create a website

Forecasting US GDP growth rates in a rich environment of macroeconomic data. (2024). Tao, Ying ; Zeng, Qing ; Lu, Fei ; Bouri, Elie.
In: International Review of Economics & Finance.
RePEc:eee:reveco:v:95:y:2024:i:c:s1059056024004684.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 45

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Forecasting Follies: Machine Learning from Human Errors. (2025). Zhao, Yongchen ; Sun, LI.
    In: JRFM.
    RePEc:gam:jjrfmx:v:18:y:2025:i:2:p:60-:d:1579096.

    Full description at Econpapers || Download paper

  2. Modeling GDP with a continuous-time finance approach. (2025). Liu, Zhenya ; You, Rongyu ; Zhan, Yaosong.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:76:y:2025:i:c:s1544612325002351.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Andreou, E. ; Ghysels, E. ; Kourtellos, A. Regression models with mixed sampling frequencies. 2010 Journal of Econometrics. 158 246-261

  2. Angelini, E. ; Camba‐Mendez, G. ; Giannone, D. ; Reichlin, L. ; Rünstler, G. Short‐term forecasts of euro area GDP growth. 2011 The Econometrics Journal. 14 25-44
    Paper not yet in RePEc: Add citation now
  3. Atsalakis, G.S. ; Bouri, E. ; Pasiouras, F. Natural disasters and economic growth: A quantile on quantile approach. 2021 Annals of Operations Research. 306 83-109

  4. Audrino, F. ; Hu, Y. Volatility forecasting: Downside risk, jumps and leverage effect. 2016 Econometrics. 4 8-

  5. Baffigi, A. ; Golinelli, R. ; Parigi, G. Bridge models to forecast the euro area GDP. 2004 International Journal of Forecasting. 20 447-460

  6. Bai, J. ; Ng, S. Forecasting economic time series using targeted predictors. 2008 Journal of Econometrics. 146 304-317

  7. Baker, S.R. ; Bloom, N. ; Davis, S.J. Measuring economic policy uncertainty. 2016 Quarterly Journal of Economics. 131 1593-1636

  8. Barsoum, F. ; Stankiewicz, S. Forecasting GDP growth using mixed-frequency models with switching regimes. 2015 International Journal of Forecasting. 31 33-50

  9. Baumeister, C. ; Guérin, P. A comparison of monthly global indicators for forecasting growth. 2021 International Journal of Forecasting. 37 1276-1295

  10. Berger, A.N. ; Bouwman, C.H. How does capital affect bank performance during financial crises?. 2013 Journal of Financial Economics. 109 146-176

  11. Bessec, M. ; Bouabdallah, O. Forecasting GDP over the business cycle in a multi‐frequency and data‐rich environment. 2015 Oxford Bulletin of Economics & Statistics. 77 360-384

  12. Camba-Mendez, G. ; Kapetanios, G. ; Smith, R.J. ; Weale, M.R. An automatic leading indicator of economic activity: Forecasting GDP growth for European countries. 2001 The Econometrics Journal. 4 S56-S90

  13. Campbell, J.Y. ; Thompson, S.B. Predicting excess stock returns out of sample: Can anything beat the historical average?. 2008 Review of Financial Studies. 21 1509-1531

  14. Cepni, O. ; Guney, I.E. ; Swanson, N.R. Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors. 2020 Journal of Forecasting. 39 18-36

  15. Chinco, A. ; Clark‐Joseph, A.D. ; Ye, M. Sparse signals in the cross‐section of returns. 2019 The Journal of Finance. 74 449-492
    Paper not yet in RePEc: Add citation now
  16. Clark, T.E. ; West, K.D. Approximately normal tests for equal predictive accuracy in nested models. 2007 Journal of Econometrics. 138 291-311

  17. Ericsson, N.R. Eliciting GDP forecasts from the FOMC's minutes around the financial crisis. 2016 International Journal of Forecasting. 32 571-583

  18. Fisher, A. ; Martineau, C. ; Sheng, J. Macroeconomic attention and announcement risk premia. 2022 Review of Financial Studies. 35 5057-5093

  19. Foroni, C. ; Marcellino, M. ; Stevanovic, D. Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis. 2020 International Journal of Forecasting. 38 596-612

  20. Garnitz, J. ; Lehmann, R. ; Wohlrabe, K. Forecasting GDP all over the world using leading indicators based on comprehensive survey data. 2019 Applied Economics. 51 5802-5816

  21. Ghysels, E. ; Sinko, A. ; Valkanov, R. MIDAS regressions: Further results and new directions. 2007 Econometric Reviews. 26 53-90

  22. Götz, T.B. ; Knetsch, T.A. Google data in bridge equation models for German GDP. 2019 International Journal of Forecasting. 35 45-66

  23. Hansen, P.R. ; Lunde, A. ; Nason, J.M. The model confidence set. 2011 Econometrica. 79 453-497

  24. Huang, D. ; Jiang, F. ; Li, K. ; Tong, G. ; Zhou, G. Scaled PCA: A new approach to dimension reduction. 2022 Management Science. 68 1678-1695

  25. Jokubaitis, S. ; Celov, D. ; Leipus, R. Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run. 2021 International Journal of Forecasting. 37 759-776

  26. Kacperczyk, M. ; Van Nieuwerburgh, S. ; Veldkamp, L. A rational theory of mutual funds' attention allocation. 2016 Econometrica. 84 571-626

  27. Kilian, L. ; Vigfusson, R.J. Do oil prices help forecast US real GDP? The role of nonlinearities and asymmetries. 2013 Journal of Business & Economic Statistics. 31 78-93

  28. Kuppuswamy, V. ; Villalonga, B. Does diversification create value in the presence of external financing constraints? Evidence from the 2007–2009 financial crisis. 2016 Management Science. 62 905-923

  29. Landefeld, J.S. ; Seskin, E.P. ; Fraumeni, B.M. Taking the pulse of the economy: Measuring GDP. 2008 The Journal of Economic Perspectives. 22 193-216

  30. Liu, H. ; Liu, Y. ; Li, G. ; Wen, L. Tourism demand nowcasting using a LASSO-MIDAS model. 2021 International Journal of Contemporary Hospitality Management. 33 1922-1949
    Paper not yet in RePEc: Add citation now
  31. Lu, F. ; Ma, F. ; Li, P. ; Huang, D. Natural gas volatility predictability in a data-rich world. 2022 International Review of Financial Analysis. 102218 -

  32. Ma, F. ; Wahab, M.I.M. ; Zhang, Y. Forecasting the US stock volatility: An aligned jump index from G7 stock markets. 2019 Pacific-Basin Finance Journal. 54 132-146

  33. Marsilli, C. Variable selection in predictive MIDAS models. 2014 Banque de France Working Paper No.. 520 -

  34. McCracken, M.W. ; Ng, S. FRED-MD: A monthly database for macroeconomic research. 2016 Journal of Business & Economic Statistics. 34 574-589

  35. Ngo, Q.T. ; Tran, H.A. ; Tran, H.T.T. The impact of green finance and covid-19 on economic development: Capital formation and educational expenditure of ASEAN economies. 2022 China Finance Review International. 12 261-279
    Paper not yet in RePEc: Add citation now
  36. Pan, Z. ; Wang, Q. ; Wang, Y. ; Yang, L. Forecasting US real GDP using oil prices: A time-varying parameter MIDAS model. 2018 Energy Economics. 72 177-187

  37. Paye, B.S. ‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables. 2012 Journal of Financial Economics. 106 527-546

  38. Rapach, D.E. ; Strauss, J.K. ; Zhou, G. Out-of-sample equity premium prediction: Combination forecasts and links to the real economy. 2010 Review of Financial Studies. 23 821-862

  39. Rossi, B. ; Inoue, A. Out-of-sample forecast tests robust to the choice of window size. 2012 Journal of Business & Economic Statistics. 30 432-453

  40. Roubini, N. ; Sachs, J. Government spending and budget deficits in the industrial countries. 1989 Economic Policy. 4 99-132

  41. Schivardi, F. ; Sette, E. ; Tabellini, G. Credit misallocation during the European financial crisis. 2022 The Economic Journal. 132 391-423

  42. Schumacher, C. ; Breitung, J. Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data. 2008 International Journal of Forecasting. 24 386-398

  43. Stock, J.H. ; Watson, M.W. Business cycle fluctuations in US macroeconomic time series. 1999 Handbook of Macroeconomics. 1 3-64

  44. Stockhammar, P. ; Österholm, P. Effects of US policy uncertainty on Swedish GDP growth. 2016 Empirical Economics. 50 443-462

  45. Tibshirani, R. Regression shrinkage and selection via the lasso. 1996 Journal of the Royal Statistical Society: Series B. 58 267-288
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Mixed Sampling Panel Data Model for Regional Job Vacancies Forecasting. (2017). .
    In: Eco-Economics Review.
    RePEc:eub:ecoecr:v:3:y:2017:i:1:p:3-20.

    Full description at Econpapers || Download paper

  2. COSMO: A new COre Structural MOdel for Ireland. (2017). Smith, Donal ; Morgenroth, Edgar ; Holland, Dawn ; Conroy, Niall ; Bergin, Adele ; McInerney, Niall ; Rodriguez, Abian Garcia.
    In: Papers.
    RePEc:esr:wpaper:wp553.

    Full description at Econpapers || Download paper

  3. On the use of high frequency measures of volatility in MIDAS regressions. (2016). Andreou, Elena.
    In: University of Cyprus Working Papers in Economics.
    RePEc:ucy:cypeua:03-2016.

    Full description at Econpapers || Download paper

  4. Revisiting the transitional dynamics of business-cycle phases with mixed frequency data. (2016). Bessec, Marie.
    In: Working Papers.
    RePEc:hal:wpaper:hal-01358595.

    Full description at Econpapers || Download paper

  5. The Estimation of Continuous Time Models with Mixed Frequency Data. (2016). Chambers, Marcus.
    In: Economics Discussion Papers.
    RePEc:esx:essedp:15988.

    Full description at Econpapers || Download paper

  6. Recovering historical inflation data from postal stamps prices. (2016). Franses, Philip Hans ; Janssens, E.
    In: Econometric Institute Research Papers.
    RePEc:ems:eureir:93332.

    Full description at Econpapers || Download paper

  7. Yet another look at MIDAS regression. (2016). Franses, Philip Hans.
    In: Econometric Institute Research Papers.
    RePEc:ems:eureir:93331.

    Full description at Econpapers || Download paper

  8. A comparison of MIDAS and bridge equations. (2016). Schumacher, Christian.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:32:y:2016:i:2:p:257-270.

    Full description at Econpapers || Download paper

  9. Estimating dynamic equilibrium models using mixed frequency macro and financial data. (2016). van der Wel, Michel ; Posch, Olaf ; Christensen, Bent Jesper.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:194:y:2016:i:1:p:116-137.

    Full description at Econpapers || Download paper

  10. The estimation of continuous time models with mixed frequency data. (2016). Chambers, Marcus.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:193:y:2016:i:2:p:390-404.

    Full description at Econpapers || Download paper

  11. On the use of high frequency measures of volatility in MIDAS regressions. (2016). Andreou, Elena.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:193:y:2016:i:2:p:367-389.

    Full description at Econpapers || Download paper

  12. Macroeconomics and the reality of mixed frequency data. (2016). Ghysels, Eric.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:193:y:2016:i:2:p:294-314.

    Full description at Econpapers || Download paper

  13. On the use of high frequency measures of volatility in MIDAS regressions. (2016). Andreou, Elena.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:11307.

    Full description at Econpapers || Download paper

  14. Nowcasting in Real Time Using Popularity Priors. (2015). Monokroussos, George.
    In: MPRA Paper.
    RePEc:pra:mprapa:68594.

    Full description at Econpapers || Download paper

  15. Benchmarking Liquidity Proxies: Accounting for Dynamics and Frequency Issues. (2015). Papanagiotou, Evangelia ; Monokroussos, George ; Langedijk, Sven.
    In: MPRA Paper.
    RePEc:pra:mprapa:61865.

    Full description at Econpapers || Download paper

  16. Revisiting the transitional dynamics of business-cycle phases with mixed frequency data. (2015). .
    In: Post-Print.
    RePEc:hal:journl:hal-01276824.

    Full description at Econpapers || Download paper

  17. The State and the Future of Cyprus Macroeconomic Forecasting. (2015). Andreou, Elena ; Kourtellos, Andros.
    In: Cyprus Economic Policy Review.
    RePEc:erc:cypepr:v:9:y:2015:i:1:p:73-90.

    Full description at Econpapers || Download paper

  18. Does the Greenspan era provide evidence on leadership in the FOMC?. (2015). Jung, Alexander ; El-Shagi, Makram.
    In: Journal of Macroeconomics.
    RePEc:eee:jmacro:v:43:y:2015:i:c:p:173-190.

    Full description at Econpapers || Download paper

  19. Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?. (2015). Mogliani, Matteo ; Bec, Frédérique.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:31:y:2015:i:4:p:1021-1042.

    Full description at Econpapers || Download paper

  20. Do high-frequency financial data help forecast oil prices? The MIDAS touch at work. (2015). Kilian, Lutz ; Guérin, Pierre ; Baumeister, Christiane.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:31:y:2015:i:2:p:238-252.

    Full description at Econpapers || Download paper

  21. Revisiting the transitional dynamics of business-cycle phases with mixed frequency data. (2015). .
    In: Economics Papers from University Paris Dauphine.
    RePEc:dau:papers:123456789/15246.

    Full description at Econpapers || Download paper

  22. MIDAS regressions with time-varying parameters: An application to corporate bond spreads and GDP in the Euro area. (2014). Schumacher, Christian.
    In: VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy.
    RePEc:zbw:vfsc14:100289.

    Full description at Econpapers || Download paper

  23. MIDAS and bridge equations. (2014). Schumacher, Christian.
    In: Discussion Papers.
    RePEc:zbw:bubdps:262014.

    Full description at Econpapers || Download paper

  24. Default probabilities, CDS premiums and downgrades : A probit-MIDAS analysis. (2014). Freitag, Lennart ; Freitag L., .
    In: Research Memorandum.
    RePEc:unm:umagsb:2014038.

    Full description at Econpapers || Download paper

  25. Testing for Cointegration with Temporally Aggregated and Mixed-frequency Time Series. (2014). Miller, J. ; Ghysels, Eric.
    In: Working Papers.
    RePEc:umc:wpaper:1307.

    Full description at Econpapers || Download paper

  26. Forecasting Chinese GDP Growth with Mixed Frequency Data. (2014). Mikosch, Heiner ; Zhang, Ying.
    In: KOF Working papers.
    RePEc:kof:wpskof:14-359.

    Full description at Econpapers || Download paper

  27. Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences. (2014). Potter, Simon ; Peach, Richard ; onorante, luca ; Ghysels, Eric ; Alessi, Luci .
    In: Staff Reports.
    RePEc:fip:fednsr:680.

    Full description at Econpapers || Download paper

  28. Forecasting inflation using commodity price aggregates. (2014). Turnovsky, Stephen J ; Chen, Yu-Chin ; Zivot, Eric.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:183:y:2014:i:1:p:117-134.

    Full description at Econpapers || Download paper

  29. Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences. (2014). Potter, Simon ; Peach, Richard ; onorante, luca ; Alessi, Lucia ; Ghysels, Eric.
    In: Working Paper Series.
    RePEc:ecb:ecbwps:20141688.

    Full description at Econpapers || Download paper

  30. Variable Selection in Predictive MIDAS Models. (2014). Marsilli, Clément.
    In: Working papers.
    RePEc:bfr:banfra:520.

    Full description at Econpapers || Download paper

  31. Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work. (2014). Kilian, Lutz ; Guérin, Pierre ; Baumeister, Christiane ; Guerin, Pierre.
    In: Staff Working Papers.
    RePEc:bca:bocawp:14-11.

    Full description at Econpapers || Download paper

  32. Do high-frequency financial data help forecast oil prices? The MIDAS touch at work. (2013). Kilian, Lutz ; Guérin, Pierre ; Baumeister, Christiane.
    In: CFS Working Paper Series.
    RePEc:zbw:cfswop:201322.

    Full description at Econpapers || Download paper

  33. Importance of the macroeconomic variables for variance prediction A GARCH-MIDAS approach. (2013). Asgharian, Hossein ; Javed, Farrukh ; Hou, Ai Jun.
    In: Knut Wicksell Working Paper Series.
    RePEc:hhs:luwick:2013_004.

    Full description at Econpapers || Download paper

  34. Nowcasting US GDP: The role of ISM business surveys. (2013). Monokroussos, George ; Lahiri, Kajal.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:29:y:2013:i:4:p:644-658.

    Full description at Econpapers || Download paper

  35. Changes in predictive ability with mixed frequency data. (2013). Galvão, Ana ; Galvo, Ana Beatriz.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:29:y:2013:i:3:p:395-410.

    Full description at Econpapers || Download paper

  36. Advances in Forecasting under Instability. (2013). Rossi, Barbara.
    In: Handbook of Economic Forecasting.
    RePEc:eee:ecofch:2-1203.

    Full description at Econpapers || Download paper

  37. Nowcasting GDP: Electronic Payments, Data Vintages and the Timing of Data Releases. (2013). Tkacz, Greg ; Galbraith, John.
    In: CIRANO Working Papers.
    RePEc:cir:cirwor:2013s-25.

    Full description at Econpapers || Download paper

  38. Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data). (2012). Hecq, Alain ; Götz, Thomas ; Gotz Thomas B., .
    In: Research Memorandum.
    RePEc:unm:umamet:2012021.

    Full description at Econpapers || Download paper

  39. Forecasting Mixed Frequency Time Series with ECM-MIDAS Models. (2012). Hecq, Alain ; Götz, Thomas.
    In: Research Memorandum.
    RePEc:unm:umamet:2012012.

    Full description at Econpapers || Download paper

  40. Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures. (2012). Miller, J..
    In: Working Papers.
    RePEc:umc:wpaper:1211.

    Full description at Econpapers || Download paper

  41. Predicting quarterly aggregates with monthly indicators. (2012). Winkelried, Diego.
    In: Working Papers.
    RePEc:rbp:wpaper:2012-023.

    Full description at Econpapers || Download paper

  42. Testing the functional constraints on parameters in regressions with variables of different frequency. (2012). Zemlys, Vaidotas ; Kvedaras, Virmantas.
    In: Economics Letters.
    RePEc:eee:ecolet:v:116:y:2012:i:2:p:250-254.

    Full description at Econpapers || Download paper

  43. U-MIDAS: MIDAS regressions with unrestricted lag polynomials. (2011). Schumacher, Christian ; Marcellino, Massimiliano ; Foroni, Claudia.
    In: Discussion Paper Series 1: Economic Studies.
    RePEc:zbw:bubdp1:201135.

    Full description at Econpapers || Download paper

  44. Estimating VARs sampled at mixed or irregular spaced frequencies : a Bayesian approach. (2011). Kim, Tae Bong ; Foerster, Andrew ; Chiu, Ching-Wai (Jeremy) ; Seoane, Hernan D. ; Eraker, Bjorn.
    In: Research Working Paper.
    RePEc:fip:fedkrw:rwp11-11.

    Full description at Econpapers || Download paper

  45. Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models. (2011). Chevallier, Julien.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:28:y:2011:i:6:p:2634-2656.

    Full description at Econpapers || Download paper

  46. Advances in Forecasting Under Instability. (2011). Rossi, Barbara.
    In: Working Papers.
    RePEc:duk:dukeec:11-20.

    Full description at Econpapers || Download paper

  47. Growth and chronic poverty: Evidence from rural communities in Ethiopia. (2011). Hoddinott, John ; Dercon, Stefan ; Woldehanna, Tassew.
    In: CSAE Working Paper Series.
    RePEc:csa:wpaper:2011-18.

    Full description at Econpapers || Download paper

  48. Vector autoregression with varied frequency data. (2010). Qian, Hang.
    In: MPRA Paper.
    RePEc:pra:mprapa:34682.

    Full description at Econpapers || Download paper

  49. Linear regression using both temporally aggregated and temporally disaggregated data: Revisited. (2010). Qian, Hang.
    In: MPRA Paper.
    RePEc:pra:mprapa:32686.

    Full description at Econpapers || Download paper

  50. MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area. (2009). Schumacher, Christian ; Marcellino, Massimiliano ; Kuzin, Vladimir.
    In: CEPR Discussion Papers.
    RePEc:cpr:ceprdp:7445.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 09:41:47 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.