation for extended areas & economic impact of forecast accuracy. In: 2016 IEEE Proceedings of the 43rd photovoltaic specialists conference (PVSC); 2016, pp. 1119–24. doi:10.1109/PVSC.2016.7749787.
    Paper not yet in RePEc: Add citation now
  59. Perez R, Schlemmer J, Kankiewicz A, Dise J, Tadese A, Hoff T. Detecting calibration drift at ground truth stations a demonstration of satellite irradiance models' accuracy. In: 2017 IEEE Proceedings of the 44th photovoltaic specialist conference (PVSC); 2017, pp. 1104–9.
    Paper not yet in RePEc: Add citation now
  60. Perez, R. ; Hoff, T. ; Dise, J. ; Chalmers, D. ; Kivalov, S. The cost of mitigating short-term PV output variability. 2014 Energy Procedia. 57 755-762
    Paper not yet in RePEc: Add citation now
  61. Persson, C. ; Bacher, P. ; Shiga, T. ; Madsen, H. Multi-site solar power forecasting using gradient boosted regression trees. 2017 Sol Energy. 150 423-436
    Paper not yet in RePEc: Add citation now
  62. Pierro, M. ; Bucci, F. ; De Felice, M. ; Maggioni, E. ; Perotto, A. ; Spada, F. Deterministic and stochastic approaches for day-ahead solar power forecasting. 2017 J Sol Energy Eng. 139 021010-
    Paper not yet in RePEc: Add citation now
  63. Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on International Conference on Machine Learning, ICML'93, Morgan Kaufmann Publishers Inc.,; San Francisco, CA, USA: 1993. pp. 236–43. URL 〈http://dl.acm.org/citation.cfm?id=3091529.3091560〉.
    Paper not yet in RePEc: Add citation now
  64. Ripley, B.D. Pattern recognition and neural networks. 2007 Cambridge University Press:
    Paper not yet in RePEc: Add citation now
  65. Ruiz-Arias, J.A. ; Gueymard, C.A. Worldwide inter-comparison of clear-sky solar radiation models: Consensus‐based review of direct and global irradiance components simulated at the earth surface. 2018 Sol Energy. 168 10-29
    Paper not yet in RePEc: Add citation now
  66. Sengupta M, Habte A, Gueymard C, Wilbert S, Renne D. Best practices handbook for the collection and use of solar resource data for solar energy applications. Tech. rep., National Renewable Energy Lab.(NREL). Golden, CO (United States). 2017.
    Paper not yet in RePEc: Add citation now
  67. Sengupta, M. ; Xie, Y. ; Lopez, A. ; Habte, A. ; Maclaurin, G. ; Shelby, J. The national solar radiation data base (NSRDB). 2018 Renew Sustain Energy Rev. 89 51-60

  68. Shakya, A. ; Michael, S. ; Saunders, C. ; Armstrong, D. ; Pandey, P. ; Chalise, S. Solar irradiance forecasting in remote microgrids using Markov switching model. 2017 IEEE Trans Sustain Energy. 8 895-905
    Paper not yet in RePEc: Add citation now
  69. Srivastava, S. ; Lessmann, S. A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data. 2018 Sol Energy. 162 232-247
    Paper not yet in RePEc: Add citation now
  70. Team, R.C. R: a language and environment for statistical computing, R foundation for statistical computing. 2018 Austria. 2015 -
    Paper not yet in RePEc: Add citation now
  71. Tibshirani, R. Regression shrinkage and selection via the lasso. 1996 J R Stat Soc Ser B (Methodol). 58 267-288
    Paper not yet in RePEc: Add citation now
  72. Torres JF, Troncoso A, Koprinska I, Wang Z, Martínez-Álvarez F. Deep learning for big data time series forecasting applied to solar power. In: Proceedings of the international joint conference SOCO’18-CISIS’18-ICEUTE’18, Springer International Publishing, Cham; 2019, pp. 123–33. URL 〈https://link.springer.com/chapter/10.1007/978-3-319-94120-2_12〉.
    Paper not yet in RePEc: Add citation now
  73. Torres-Barrán A, Alonso Á, Dorronsoro JR. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing doi:10.1016/j.neucom.2017.05.104, URL 〈http://www.sciencedirect.com/science/article/pii/S0925231217315229〉.
    Paper not yet in RePEc: Add citation now
  74. Voyant, C. ; Notton, G. ; Kalogirou, S. ; Nivet, M.-L. ; Paoli, C. ; Motte, F. Machine learning methods for solar radiation forecasting: A review. 2017 Renew Energy. 105 569-582

  75. Wang, L. ; Wu, Y. ; Li, R. Quantile regression for analyzing heterogeneity in ultra-high dimension. 2012 J Am Stat Assoc. 107 214-222

  76. Wold, H. Partial least squares. 2006 En : Encyclopedia of statistical sciences. American Cancer Society:
    Paper not yet in RePEc: Add citation now
  77. Xie, Y. ; Sengupta, M. ; Dudhia, J. A fast all-sky radiation model for solar applications (FARMS): algorithm and performance evaluation. 2016 Sol Energy. 135 435-445
    Paper not yet in RePEc: Add citation now
  78. Yang, D. A correct validation of the National Solar Radiation Data Base (NSRDB). 2018 Renew Sustain Energy Rev. 97 152-155

  79. Yang, D. Solar radiation on inclined surfaces: Corrections and benchmarks. 2016 Sol Energy. 136 288-302
    Paper not yet in RePEc: Add citation now
  80. Yang, D. ; Kleissl, J. ; Gueymard, C.A. ; Pedro, H.T. ; Coimbra, C.F. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. 2018 Sol Energy. 168 60-101
    Paper not yet in RePEc: Add citation now
  81. Zhang, J. ; Florita, A. ; Hodge, B.-M. ; Lu, S. ; Hamann, H.F. ; Banunarayanan, V. A suite of metrics for assessing the performance of solar power forecasting. 2015 Sol Energy. 111 157-175
    Paper not yet in RePEc: Add citation now
  82. Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms. 2012 Chapman & Hall/CRC:
    Paper not yet in RePEc: Add citation now
  83. Zou, H. ; Hastie, T. Regularization and variable selection via the elastic net. 2005 J R Stat Soc Ser B (Stat Methodol). 67 301-320

Cocites

Documents in RePEc which have cited the same bibliography

  1. Does model complexity add value to asset allocation? Evidence from machine learning forecasting models. (2022). Kynigakis, Iason ; Panopoulou, Ekaterini.
    In: Journal of Applied Econometrics.
    RePEc:wly:japmet:v:37:y:2022:i:3:p:603-639.

    Full description at Econpapers || Download paper

  2. Measuring Variable Importance in Generalized Linear Models for Modeling Size of Loss Distributions. (2022). Xie, Shengkun ; Luo, Rebecca.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:10:p:1630-:d:812988.

    Full description at Econpapers || Download paper

  3. Statistical Methods for Assessing the Explained Variation of a Health Outcome by a Mixture of Exposures. (2022). Persky, Victoria W ; Turyk, Mary E ; Argos, Maria ; Chen, Hua Yun ; Li, Hesen.
    In: IJERPH.
    RePEc:gam:jijerp:v:19:y:2022:i:5:p:2693-:d:758602.

    Full description at Econpapers || Download paper

  4. Ultra high-dimensional multivariate posterior contraction rate under shrinkage priors. (2022). Zhang, Ruoyang ; Ghosh, Malay.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:187:y:2022:i:c:s0047259x21001135.

    Full description at Econpapers || Download paper

  5. Optimized spectral index models for accurately retrieving soil moisture (SM) of winter wheat under water stress. (2022). Wang, Zhijun ; Ren, Shoujia ; Fang, Quanxiao ; Guo, Bin.
    In: Agricultural Water Management.
    RePEc:eee:agiwat:v:261:y:2022:i:c:s0378377421006107.

    Full description at Econpapers || Download paper

  6. Machine Learning and Factor-Based Portfolio Optimization. (2021). Conlon, Thomas ; cotter, john ; Kynigakis, Iason.
    In: Working Papers.
    RePEc:ucd:wpaper:202111.

    Full description at Econpapers || Download paper

  7. Comparing six shrinkage estimators with large sample theory and asymptotically optimal prediction intervals. (2021). , Lasanthi ; Olive, David J.
    In: Statistical Papers.
    RePEc:spr:stpapr:v:62:y:2021:i:5:d:10.1007_s00362-020-01193-1.

    Full description at Econpapers || Download paper

  8. Sparse principal component regression via singular value decomposition approach. (2021). Kawano, Shuichi.
    In: Advances in Data Analysis and Classification.
    RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00435-2.

    Full description at Econpapers || Download paper

  9. Adaptive sparse group LASSO in quantile regression. (2021). Lillo, Rosa E ; Aguilera-Morillo, Carmen M ; Mendez-Civieta, Alvaro.
    In: Advances in Data Analysis and Classification.
    RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00413-8.

    Full description at Econpapers || Download paper

  10. Bayesian variable selection for multioutcome models through shared shrinkage. (2021). Mitra, Riten ; Gaskins, Jeremy T ; Kundu, Debamita.
    In: Scandinavian Journal of Statistics.
    RePEc:bla:scjsta:v:48:y:2021:i:1:p:295-320.

    Full description at Econpapers || Download paper

  11. Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data. (2021). Bernaerts, Yves ; Berens, Philipp ; Weis, Marissa A ; Scala, Federico ; Kobak, Dmitry ; Tolias, Andreas S.
    In: Journal of the Royal Statistical Society Series C.
    RePEc:bla:jorssc:v:70:y:2021:i:4:p:980-1000.

    Full description at Econpapers || Download paper

  12. Machine Learning and Factor-Based Portfolio Optimization. (2021). Conlon, Thomas ; cotter, john ; Kynigakis, Iason.
    In: Papers.
    RePEc:arx:papers:2107.13866.

    Full description at Econpapers || Download paper

  13. Variable selection in high-dimensional sparse multiresponse linear regression models. (2020). Luo, Shan.
    In: Statistical Papers.
    RePEc:spr:stpapr:v:61:y:2020:i:3:d:10.1007_s00362-018-0989-x.

    Full description at Econpapers || Download paper

  14. Alternative Indicators for Chinese Economic Activity Using Sparse PLS Regression. (2020). Groen, Jan ; Nattinger, Michael.
    In: Economic Policy Review.
    RePEc:fip:fednep:89899.

    Full description at Econpapers || Download paper

  15. A Review of Envelope Models. (2020). Su, Zhihua ; Lee, Minji.
    In: International Statistical Review.
    RePEc:bla:istatr:v:88:y:2020:i:3:p:658-676.

    Full description at Econpapers || Download paper

  16. Application of nonlinear models and groundwater index to predict desertification case study: Sharifabad watershed. (2019). Habibi, Vahid ; Jafari, Mohammad ; Ahmadi, Hasan ; Moeini, Abolfazl.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:99:y:2019:i:2:d:10.1007_s11069-019-03769-z.

    Full description at Econpapers || Download paper

  17. Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations. (2019). He, Wan ; Barboza, Luis A ; Emile-Geay, Julien ; Li, BO.
    In: Journal of Agricultural, Biological and Environmental Statistics.
    RePEc:spr:jagbes:v:24:y:2019:i:3:d:10.1007_s13253-019-00372-4.

    Full description at Econpapers || Download paper

  18. Automatic hourly solar forecasting using machine learning models. (2019). Yagli, Gokhan Mert ; Srinivasan, Dipti ; Yang, Dazhi.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:105:y:2019:i:c:p:487-498.

    Full description at Econpapers || Download paper

  19. News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions. (2019). Feuerriegel, Stefan ; Gordon, Julius.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:272:y:2019:i:1:p:162-175.

    Full description at Econpapers || Download paper

  20. Sparse wavelet estimation in quantile regression with multiple functional predictors. (2019). Zhang, LI ; Kong, Linglong ; Mizera, Ivan ; Yu, Dengdeng ; Jiang, Bei.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:136:y:2019:i:c:p:12-29.

    Full description at Econpapers || Download paper

  21. Feature Selection in metabolomics with PLS-derived methods. (2019). Martin, Manon ; Govaerts, Bernadette.
    In: LIDAM Discussion Papers ISBA.
    RePEc:aiz:louvad:2019020.

    Full description at Econpapers || Download paper

  22. Sparse factor regression via penalized maximum likelihood estimation. (2018). Imada, Miyuki ; Hirose, Kei.
    In: Statistical Papers.
    RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0781-8.

    Full description at Econpapers || Download paper

  23. High-dimensional multivariate posterior consistency under global–local shrinkage priors. (2018). Bai, Ray ; Ghosh, Malay.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:167:y:2018:i:c:p:157-170.

    Full description at Econpapers || Download paper

  24. A UK financial conditions index using targeted data reduction: Forecasting and structural identification. (2018). Young, Garry ; Price, Simon ; Kapetanios, George.
    In: Econometrics and Statistics.
    RePEc:eee:ecosta:v:7:y:2018:i:c:p:1-17.

    Full description at Econpapers || Download paper

  25. Identification and critical time forecasting of real estate bubbles in the USA. (2017). Cauwels, Peter ; Sanadgol, Dorsa ; Ardila, Diego ; Sornette, Didier.
    In: Quantitative Finance.
    RePEc:taf:quantf:v:17:y:2017:i:4:p:613-631.

    Full description at Econpapers || Download paper

  26. MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction. (2017). Peng, Xuewei ; Liu, Leo Yufeng ; Zhu, Hongtu ; Shen, Dan.
    In: Journal of the American Statistical Association.
    RePEc:taf:jnlasa:v:112:y:2017:i:519:p:1009-1021.

    Full description at Econpapers || Download paper

  27. A UK financial conditions index using targeted data reduction: forecasting and structural identification. (2017). Young, Garry ; Kapetanios, George ; Price, SG.
    In: Essex Finance Centre Working Papers.
    RePEc:esy:uefcwp:20328.

    Full description at Econpapers || Download paper

  28. Simultaneous selection of predictors and responses for high dimensional multivariate linear regression. (2017). Zhang, Beibei.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:127:y:2017:i:c:p:173-177.

    Full description at Econpapers || Download paper

  29. Bayesian sparse reduced rank multivariate regression. (2017). Chen, Kun ; Goh, Gyuhyeong ; Dey, Dipak K.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:157:y:2017:i:c:p:14-28.

    Full description at Econpapers || Download paper

  30. Signal extraction approach for sparse multivariate response regression. (2017). Qi, Xin ; Luo, Ruiyan.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:153:y:2017:i:c:p:83-97.

    Full description at Econpapers || Download paper

  31. Simultaneous dimension reduction and variable selection in modeling high dimensional data. (2017). Barrios, Erniel ; Ryan, Joseph.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:112:y:2017:i:c:p:242-256.

    Full description at Econpapers || Download paper

  32. Penalized principal logistic regression for sparse sufficient dimension reduction. (2017). Shin, Seung Jun ; Artemiou, Andreas.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:111:y:2017:i:c:p:48-58.

    Full description at Econpapers || Download paper

  33. Replacing Judgment by Statistics: Constructing Consumer Confidence Indicators on the basis of Data-driven Techniques. The Case of the Euro Area. (2016). Girardi, Alessandro ; Gayer, Christian ; Reuter, Andreas.
    In: Working Papers LuissLab.
    RePEc:lui:lleewp:16125.

    Full description at Econpapers || Download paper

  34. Revisiting useful approaches to data-rich macroeconomic forecasting. (2016). Kapetanios, George ; Groen, Jan.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:100:y:2016:i:c:p:221-239.

    Full description at Econpapers || Download paper

  35. SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression. (2015). Liu, Yufeng ; Sun, Qiang ; Ibrahim, Joseph G ; Zhu, Hongtu.
    In: Journal of the American Statistical Association.
    RePEc:taf:jnlasa:v:110:y:2015:i:509:p:289-302.

    Full description at Econpapers || Download paper

  36. Sparse alternatives to ridge regression: a random effects approach. (2015). Pawitan, Yudi ; Gusnanto, Arief.
    In: Journal of Applied Statistics.
    RePEc:taf:japsta:v:42:y:2015:i:1:p:12-26.

    Full description at Econpapers || Download paper

  37. Development of a Drug-Response Modeling Framework to Identify Cell Line Derived Translational Biomarkers That Can Predict Treatment Outcome to Erlotinib or Sorafenib. (2015). Kolpakova-Hart, Elona ; Merberg, David ; Li, Bin ; Hope, Andrew ; Nikolsky, Yuri ; Dorner, Andrew ; Trepicchio, William L ; Pustovalova, Olga ; Schu, Matthew ; Bessarabova, Marina ; Shin, Hyunjin ; Gulbekyan, Georgy.
    In: PLOS ONE.
    RePEc:plo:pone00:0130700.

    Full description at Econpapers || Download paper

  38. Sparse wavelet regression with multiple predictive curves. (2015). Qi, Xin ; Luo, Ruiyan.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:134:y:2015:i:c:p:33-49.

    Full description at Econpapers || Download paper

  39. Sparse principal component regression with adaptive loading. (2015). Takada, Toyoyuki ; Shiroishi, Toshihiko ; Kawano, Shuichi ; Fujisawa, Hironori.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:89:y:2015:i:c:p:192-203.

    Full description at Econpapers || Download paper

  40. A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics. (2014). Datta, Susmita ; Shah, Jasmit .
    In: Computational Statistics.
    RePEc:spr:compst:v:29:y:2014:i:6:p:1749-1767.

    Full description at Econpapers || Download paper

  41. On the Selection of Common Factors for Macroeconomic Forecasting. (2014). Proietti, Tommaso ; Giovannelli, Alessandro.
    In: MPRA Paper.
    RePEc:pra:mprapa:60673.

    Full description at Econpapers || Download paper

  42. MicroRNAs MiR-218, MiR-125b, and Let-7g Predict Prognosis in Patients with Oral Cavity Squamous Cell Carcinoma. (2014). Peng, Shih-Chi ; Huang, Chung-Guei ; Liao, Chun-Ta ; Cheng, Ann-Joy ; Hsieh, Wen-Ping ; Yen, Tzu-Chen.
    In: PLOS ONE.
    RePEc:plo:pone00:0102403.

    Full description at Econpapers || Download paper

  43. Selecting and combining experts from survey forecasts. (2014). Poncela, Pilar ; Rodriguez, Julio ; Fuentes, Julieta .
    In: DES - Working Papers. Statistics and Econometrics. WS.
    RePEc:cte:wsrepe:ws140905.

    Full description at Econpapers || Download paper

  44. Envelopes and partial least squares regression. (2013). Su, Zoey ; Cook, R. D. ; Helland, I. S..
    In: Journal of the Royal Statistical Society Series B.
    RePEc:bla:jorssb:v:75:y:2013:i:5:p:851-877.

    Full description at Econpapers || Download paper

  45. Multiple Regression Methods Show Great Potential for Rare Variant Association Tests. (2012). Ciampi, Antonio ; Richards, Brent J ; Dastani, Zari ; Ladouceur, Martin ; Xu, Changjiang.
    In: PLOS ONE.
    RePEc:plo:pone00:0041694.

    Full description at Econpapers || Download paper

  46. A medium-N approach to macroeconomic forecasting. (2012). Guardabascio, Barbara ; Cubadda, Gianluca.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:29:y:2012:i:4:p:1099-1105.

    Full description at Econpapers || Download paper

  47. Sparse partial least squares in time series for macroeconomic forecasting. (2012). Poncela, Pilar ; Rodriguez, Julio ; Fuentes, Julieta .
    In: DES - Working Papers. Statistics and Econometrics. WS.
    RePEc:cte:wsrepe:ws122216.

    Full description at Econpapers || Download paper

  48. Variational Bayes Procedure for Effective Classification of Tumor Type with Microarray Gene Expression Data. (2012). Takeshi, Hayashi .
    In: Statistical Applications in Genetics and Molecular Biology.
    RePEc:bpj:sagmbi:v:11:y:2012:i:5:n:9.

    Full description at Econpapers || Download paper

  49. Sparse Canonical Covariance Analysis for High-throughput Data. (2011). Pawitan, Yudi ; Lee, Youngjo.
    In: Statistical Applications in Genetics and Molecular Biology.
    RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:30.

    Full description at Econpapers || Download paper

  50. Predicting Patient Survival from Longitudinal Gene Expression. (2010). Zhang, Yuping ; Davis, Ronald W. ; Tibshirani, Robert J..
    In: Statistical Applications in Genetics and Molecular Biology.
    RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:41.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-06 18:01:14 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.