create a website

Do bitcoin news information flow and return volatility fit the sequential information arrival hypothesis and the mixture of distribution hypothesis?. (2023). Day, Min-Yuh ; Chou, Ke-Hsin ; Chiu, Chien-Liang.
In: International Review of Economics & Finance.
RePEc:eee:reveco:v:88:y:2023:i:c:p:365-385.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 74

References cited by this document

Cocites: 30

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Empirical properties of volume dynamics in the limit order book. (2025). Leyvraz, Francois ; Navarro, Roberto Mota ; Larralde, Hernn.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:658:y:2025:i:c:s037843712400743x.

    Full description at Econpapers || Download paper

  2. Not all the news fitting to reprint: Evidence from price-volume relationship. (2024). Shen, Dehua ; Zhang, Zuochao.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:62:y:2024:i:pa:s1544612324001582.

    Full description at Econpapers || Download paper

  3. A comparison of bitcoin futures return and return volatility based on news sentiment contemporaneously or lead-lag. (2024). Kao, Yu-Sheng ; Day, Min-Yuh ; Chou, Ke-Hsin.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:72:y:2024:i:c:s1062940824000846.

    Full description at Econpapers || Download paper

References

References cited by this document

    References contributed by 3468710_435102401243230

  1. Abdullahi, S. A., Kouhy, R., & Muhammad, Z. (2014). Trading volume and return relationship in the crude oil futures markets. Studies in Economics and Finance, 31, 426–438. Agarwal, A., Sharma, V., Sikka, G., & Dhir, R. (2016). Opinion mining of news headlines using SentiWordNet. In 2016 symposium on colossal data analysis and networking (CDAN) (pp. 1–5). IEEE.
    Paper not yet in RePEc: Add citation now
  2. Ahmad, K., Han, J., Hutson, E., Kearney, C., & Liu, S. (2016). Media-expressed negative tone and firm-level stock returns. Journal of Corporate Finance, 37, 152–172.

  3. Allen, D. E., McAleer, M., & Singh, A. K. (2019). Daily market news sentiment and stock prices. Applied Economics, 51, 3212–3235.

  4. Andersen, T. G. (1996). Return volatility and trading volume: An information flow interpretation of stochastic volatility. The Journal of Finance, 51, 169–204.

  5. Atkins, A., Niranjan, M., & Gerding, E. (2018). Financial news predicts stock market volatility better than close price. The Journal of Finance and Data Science, 4, 120–137.
    Paper not yet in RePEc: Add citation now
  6. Baccianella, S., Esuli, A., & Sebastiani, F. (2010a). In Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining (pp. 2200–2204). Lrec.
    Paper not yet in RePEc: Add citation now
  7. Baccianella, S., Esuli, A., & Sebastiani, F. (2010b). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the seventh international conference on language resources and evaluation (LREC’10).
    Paper not yet in RePEc: Add citation now
  8. Bariviera, A. F. (2017). The inefficiency of bitcoin revisited: A dynamic approach. Economics Letters, 161, 1–4.
    Paper not yet in RePEc: Add citation now
  9. Bonta, V., & Janardhan, N. K.a. N. (2019). A comprehensive study on lexicon based approaches for sentiment analysis. Asian Journal of Computer Science and Technology, 8, 1–6.
    Paper not yet in RePEc: Add citation now
  10. Bose, R., Aithal, P., & Roy, S. (2020). Sentiment analysis on the basis of tweeter comments of application of drugs by customary language toolkit and textblob opinions of distinct countries. International Journal, 8.
    Paper not yet in RePEc: Add citation now
  11. Bredin, D., Hyde, S., & Muckley, C. (2014). A microstructure analysis of the carbon finance market. International Review of Financial Analysis, 34, 222–234.

  12. Chaudhri, A. A., Saranya, S., & Dubey, S. (2021). Implementation paper on analyzing COVID-19 vaccines on twitter dataset using tweepy and text blob. Annals of the Romanian Society for Cell Biology, 8393–8396.
    Paper not yet in RePEc: Add citation now
  13. Chen, X., & Ghysels, E. (2011). News—good or bad—and its impact on volatility predictions over multiple horizons. Review of Financial Studies, 24, 46–81.

  14. Ciaian, P., Rajcaniova, M., & Kancs, d. A. (2016). The economics of BitCoin price formation. Applied Economics, 48, 1799–1815.

  15. Clark, P. K. (1973). A subordinated stochastic process model with finite variance for speculative prices. Econometrica: Journal of the Econometric Society, 135–155.

  16. Copeland, T. E. (1976). A model of asset trading under the assumption of sequential information arrival. The Journal of Finance, 31, 1149–1168.

  17. Dai, L., Parwada, J. T., & Zhang, B. (2015). The governance effect of the media’s news dissemination role: Evidence from insider trading. Journal of Accounting Research, 53, 331–366.
    Paper not yet in RePEc: Add citation now
  18. Darrat, A. F., Rahman, S., & Zhong, M. (2003). Intraday trading volume and return volatility of the DJIA stocks: A note. Journal of Banking & Finance, 27, 2035–2043.

  19. Darrat, A. F., Zhong, M., & Cheng, L. T. (2007). Intraday volume and volatility relations with and without public news. Journal of Banking & Finance, 31, 2711–2729.

  20. Day, M.-Y., & Lee, C.-C. (2016). Deep learning for financial sentiment analysis on finance news providers. In 2016 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM) (pp. 1127–1134). IEEE.
    Paper not yet in RePEc: Add citation now
  21. Deng, G., McCann, C., & Wang, O. (2012). Are VIX futures ETPs effective hedges? The Journal of Beta Investment Strategies, 3, 35–48.
    Paper not yet in RePEc: Add citation now
  22. Donaldson, R. G., & Kamstra, M. J. (2005). Volatility forecasts, trading volume, and the ARCH versus option-implied volatility trade-off. Journal of Financial Research, 28, 519–538.

  23. Epps, T. W., & Epps, M. L. (1976). The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-of-distributions hypothesis. Econometrica: Journal of the Econometric Society, 305–321.

  24. French, K. R., & Roll, R. (1986). Stock return variances: The arrival of information and the reaction of traders. Journal of Financial Economics, 17, 5–26.

  25. Frijns, B., Verschoor, W. F., & Zwinkels, R. C. (2017). Excess stock return comovements and the role of investor sentiment. Journal of International Financial Markets, Institutions and Money, 49, 74–87.

  26. Gan, B., Alexeev, V., Bird, R., & Yeung, D. (2020). Sensitivity to sentiment: News vs social media. International Review of Financial Analysis, 67, Article 101390.

  27. Goel, A., Gautam, J., & Kumar, S. (2016). Real time sentiment analysis of tweets using Naive Bayes. In 2016 2nd international conference on next generation computing technologies (NGCT) (pp. 257–261). IEEE.
    Paper not yet in RePEc: Add citation now
  28. Grossman, S. J., & Stiglitz, J. E. (1980). On the impossibility of informationally efficient markets. The American Economic Review, 70, 393–408.

  29. Gujjar, J. P., & Kumar, R. (2021). Sentiment analysis: Textblob for decision making. International Journal of Scientific Research & Engineering Trends, 1097–1099.
    Paper not yet in RePEc: Add citation now
  30. Harris, L. (1987). Transaction data tests of the mixture of distributions hypothesis. Journal of Financial and Quantitative Analysis, 127–141.

  31. He, X., & Velu, R. (2014). Volume and volatility in a common-factor mixture of distributions model. Journal of Financial and Quantitative Analysis, 33–49.

  32. Hermansyah, R., & Sarno, R. (2020). Sentiment analysis about product and service evaluation of PT telekomunikasi Indonesia tbk from tweets using TextBlob, naive Bayes & K-NN method. In 2020 international seminar on application for technology of information and communication (iSemantic) (pp. 511–516). IEEE.
    Paper not yet in RePEc: Add citation now
  33. Ho, K.-Y., Shi, Y., & Zhang, Z. (2017). Does news matter in China’s foreign exchange market? Chinese RMB volatility and public information arrivals. International Review of Economics & Finance, 52, 302–321.
    Paper not yet in RePEc: Add citation now
  34. Hutson, E., Kearney, C., & Lynch, M. (2008). Volume and skewness in international equity markets. Journal of Banking & Finance, 32, 1255–1268.

  35. Jennings, R. H., Starks, L. T., & Fellingham, J. C. (1981). An equilibrium model of asset trading with sequential information arrival. The Journal of Finance, 36, 143–161.

  36. Jin, X., Shen, D., & Zhang, W. (2016). Has microblogging changed stock market behavior? Evidence from China. Physica A: Statistical Mechanics and Its Applications, 452, 151–156.

  37. Kao, Y.-S., Chuang, H.-L., & Ku, Y.-C. (2019). The empirical linkages among market returns, return volatility, and trading volume: Evidence from the S&P 500 VIX Futures. The North American Journal of Economics and Finance, Article 100871.
    Paper not yet in RePEc: Add citation now
  38. Kaur, C., & Sharma, A. (2020). Twitter sentiment analysis on coronavirus using textblob. EasyChair.
    Paper not yet in RePEc: Add citation now
  39. Khedr, A. E., & Yaseen, N. (2017). Predicting stock market behavior using data mining technique and news sentiment analysis. International Journal of Intelligent Systems and Applications, 9, 22.
    Paper not yet in RePEc: Add citation now
  40. Kolasinski, A. C., Reed, A. V., & Ringgenberg, M. C. (2013). A multiple lender approach to understanding supply and search in the equity lending market. The Journal of Finance, 68, 559–595.

  41. Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal of the Econometric Society, 1315–1335.

  42. Laakkonen, H., & Lanne, M. (2008). Asymmetric news effects on volatility: Good vs. bad news in good vs. bad times.

  43. Lamoureux, C. G., & Lastrapes, W. D. (1990a). Heteroskedasticity in stock return data: Volume versus GARCH effects. The Journal of Finance, 45, 221–229.

  44. Lamoureux, C. G., & Lastrapes, W. D. (1990b). Persistence in variance, structural change, and the GARCH model. Journal of Business & Economic Statistics, 8, 225–234.

  45. Li, Q., Chen, Y., Jiang, L. L., Li, P., & Chen, H. (2016). A tensor-based information framework for predicting the stock market. ACM Transactions on Information Systems, 34, 1–30.
    Paper not yet in RePEc: Add citation now
  46. Li, Q., Wang, T., Li, P., Liu, L., Gong, Q., & Chen, Y. (2014). The effect of news and public mood on stock movements. Information Sciences, 278, 826–840.
    Paper not yet in RePEc: Add citation now
  47. Li, Y., Jiang, S., Li, X., & Wang, S. (2021). The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach. Energy Economics, 95, Article 105140.

  48. Liu, G., & Wang, X. (2018). A numerical-based attention method for stock market prediction with dual information. IEEE Access, 7, 7357–7367.
    Paper not yet in RePEc: Add citation now
  49. Manguri, K. H., Ramadhan, R. N., & Amin, P. R. M. (2020). Twitter sentiment analysis on worldwide COVID-19 outbreaks. Kurdistan Journal of Applied Research, 54–65.
    Paper not yet in RePEc: Add citation now
  50. Manushree, A., Adarsh, M., & Kumar, P. R. (2017). A comparative method for different aspect based products features in online reviews of different languages. In 2017 2nd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT) (pp. 1836–1840). IEEE.
    Paper not yet in RePEc: Add citation now
  51. Merello, S., Ratto, A. P., Ma, Y., Luca, O., & Cambria, E. (2018). Investigating timing and impact of news on the stock market. In 2018 IEEE international conference on data mining workshops (ICDMW) (pp. 1348–1354). IEEE.
    Paper not yet in RePEc: Add citation now
  52. Mitra, A. (2020). Sentiment analysis using machine learning approaches (Lexicon based on movie review dataset). Journal of Ubiquitous Computing and Communication Technologies (UCCT), 2, 145–152.
    Paper not yet in RePEc: Add citation now
  53. Mitra, L., Mitra, G., & Dibartolomeo, D. (2011). Equity portfolio risk estimation using market information and sentiment. The handbook of news analytics in finance, 289–304.
    Paper not yet in RePEc: Add citation now
  54. Mostafa, F., Saha, P., Islam, M. R., & Nguyen, N. (2021). GJR-GARCH volatility modeling under NIG and ANN for predicting top cryptocurrencies. Journal of Risk and Financial Management, 14, 421.

  55. Paital, R. R., & Sharma, N. K. (2016). Bid-ask spreads, trading volume and return volatility: Intraday evidence from indian stock market. Eurasian Journal of Economics and Finance, 4, 24–40.

  56. Papapostolou, N. C., Pouliasis, P. K., Nomikos, N. K., & Kyriakou, I. (2016). Shipping investor sentiment and international stock return predictability. Transportation Research Part E: Logistics and Transportation Review, 96, 81–94.

  57. Rognone, L., Hyde, S., & Zhang, S. S. (2020). News sentiment in the cryptocurrency market: An empirical comparison with Forex. International Review of Financial Analysis, 69, Article 101462.

  58. Ross, S. A. (1989). Information and volatility: The no-arbitrage martingale approach to timing and resolution irrelevancy. The Journal of Finance, 44, 1–17.

  59. Sensoy, A., & Serdengeçti, S. (2019). Intraday volume-volatility nexus in the FX markets: Evidence from an emerging market. International Review of Financial Analysis, 64, 1–12.

  60. Serrano-Guerrero, J., Olivas, J. A., Romero, F. P., & Herrera-Viedma, E. (2015). Sentiment analysis: A review and comparative analysis of web services. Information Sciences, 311, 18–38.
    Paper not yet in RePEc: Add citation now
  61. Shekhawat, B. S. (2019). Sentiment classification of current public opinion on BREXIT: Naïve Bayes classifier model vs Python’s TextBlob approach. Dublin: National College of Ireland.
    Paper not yet in RePEc: Add citation now
  62. Shen, D., Li, X., & Zhang, W. (2017). Baidu news coverage and its impacts on order imbalance and large-size trade of Chinese stocks. Finance Research Letters, 23, 210–216.

  63. Shen, D., Li, X., & Zhang, W. (2018). Baidu news information flow and return volatility: Evidence for the sequential information arrival hypothesis. Economic Modelling, 69, 127–133.

  64. Shi, Y., Ho, K.-Y., & Liu, W.-M. (2016). Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach. International Review of Economics & Finance, 42, 291–312.

  65. Shrestha, B. (2019). Investigating contemporaneity and dynamism in the relationship between stock returns and trading volume at Nepalese stock market. Available at SSRN 3255534.
    Paper not yet in RePEc: Add citation now
  66. Shroff, N., Verdi, R. S., & Yu, G. (2014). Information environment and the investment decisions of multinational corporations. The Accounting Review, 89, 759–790.
    Paper not yet in RePEc: Add citation now
  67. Smirlock, M., & Starks, L. (1985). A further examination of stock price changes and transaction volume. Journal of Financial Research, 8, 217–226.

  68. Smirlock, M., & Starks, L. (1988). An empirical analysis of the stock price-volume relationship. Journal of Banking & Finance, 12, 31–41.

  69. Su, C.-W., Cai, X.-Y., & Tao, R. (2020). Can stock investor sentiment be contagious in China? Sustainability, 12, 1571.

  70. Suanpang, P., Jamjuntr, P., & Kaewyong, P. (2021). Sentiment analysis with a textblob package implications for tourism. Journal of Management Information and Decision Sciences, 24, 1–9.
    Paper not yet in RePEc: Add citation now
  71. Veronesi, P. (1999). Stock market overreactions to bad news in good times: A rational expectations equilibrium model. Review of Financial Studies, 12, 975–1007.

  72. Vijayarani, S., & Janani, R. (2016). Text mining: Open source tokenization tools-an analysis. Advanced Computational Intelligence: International Journal, 3, 37–47.
    Paper not yet in RePEc: Add citation now
  73. Wu, G. G.-R., Hou, T. C.-T., & Lin, J.-L. (2019). Can economic news predict Taiwan stock market returns? Asia Pacific Management Review, 24, 54–59.
    Paper not yet in RePEc: Add citation now
  74. Yermack, D. (2015). Is bitcoin a real currency? An economic appraisal. In Handbook of digital currency (pp. 31–43). Elsevier.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. News sentiment and the cost of debt11Our paper was accepted by the 2024 3rd Annual International Finance Conference (AIFC). The conference submission ID is “146”.. (2025). Wang, Daoping ; Xiao, Junchao.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:91:y:2025:i:c:s0927538x25000587.

    Full description at Econpapers || Download paper

  2. Social media sentiment contagion and stock price jumps and crashes. (2024). Xiong, Yan ; Yang, Jing.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:88:y:2024:i:c:s0927538x24002725.

    Full description at Econpapers || Download paper

  3. MD&A tone and stock returns. (2024). Wang, Feifei ; Xue, Wenjun ; He, Zhongzhi.
    In: Journal of Contemporary Accounting and Economics.
    RePEc:eee:jocaae:v:20:y:2024:i:3:s1815566924000407.

    Full description at Econpapers || Download paper

  4. When echoes surpass voices: Market reaction to forwarded news. (2024). Wei, Yixin ; Wang, Zining ; Kou, Fangyuan ; Duan, Jiaxin.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:96:y:2024:i:pa:s1057521924005118.

    Full description at Econpapers || Download paper

  5. Female CEOs’ name gender-neutralization and audit fees: Evidence from China. (2024). Dong, Siyuan ; Gao, Xinyi ; Liu, Cheng.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:96:y:2024:i:pa:s1057521924004903.

    Full description at Econpapers || Download paper

  6. Do bitcoin news information flow and return volatility fit the sequential information arrival hypothesis and the mixture of distribution hypothesis?. (2023). Day, Min-Yuh ; Chou, Ke-Hsin ; Chiu, Chien-Liang.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:88:y:2023:i:c:p:365-385.

    Full description at Econpapers || Download paper

  7. COVID-19 related TV news and stock returns: Evidence from major US TV stations. (2023). Moller, Rouven ; Reichmann, Doron.
    In: The Quarterly Review of Economics and Finance.
    RePEc:eee:quaeco:v:87:y:2023:i:c:p:95-109.

    Full description at Econpapers || Download paper

  8. COVID-19 and corporate tax avoidance: International evidence. (2023). Ramesh, Vishnu K ; Athira, A.
    In: International Business Review.
    RePEc:eee:iburev:v:32:y:2023:i:4:s0969593123000434.

    Full description at Econpapers || Download paper

  9. How online discussion board activity affects stock trading: the case of GameStop. (2022). Harries, Jan Philipp ; Betzer, Andre.
    In: Financial Markets and Portfolio Management.
    RePEc:kap:fmktpm:v:36:y:2022:i:4:d:10.1007_s11408-022-00407-w.

    Full description at Econpapers || Download paper

  10. Media sentiment and cross-sectional stock returns in the Chinese stock market. (2022). , Wenze ; Hao, Jing ; Du, Hanyu ; He, Feng.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:60:y:2022:i:c:s0275531921002117.

    Full description at Econpapers || Download paper

  11. The informational role of analysts’ textual statements. (2022). Miwa, Kotaro.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:59:y:2022:i:c:s0275531921001835.

    Full description at Econpapers || Download paper

  12. The role of different information sources in information spread: Evidence from three media channels in China. (2022). Gao, YA ; Xiong, Xiong ; Wu, Chunying.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:80:y:2022:i:c:p:327-341.

    Full description at Econpapers || Download paper

  13. Media abnormal tone, earnings announcements, and the stock market. (2022). Boudt, Kris ; Bluteau, Keven ; Ardia, David.
    In: Journal of Financial Markets.
    RePEc:eee:finmar:v:61:y:2022:i:c:s1386418121000598.

    Full description at Econpapers || Download paper

  14. Corporate misconduct, media coverage, and stock returns. (2022). Ahn, Tae-Wook ; Yi, Junesuh ; Jo, Hoje ; Kim, Hee-Eun.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:84:y:2022:i:c:s1057521922003313.

    Full description at Econpapers || Download paper

  15. Where and about what? Price relevant narratives depend on topic and media type. (2022). Liu, Sha ; Gaskell, Paul ; McGroarty, Frank.
    In: Economics Letters.
    RePEc:eee:ecolet:v:213:y:2022:i:c:s0165176522000507.

    Full description at Econpapers || Download paper

  16. FinTech innovation regulation based on reputation theory with the participation of new media. (2021). Zhou, XI ; Chen, Shou.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:67:y:2021:i:c:s0927538x2100072x.

    Full description at Econpapers || Download paper

  17. Dynamic measurement of news-driven information friction in Chinas carbon market: Theory and evidence. (2021). Cao, Tingting ; Xu, Tiantian ; Li, Houxuan ; Zhang, Heng-Guo.
    In: Energy Economics.
    RePEc:eee:eneeco:v:95:y:2021:i:c:s0140988320303340.

    Full description at Econpapers || Download paper

  18. Media effects matter: Macroeconomic announcements in the gold futures market. (2021). Li, Wenyu ; Sun, Wenjia ; Liang, QI ; Yu, Fengyan.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:96:y:2021:i:c:p:1-12.

    Full description at Econpapers || Download paper

  19. Money chasing hot industries? Investor attention and valuation of venture capital backed firms. (2021). Zhang, Xueyong ; Que, Jiangjing.
    In: Journal of Corporate Finance.
    RePEc:eee:corfin:v:68:y:2021:i:c:s0929119921000705.

    Full description at Econpapers || Download paper

  20. Media abnormal tone, earnings announcements, and the stock market. (2021). Boudt, Kris ; Bluteau, Keven ; Ardia, David.
    In: Papers.
    RePEc:arx:papers:2110.10800.

    Full description at Econpapers || Download paper

  21. Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages. (2020). Renault, Thomas.
    In: Digital Finance.
    RePEc:spr:digfin:v:2:y:2020:i:1:d:10.1007_s42521-019-00014-x.

    Full description at Econpapers || Download paper

  22. Media tone and expected stock returns. (2020). Liu, Sha ; Han, Jingguang.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:70:y:2020:i:c:s1057521920301666.

    Full description at Econpapers || Download paper

  23. News sentiment, credit spreads, and information asymmetry. (2020). Liu, Zhechen ; Wang, Xinjie ; Yang, Shanxiang.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:52:y:2020:i:c:s1062940820300760.

    Full description at Econpapers || Download paper

  24. News media analytics in finance: a survey. (2020). Vanstone, Bruce ; Marty, Tom ; Hahn, Tobias.
    In: Accounting and Finance.
    RePEc:bla:acctfi:v:60:y:2020:i:2:p:1385-1434.

    Full description at Econpapers || Download paper

  25. Determinants of MD&A sentiment in Canada. (2019). Dutta, Shantanu ; Fuksa, Michel ; MacAulay, Ken.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:60:y:2019:i:c:p:130-148.

    Full description at Econpapers || Download paper

  26. Operational risk and reputation in financial institutions: Does media tone make a difference?. (2019). Fenn, Paul ; Ashby, Simon ; Bryce, Cormac ; Barakat, Ahmed.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:98:y:2019:i:c:p:1-24.

    Full description at Econpapers || Download paper

  27. Cryptocurrency, confirmatory bias and news readability – evidence from the largest Chinese cryptocurrency exchange. (2019). Zhou, Xuanyu ; Zhang, Shuyu ; Jia, Junyi ; Pan, Huifeng.
    In: Accounting and Finance.
    RePEc:bla:acctfi:v:58:y:2019:i:5:p:1445-1468.

    Full description at Econpapers || Download paper

  28. Herding in analysts’ recommendations: The role of media. (2018). Huynh, Thanh ; Frijns, Bart.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:91:y:2018:i:c:p:1-18.

    Full description at Econpapers || Download paper

  29. Media sentiment and IPO underpricing. (2017). Bajo, Emanuele ; Raimondo, Carlo.
    In: Journal of Corporate Finance.
    RePEc:eee:corfin:v:46:y:2017:i:c:p:139-153.

    Full description at Econpapers || Download paper

  30. Media Coverage and Food Commodities: Agricultural Futures Prices and Volatility Effects. (2017). Torero, Maximo ; Almanzar, Miguel.
    In: Discussion Papers.
    RePEc:ags:ubzefd:264781.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 02:57:10 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.