Ang, A. ; Bekaert, G. Stock return predictability: Is it there?. 2007 Review of Financial Studies. 20 651-707
- Antoniou, A. ; Foster, A.J. The effect of futures trading on spot price volatility: Evidence for brent crude oil using GARCH. 1992 Journal of Business Finance & Accounting. 19 473-484
Paper not yet in RePEc: Add citation now
- Asgharian, H. ; Hou, A.J. ; Javed, F. The importance of the macroeconomic variables in forecasting stock return variance: A GARCH‐MIDAS approach. 2013 Journal of Forecasting. 32 600-612
Paper not yet in RePEc: Add citation now
Baillie, R.T. ; Bollerslev, T. ; Mikkelsen, H.O. Fractionally integrated generalized autoregressive conditional heteroskedasticity. 1996 Journal of Econometrics. 74 3-30
Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. 1986 Journal of Econometrics. 31 307-327
Bollerslev, T. ; Hood, B. ; Huss, J. ; Pedersen, L.H. Risk everywhere: Modeling and managing volatility. 2018 Review of Financial Studies. 31 2729-2773
Cai, Z. Trending time-varying coefficient time series models with serially correlated errors. 2007 Journal of Econometrics. 136 163-188
- Cai, Z. ; Fan, J. ; Li, R. Efficient estimation and inferences for varying-coefficient models. 2000 Journal of the American Statistical Association. 95 888-902
Paper not yet in RePEc: Add citation now
- Cai, Z. ; Fan, J. ; Yao, Q. Functional-coefficient regression models for nonlinear time series. 2000 Journal of the American Statistical Association. 95 941-956
Paper not yet in RePEc: Add citation now
Cai, Z. ; Ren, Y. ; Yang, B. A semiparametric conditional capital asset pricing model. 2015 Journal of Banking & Finance. 61 117-126
Campbell, J.Y. ; Thompson, S.B. Predicting excess stock returns out of sample: Can anything beat the historical average?. 2008 Review of Financial Studies. 21 1509-1531
- Chen, W. ; Ma, F. ; Wei, Y. ; Liu, J. Forecasting oil price volatility using high-frequency data: New evidence. 2020 International Review of Economics & Finance. 66 1-12
Paper not yet in RePEc: Add citation now
- Chen, Z. ; Ye, Y. ; Li, X. ; Eggert, R.G. Forecasting China's crude oil futures volatility: New evidence from the MIDAS-RV model and COVID-19 pandemic. 2022 Resources Policy. 75 102453-
Paper not yet in RePEc: Add citation now
Clark, T.E. ; West, K.D. Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis. 2006 Journal of Econometrics. 135 155-186
- Craven, P. ; Wahba, G. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. 1978 Numerische Mathematik. 31 377-403
Paper not yet in RePEc: Add citation now
- Dai, Z. ; Wu, T. The impact of oil shocks on systemic risk of the commodity markets. 2023 Journal of Systems Science and Complexity. -
Paper not yet in RePEc: Add citation now
Dangl, T. ; Halling, M. Predictive regressions with time-varying coefficients. 2012 Journal of Financial Economics. 106 157-181
Devpura, N. ; Narayan, P.K. ; Sharma, S.S. Is stock return predictability time-varying?. 2018 Journal of International Financial Markets, Institutions and Money. 52 152-172
Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 2002 Journal of Business & Economic Statistics. 20 134-144
- Drachal, K. Forecasting crude oil real prices with averaging time-varying VAR models. 2021 Resources Policy. 74 -
Paper not yet in RePEc: Add citation now
- Duin On the choice of smoothing parameters for Parzen estimators of probability density functions. 1976 IEEE Transactions on Computers. 100 1175-1179
Paper not yet in RePEc: Add citation now
- Engle, R.F. ; Bollerslev, T. Modelling the persistence of conditional variances. 1986 Econometric Reviews. 5 1-50
Paper not yet in RePEc: Add citation now
Engle, R.F. ; Ghysels, E. ; Sohn, B. Stock market volatility and macroeconomic fundamentals. 2013 The Review of Economics and Statistics. 95 776-797
Engle, R.F. ; Rangel, J.G. The spline-GARCH model for low-frequency volatility and its global macroeconomic causes. 2008 Review of Financial Studies. 21 1187-1222
- Fan, J. Local linear regression smoothers and their minimax efficiencies. 1993 Annals of Statistics. 21 196-216
Paper not yet in RePEc: Add citation now
- Fan, J. ; Chen, J. One‐step local quasi‐likelihood estimation. 1999 Journal of the Royal Statistical Society: Series B. 61 927-943
Paper not yet in RePEc: Add citation now
Fan, J. ; Farmen, M. ; Gijbels, I. Local maximum likelihood estimation and inference. 1998 Journal of the Royal Statistical Society - Series B: Statistical Methodology. 60 591-608
- Fan, J. ; Zhang, W. Statistical estimation in varying coefficient models. 1999 Annals of Statistics. 27 1491-1518
Paper not yet in RePEc: Add citation now
- Fan, J.C.C. ; Gijbels, R. Local polynomial modelling and its applications. 1996 :
Paper not yet in RePEc: Add citation now
Guérin, P. ; Marcellino, M. Markov-switching MIDAS models. 2013 Journal of Business & Economic Statistics. 31 45-56
Hansen, P.R. ; Lunde, A. ; Nason, J.M. The model confidence set. 2011 Econometrica. 79 453-497
- Herrera, A.M. ; Hu, L. ; Pastor, D. Forecasting crude oil price volatility. 2018 International Journal of Forecasting. 34 622-635
Paper not yet in RePEc: Add citation now
Inoue, A. ; Kilian, L. Bagging time series models. 2004 :
Kang, S.H. ; Kang, S.-M. ; Yoon, S.-M. Forecasting volatility of crude oil markets. 2009 Energy Economics. 31 119-125
Kim, C.-J. Dynamic linear models with Markov-switching. 1994 Journal of Econometrics. 60 1-22
Li, X. ; Liang, C. ; Chen, Z. ; Umar, M. Forecasting crude oil volatility with uncertainty indicators: New evidence. 2022 Energy Economics. 108 -
- Li, X. ; Wei, Y. ; Chen, X. ; Ma, F. ; Chen, W. Which uncertainty is powerful to forecast crude oil market volatility? New evidence. 2020 International Journal of Finance & Economics. 27 4279-4297
Paper not yet in RePEc: Add citation now
Liang, C. ; Li, Y. ; Ma, F. ; Wei, Y. Global equity market volatilities forecasting: A comparison of leverage effects, jumps, and overnight information. 2021 International Review of Financial Analysis. 75 -
Liang, C. ; Wang, L. ; Duong, D. More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?. 2024 Journal of Economic Behavior & Organization. 218 1-19
Liang, C. ; Wei, Y. ; Zhang, Y. Is implied volatility more informative for forecasting realized volatility: An international perspective. 2020 Journal of Forecasting. 39 1253-1276
Ma, F. ; Liang, C. ; Zeng, Q. ; Li, H. Jumps and oil futures volatility forecasting: A new insight. 2021 Quantitative Finance. 21 853-863
Ma, F. ; Lu, X. ; Wang, L. ; Chevallier, J. Global economic policy uncertainty and gold futures market volatility: Evidence from Markov regime‐switching GARCH‐MIDAS models. 2021 Journal of Forecasting. 40 1070-1085
Nelson, D.B. Conditional heteroskedasticity in asset returns: A new approach. 1991 Econometrica: Journal of the Econometric Society. 347-370
Pan, Z. ; Wang, Q. ; Wang, Y. ; Yang, L. Forecasting us real GDP using oil prices: A time-varying parameter MIDAS model. 2018 Energy Economics. 72 177-187
Pan, Z. ; Wang, Y. ; Wu, C. ; Yin, L. Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model. 2017 Journal of Empirical Finance. 43 130-142
Peng, L. ; Liang, C. Sustainable development during the post-COVID-19 period: Role of crude oil. 2023 Resources Policy. 85 -
Peng, L. ; Pan, Z. ; Liang, C. ; Umar, M. Exchange rate volatility predictability: A new insight from climate policy uncertainty. 2023 Economic Analysis and Policy. 80 688-700
Rohan, N. ; Ramanathan, T. Nonparametric estimation of a time-varying GARCH model. 2013 Journal of Nonparametric Statistics. 25 33-52
- Ruppert, D. ; Wand, M.P. Multivariate locally weighted least squares regression. 1994 Annals of Statistics. 22 1346-1370
Paper not yet in RePEc: Add citation now
Schwert, G.W. Why does stock market volatility change over time?. 1989 The Journal of Finance. 44 1115-1153
Segnon, M. ; Gupta, R. ; Wilfling, B. Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks. 2024 International Journal of Forecasting. 40 29-43
- Wang, L. ; Ma, F. ; Liu, J. ; Yang, L. Forecasting stock price volatility: New evidence from the GARCH-MIDAS model. 2020 International Journal of Forecasting. 36 684-694
Paper not yet in RePEc: Add citation now
Wang, L. ; Wu, J. ; Cao, Y. ; Hong, Y. Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?. 2022 Energy Economics. 111 -
Wang, Y. ; Liu, L. ; Wu, C. Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models. 2017 Energy Economics. 66 337-348
- Wang, Y. ; Pan, Z. ; Wu, C. Time‐varying parameter realized volatility models. 2017 Journal of Forecasting. 36 566-580
Paper not yet in RePEc: Add citation now
Wei, Y. ; Wang, Y. ; Huang, D. Forecasting crude oil market volatility: Further evidence using GARCH-class models. 2010 Energy Economics. 32 1477-1484
Wolff, C.C. Time-varying parameters and the out-of-sample forecasting performance of structural exchange rate models. 1987 Journal of Business & Economic Statistics. 5 87-97
Zhang, Y. ; Ma, F. ; Zhu, B. Intraday momentum and stock return predictability: Evidence from China. 2019 Economic Modelling. 76 319-329
- Zhang, Y. ; Wahab, M. ; Wang, Y. Forecasting crude oil market volatility using variable selection and common factor. 2023 International Journal of Forecasting. 39 486-502
Paper not yet in RePEc: Add citation now