- Alfadda, A. ; Rahman, S. ; Pipattanasomporn, M. Solar irradiance forecast using aerosols measurements: a data driven approach. 2018 Sol Energy. 170 924-939
Paper not yet in RePEc: Add citation now
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. 1992 Am Stat. 46 175-185
Paper not yet in RePEc: Add citation now
- Augustine, J.A. ; DeLuisi, J.J. ; Long, C.N. SURFRAD-A national surface radiation budget network for atmospheric research. 2000 Bull Am Meteorol Soc. 81 2341-2358
Paper not yet in RePEc: Add citation now
- Bergstra, J. ; Bengio, Y. Random search for hyper-parameter optimization. 2012 J Mach Learn Res. 13 281-305
Paper not yet in RePEc: Add citation now
- Bolstad, W.M. ; Curran, J.M. Introduction to Bayesian statistics. 2016 John Wiley & Sons:
Paper not yet in RePEc: Add citation now
- Bouzgou, H. ; Gueymard, C.A. Minimum redundancy-maximum relevance with extreme learning machines for global solar radiation forecasting: Toward an optimized dimensionality reduction for solar time series. 2017 Sol Energy. 158 595-609
Paper not yet in RePEc: Add citation now
- Breiman, L. Random forests. 2001 Mach Learn. 45 5-32
Paper not yet in RePEc: Add citation now
- Cannon, A.J. Quantile regression neural networks: implementation in R and application to precipitation downscaling. 2011 Comput Geosci. 37 1277-1284
Paper not yet in RePEc: Add citation now
- Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, ACM; New York, NY, USA: 2016. pp. 785–94. 〈https://doi.org/10.1145/2939672.2939785〉.
Paper not yet in RePEc: Add citation now
Chun, H. ; KeleÅŸ, S. Sparse partial least squares regression for simultaneous dimension reduction and variable selection. 2010 J R Stat Soc Ser B (Stat Methodol). 72 3-25
Deo, R.C. ; Åžahin, M. Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland. 2017 Renew Sustain Energy Rev. 72 828-848
- Drucker, H. ; Burges, C.J.C. ; Kaufman, L. ; Smola, A.J. ; Vapnik, V. Support vector regression machines. 1997 En : Mozer, M.C. ; Jordan, M.I. ; Petsche, T. Advances in Neural Information Processing Systems 9. MIT Press:
Paper not yet in RePEc: Add citation now
- Efron, B. ; Hastie, T. ; Johnstone, I. ; Tibshirani, R. Least angle regression. 2004 Ann Stat. 32 407-499
Paper not yet in RePEc: Add citation now
- Efron, B. ; Tibshirani, R.J. An introduction to the bootstrap. 1994 CRC Press:
Paper not yet in RePEc: Add citation now
- Fox, J. Applied regression analysis and generalized linear models. 2015 Sage Publications:
Paper not yet in RePEc: Add citation now
- Freedman, D.A. Statistical models: theory and practice. 2009 Cambridge University Press:
Paper not yet in RePEc: Add citation now
- Friedman, J.H. Greedy function approximation: a gradient boosting machine. 2001 Ann Stat. 29 1189-1232
Paper not yet in RePEc: Add citation now
- Friedman, J.H. Multivariate adaptive regression splines. 1991 Ann Stat. 19 1-67
Paper not yet in RePEc: Add citation now
Friedman, J.H. Stochastic gradient boosting. 2002 Comput Stat Data Anal. 38 367-378
- Friedman, J.H. ; Stuetzle, W. Projection pursuit regression. 1981 J Am Stat Assoc. 76 817-823
Paper not yet in RePEc: Add citation now
- Fu, W.J. Penalized regressions: the bridge versus the lasso. 1998 J Comput Graph Stat. 7 397-416
Paper not yet in RePEc: Add citation now
- Gala, Y. ; Fernández, Ã. ; DÃaz, J. ; Dorronsoro, J.R. Hybrid machine learning forecasting of solar radiation values. 2016 Neurocomputing. 176 48-59
Paper not yet in RePEc: Add citation now
- Geurts, P. ; Ernst, D. ; Wehenkel, L. Extremely randomized trees. 2006 Mach Learn. 63 3-42
Paper not yet in RePEc: Add citation now
- Gigoni, L. ; Betti, A. ; Crisostomi, E. ; Franco, A. ; Tucci, M. ; Bizzarri, F. Day-ahead hourly forecasting of power generation from photovoltaic plants. 2018 IEEE Trans Sustain Energy. 9 831-842
Paper not yet in RePEc: Add citation now
- Golub, G.H. ; Heath, M. ; Wahba, G. Generalized cross-validation as a method for choosing a good ridge parameter. 1979 Technometrics. 21 215-223
Paper not yet in RePEc: Add citation now
Grubinger, T. ; Zeileis, A. ; Pfeiffer, K.-P. evtree: Evolutionary learning of globally optimal classification and regression trees in R. 2014 J Stat Softw Artic. 61 1-29
- Gueymard, C.A. REST2: Highâ€performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation-Validation with a benchmark dataset. 2008 Sol Energy. 82 272-285
Paper not yet in RePEc: Add citation now
- Gueymard, C.A. ; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. 2016 Sol Energy. 128 1-30
Paper not yet in RePEc: Add citation now
- Hand, D.J. Classifier technology and the illusion of progress. 2006 Stat Sci. 21 1-14
Paper not yet in RePEc: Add citation now
- Hoerl, A.E. ; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. 1970 Technometrics. 12 55-67
Paper not yet in RePEc: Add citation now
- Ibrahim, I.A. ; Khatib, T. A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. 2017 Energy Convers Manag. 138 413-425
Paper not yet in RePEc: Add citation now
- Jolliffe, I. Principal component analysis. 2011 En : Lovric, M. International encyclopedia of statistical science. Springer Berlin Heidelberg: Berlin, Heidelberg
Paper not yet in RePEc: Add citation now
- Köppen-Geiger climate classification USA image. 〈http://koeppen-geiger.vu-wien.ac.at/pics/KG_USA_5min.jpg〉. [Accessed 11 October 2018].
Paper not yet in RePEc: Add citation now
- Köppen-Geiger climate classification. 〈http://koeppen-geiger.vu-wien.ac.at/present.htm〉. [Accessed 11 October 2018].
Paper not yet in RePEc: Add citation now
Koenker, R. ; Hallock, K.F. Quantile regression. 2001 J Econ Perspect. 15 143-156
- Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th international joint conference on artificial intelligence - volume 2, IJCAI'95, Morgan Kaufmann Publishers Inc: San Francisco, CA, USA; 1995. pp. 1137–43. URL 〈http://dl.acm.org/citation.cfm?id=1643031.1643047〉.
Paper not yet in RePEc: Add citation now
- Kohonen, T. The self-organizing map. 1990 Proc IEEE. 78 1464-1480
Paper not yet in RePEc: Add citation now
- Kottek, M. ; Grieser, J. ; Beck, C. ; Rudolf, B. ; Rubel, F. World map of the Köppen-Geiger climate classification updated. 2006 Meteorol Z. 15 259-263
Paper not yet in RePEc: Add citation now
Kuhn, M. Building predictive models in R using the caret package. 2008 J Stat Softw. 1-26
- Lago, J. ; Brabandere, K.D. ; Ridder, F.D. ; Schutter, B.D. Short-term forecasting of solar irradiance without local telemetry: a generalized model using satellite data. 2018 Sol Energy. 173 566-577
Paper not yet in RePEc: Add citation now
- Lang, B. Monotonic multi-layer perceptron networks as universal approximators. 2005 En : Artificial neural networks: formal models and their applications–ICANN 2005. Springer Berlin Heidelberg: Berlin, Heidelberg
Paper not yet in RePEc: Add citation now
- Lawson, C. ; Hanson, R. . 1995 Society for Industrial and Applied Mathematics:
Paper not yet in RePEc: Add citation now
- Lee T-W. Independent component analysis. In: Proceeedings of the independent component analysis. Springer: 1998. pp. 27–66.
Paper not yet in RePEc: Add citation now
Leva, S. ; Dolara, A. ; Grimaccia, F. ; Mussetta, M. ; Ogliari, E. Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. 2017 Math Comput Simul. 131 88-100
- MacKay, D.J.C. Bayesian interpolation. 1992 Neural Comput. 4 415-447
Paper not yet in RePEc: Add citation now
Marzo, A. ; Trigo-Gonzalez, M. ; Alonso-Montesinos, J. ; MartÃnez-Durbán, M. ; López, G. ; Ferrada, P. Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. 2017 Renew Energy. 113 303-311
- Massidda, L. ; Marrocu, M. Use of multilinear adaptive regression splines and numerical weather prediction to forecast the power output of a PV plant in Borkum, Germany. 2017 Sol Energy. 146 141-149
Paper not yet in RePEc: Add citation now
- McCullagh, P. ; Nelder, J.A. Generalized linear models. 1989 CRC Press:
Paper not yet in RePEc: Add citation now
Meenal, R. ; Selvakumar, A.I. Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. 2018 Renew Energy. 121 324-343
- Meinshausen, N. Node harvest. 2010 Ann Appl Stat. 4 2049-2072
Paper not yet in RePEc: Add citation now
- Meinshausen, N. Quantile regression forests. 2006 J Mach Learn Res. 7 983-999
Paper not yet in RePEc: Add citation now
- Meinshausen, N. Relaxed lasso. 2007 Comput Stat Data Anal. 52 374-393
Paper not yet in RePEc: Add citation now
- MKC from Jed Wing, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B. The R Core Team, Benesty, M, Lescarbeau R, Ziem A, Scrucca L, Tang Y, Candan C, Hunt T. caret: Classification and Regression Training. R package version 6.0-80 (2018). URL 〈https://CRAN.R-project.org/package=caret〉.
Paper not yet in RePEc: Add citation now
- Molinaro, A.M. ; Lostritto, K. ; van der Laan, M. partDSA: deletion/substitution/addition algorithm for partitioning the covariate space in prediction. 2010 Bioinformatics. 26 1357-1363
Paper not yet in RePEc: Add citation now
Park, T. ; Casella, G. The Bayesian lasso. 2008 J Am Stat Assoc. 103 681-686
- Pedregosa, F. ; Varoquaux, G. ; Gramfort, A. ; Michel, V. ; Thirion, B. ; Grisel, O. Scikit-learn: Machine learning in Python. 2011 J Mach Learn Res. 12 2825-2830
Paper not yet in RePEc: Add citation now
Pedro, H.T. ; Coimbra, C.F. ; David, M. ; Lauret, P. Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts. 2018 Renew Energy. 123 191-203
- Perez R, Schlemmer J, Hemker K, Kivalov S, Kankiewicz A, Dise J. Solar energy forecast validation for extended areas & economic impact of forecast accuracy. In: 2016 IEEE Proceedings of the 43rd photovoltaic specialists conference (PVSC); 2016, pp. 1119–24. doi:10.1109/PVSC.2016.7749787.
Paper not yet in RePEc: Add citation now
- Perez R, Schlemmer J, Kankiewicz A, Dise J, Tadese A, Hoff T. Detecting calibration drift at ground truth stations a demonstration of satellite irradiance models' accuracy. In: 2017 IEEE Proceedings of the 44th photovoltaic specialist conference (PVSC); 2017, pp. 1104–9.
Paper not yet in RePEc: Add citation now
- Perez, R. ; Hoff, T. ; Dise, J. ; Chalmers, D. ; Kivalov, S. The cost of mitigating short-term PV output variability. 2014 Energy Procedia. 57 755-762
Paper not yet in RePEc: Add citation now
- Persson, C. ; Bacher, P. ; Shiga, T. ; Madsen, H. Multi-site solar power forecasting using gradient boosted regression trees. 2017 Sol Energy. 150 423-436
Paper not yet in RePEc: Add citation now
- Pierro, M. ; Bucci, F. ; De Felice, M. ; Maggioni, E. ; Perotto, A. ; Spada, F. Deterministic and stochastic approaches for day-ahead solar power forecasting. 2017 J Sol Energy Eng. 139 021010-
Paper not yet in RePEc: Add citation now
- Quinlan JR. Combining instance-based and model-based learning. In: Proceedings of the Tenth International Conference on International Conference on Machine Learning, ICML'93, Morgan Kaufmann Publishers Inc.,; San Francisco, CA, USA: 1993. pp. 236–43. URL 〈http://dl.acm.org/citation.cfm?id=3091529.3091560〉.
Paper not yet in RePEc: Add citation now
- Ripley, B.D. Pattern recognition and neural networks. 2007 Cambridge University Press:
Paper not yet in RePEc: Add citation now
- Ruiz-Arias, J.A. ; Gueymard, C.A. Worldwide inter-comparison of clear-sky solar radiation models: Consensusâ€based review of direct and global irradiance components simulated at the earth surface. 2018 Sol Energy. 168 10-29
Paper not yet in RePEc: Add citation now
- Sengupta M, Habte A, Gueymard C, Wilbert S, Renne D. Best practices handbook for the collection and use of solar resource data for solar energy applications. Tech. rep., National Renewable Energy Lab.(NREL). Golden, CO (United States). 2017.
Paper not yet in RePEc: Add citation now
Sengupta, M. ; Xie, Y. ; Lopez, A. ; Habte, A. ; Maclaurin, G. ; Shelby, J. The national solar radiation data base (NSRDB). 2018 Renew Sustain Energy Rev. 89 51-60
- Shakya, A. ; Michael, S. ; Saunders, C. ; Armstrong, D. ; Pandey, P. ; Chalise, S. Solar irradiance forecasting in remote microgrids using Markov switching model. 2017 IEEE Trans Sustain Energy. 8 895-905
Paper not yet in RePEc: Add citation now
- Srivastava, S. ; Lessmann, S. A comparative study of LSTM neural networks in forecasting day-ahead global horizontal irradiance with satellite data. 2018 Sol Energy. 162 232-247
Paper not yet in RePEc: Add citation now
- Team, R.C. R: a language and environment for statistical computing, R foundation for statistical computing. 2018 Austria. 2015 -
Paper not yet in RePEc: Add citation now
- Tibshirani, R. Regression shrinkage and selection via the lasso. 1996 J R Stat Soc Ser B (Methodol). 58 267-288
Paper not yet in RePEc: Add citation now
- Torres JF, Troncoso A, Koprinska I, Wang Z, MartÃnez-Ãlvarez F. Deep learning for big data time series forecasting applied to solar power. In: Proceedings of the international joint conference SOCO’18-CISIS’18-ICEUTE’18, Springer International Publishing, Cham; 2019, pp. 123–33. URL 〈https://link.springer.com/chapter/10.1007/978-3-319-94120-2_12〉.
Paper not yet in RePEc: Add citation now
- Torres-Barrán A, Alonso Ã, Dorronsoro JR. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing doi:10.1016/j.neucom.2017.05.104, URL 〈http://www.sciencedirect.com/science/article/pii/S0925231217315229〉.
Paper not yet in RePEc: Add citation now
Voyant, C. ; Notton, G. ; Kalogirou, S. ; Nivet, M.-L. ; Paoli, C. ; Motte, F. Machine learning methods for solar radiation forecasting: A review. 2017 Renew Energy. 105 569-582
Wang, L. ; Wu, Y. ; Li, R. Quantile regression for analyzing heterogeneity in ultra-high dimension. 2012 J Am Stat Assoc. 107 214-222
- Wold, H. Partial least squares. 2006 En : Encyclopedia of statistical sciences. American Cancer Society:
Paper not yet in RePEc: Add citation now
- Xie, Y. ; Sengupta, M. ; Dudhia, J. A fast all-sky radiation model for solar applications (FARMS): algorithm and performance evaluation. 2016 Sol Energy. 135 435-445
Paper not yet in RePEc: Add citation now
Yang, D. A correct validation of the National Solar Radiation Data Base (NSRDB). 2018 Renew Sustain Energy Rev. 97 152-155
- Yang, D. Solar radiation on inclined surfaces: Corrections and benchmarks. 2016 Sol Energy. 136 288-302
Paper not yet in RePEc: Add citation now
- Yang, D. ; Kleissl, J. ; Gueymard, C.A. ; Pedro, H.T. ; Coimbra, C.F. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. 2018 Sol Energy. 168 60-101
Paper not yet in RePEc: Add citation now
- Zhang, J. ; Florita, A. ; Hodge, B.-M. ; Lu, S. ; Hamann, H.F. ; Banunarayanan, V. A suite of metrics for assessing the performance of solar power forecasting. 2015 Sol Energy. 111 157-175
Paper not yet in RePEc: Add citation now
- Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms. 2012 Chapman & Hall/CRC:
Paper not yet in RePEc: Add citation now
Zou, H. ; Hastie, T. Regularization and variable selection via the elastic net. 2005 J R Stat Soc Ser B (Stat Methodol). 67 301-320