Alexandridis, G. ; Sahoo, S. ; Song, D.W. ; Visvikis, I. Shipping risk management practice revisited: A new portfolio approach. 2018 Transp. Res. Part A: Policy Pract.. 110 274-290
Alizadeh, A.H. Trading volume and volatility in the shipping forward freight market. 2013 Transp. Res. Part E: Logist. Transp. Rev.. 49 250-265
- Angelopoulos, J. Time–frequency analysis of the Baltic Dry Index.. 2017 Marit. Econ. Logist.. 19 211-233
Paper not yet in RePEc: Add citation now
Angelopoulos, J. ; Sahoo, S. ; Visvikis, I.D. Commodity and transportation economic market interactions revisited: new evidence from a dynamic factor model. 2020 Transp. Res. Part E: Logist. Transp. Rev.. 133 -
- Awasthi, K. ; Ahmad, W. ; Rahman, A. ; Phani, B.V. When US sneezes, clichés spread: How do the commodity index funds react then?.. 2020 Resour. Policy. 69 -
Paper not yet in RePEc: Add citation now
- Bae, S.H. ; Lee, G. ; Park, K.S. A Baltic dry index prediction using deep learning models. 2021 J. Korea Trade (JKT). 25 17-36
Paper not yet in RePEc: Add citation now
Banerjee, A.K. Russia–Ukrainian war: measuring the intraday risk dynamics of energy futures contracts using VaR and CVaR. 2023 J. Risk Financ.. 24 324-336
- Beenstock, M. A theory of ship prices. 1985 Marit. Policy Manag.. 12 215-225
Paper not yet in RePEc: Add citation now
- Beenstock, M. ; Vergottis, A. An econometric model of the world market for dry cargo freight and shipping. 1989 Appl. Econ.. 21 339-356
Paper not yet in RePEc: Add citation now
- Beenstock, M. ; Vergottis, A. An econometric model of the world tanker market. 1989 J. Transp. Econ. Policy. 263-280
Paper not yet in RePEc: Add citation now
Bosch, D. ; Pradkhan, E. The impact of speculation on precious metals futures markets. 2015 Resour. Policy. 44 118-134
Büyükşahin, B. ; Robe, M.A. Speculators, commodities and cross-market linkages. 2014 J. Int. Money Financ.. 42 38-70
Cartwright, P.A. ; Riabko, N. Measuring the effect of oil prices on wheat futures prices. 2015 Res. Int. Bus. Financ.. 33 355-369
Charfeddine, L. ; Khediri, K.B. ; Mrabet, Z. The forward premium anomaly in the energy futures markets: a time-varying approach. 2019 Res. Int. Bus. Financ.. 47 600-615
Chen, Y. ; Xu, J. ; Miao, J. Dynamic volatility contagion across the Baltic dry index, iron ore price and crude oil price under the COVID-19: A copula-VAR-BEKK-GARCH-X approach. 2023 Resour. Policy. 81 -
- Cheung, M. ; Shi, J. ; Wright, O. ; Jiang, L.Y. ; Liu, X. ; Moura, J.M. Graph signal processing and deep learning: Convolution, pooling, and topology. 2020 IEEE Signal Process. Mag.. 37 139-149
Paper not yet in RePEc: Add citation now
- China Futures Association. (2023, February 21). 2022年度期货市场发展概述. CFA. 〈http://www.cfachina.org/aboutassociation/associationannouncement/202302/t20230221_36601.html〉.
Paper not yet in RePEc: Add citation now
- Chu, P.K. ; Hoff, K. ; Molnár, P. ; Olsvik, M. Crude oil: Does the futures price predict the spot price?. 2022 Res. Int. Bus. Financ.. 60 -
Paper not yet in RePEc: Add citation now
Cox, J.C. ; Ingersoll Jr, J.E. ; Ross, S.A. The relation between forward prices and futures prices. 1981 J. Financ. Econ.. 9 321-346
Cullinane, K.P.B. ; Mason, K.J. ; Cape, M. A comparison of models for forecasting the Baltic freight index: Box-Jenkins revisited. 1999 Int. J. Marit. Econ.. 1 15-39
De Roon, F.A. ; Nijman, T.E. ; Veld, C. Hedging pressure effects in futures markets. 2000 J. Financ.. 55 1437-1456
Diebold, F.X. ; Mariano, R.S. Com paring predictive accu racy. 1995 J. Bus. Econ. Stat.. 13 253-263
Duan, K. ; Wang, R. ; Chen, S. ; Ge, L. Exploring the predictability of attention mechanism with LSTM: Evidence from EU carbon futures prices. 2023 Res. Int. Bus. Financ.. -
- Duru, O. A fuzzy integrated logical forecasting model for dry bulk shipping index forecasting: An improved fuzzy time series approach. 2010 Expert Syst. Appl.. 37 5372-5380
Paper not yet in RePEc: Add citation now
- Duru, O. ; Bulut, E. ; Yoshid, S. Bivariate long term fuzzy time series forecasting of dry cargo freight rates. 2010 Asian J. Shipp. Logist.. 26 205-223
Paper not yet in RePEc: Add citation now
- Duru, O. ; Bulut, E. ; Yoshida, S. A fuzzy extended DELPHI method for adjustment of statistical time series prediction: An empirical study on dry bulk freight market case. 2012 Expert Syst. Appl.. 39 840-848
Paper not yet in RePEc: Add citation now
- Duru, O. ; Yoshida, S. Judgmental forecasting in the dry bulk shipping business: Statistical vs. judgmental approach. 2009 Asian J. Shipp. Logist.. 25 189-217
Paper not yet in RePEc: Add citation now
Fan, J.H. ; Zhang, T. The untold story of commodity futures in China. 2020 J. Futures Mark.. 40 671-706
Garbade, K.D. ; Silber, W.L. Price movements and price discovery in futures and cash markets. 1983 Rev. Econ. Stat.. 289-297
- Garcia-Garcia, A. ; Orts-Escolano, S. ; Oprea, S. ; Villena-Martinez, V. ; Martinez-Gonzalez, P. ; Garcia-Rodriguez, J. A survey on deep learning techniques for image and video semantic segmentation. 2018 Appl. Soft Comput.. 70 41-65
Paper not yet in RePEc: Add citation now
Graham, M. ; Peltomäki, J. ; Piljak, V. Global economic activity as an explicator of emerging market equity returns. 2016 Res. Int. Bus. Financ.. 36 424-435
- Greff, K. ; Srivastava, R.K. ; Koutník, J. ; Steunebrink, B.R. ; Schmidhuber, J. LSTM: A search space odyssey. 2016 IEEE Trans. Neural Netw. Learn. Syst.. 28 2222-2232
Paper not yet in RePEc: Add citation now
Han, L. ; Wan, L. ; Xu, Y. Can the Baltic Dry Index predict foreign exchange rates?. 2020 Financ. Res. Lett.. 32 -
- Han, M. ; Yu, S.J. Prediction of baltic dry index by applications of long short-term memory. 2019 J. Korean Soc. Qual. Manag.. 47 497-508
Paper not yet in RePEc: Add citation now
Han, Q. ; Yan, B. ; Ning, G. ; Yu, B. Forecasting dry bulk freight index with improved SVM. 2014 Math. Probl. Eng.. 2014 -
Huang, M. ; Shao, W. ; Wang, J. Correlations between the crude oil market and capital markets under the Russia–Ukraine conflict: A perspective of crude oil importing and exporting countries.. 2023 Resour. Policy. 80 -
Huo, R. ; Ahmed, A.D. Relationships between Chinese stock market and its index futures market: Evaluating the impact of QFII scheme. 2018 Res. Int. Bus. Financ.. 44 135-152
Jacks, D.S. ; Meissner, C.M. ; Novy, D. Trade costs in the first wave of globalization. 2010 Explor. Econ. Hist.. 47 127-141
- Kamal, I.M. ; Bae, H. ; Sunghyun, S. ; Yun, H. DERN: Deep ensemble learning model for short-and long-term prediction of baltic dry index. 2020 Appl. Sci.. 10 1504-
Paper not yet in RePEc: Add citation now
Kang, S.H. ; Yoon, S.M. Financial crises and dynamic spillovers among Chinese stock and commodity futures markets. 2019 Phys. A: Stat. Mech. its Appl.. 531 -
Katris, C. ; Kavussanos, M.G. Time series forecasting methods for the Baltic dry index. 2021 J. Forecast.. 40 1540-1565
Kavussanos, M.G. ; Dimitrakopoulos, D.N. Market risk model selection and medium-term risk with limited data: Application to ocean tanker freight markets. 2011 Int. Rev. Financ. Anal.. 20 258-268
Kavussanos, M.G. ; Nomikos, N.K. Constant vs. time-varying hedge ratios and hedging efficiency in the BIFFEX market. 2000 Transp. Res. Part E: Logist. Transp. Rev.. 36 229-248
Kim, T.Y. ; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. 2019 Energy. 182 72-81
- Li, H. ; Tian, S. ; Li, Y. ; Fang, Q. ; Tan, R. ; Pan, Y. ; Gao, X. Modern deep learning in bioinformatics. 2020 J. Mol. Cell Biol.. 12 823-827
Paper not yet in RePEc: Add citation now
- Li, J. ; Hao, J. ; Feng, Q. ; Sun, X. ; Liu, M. Optimal selection of heterogeneous ensemble strategies of time series forecasting with multi-objective programming. 2021 Expert Syst. Appl.. 166 -
Paper not yet in RePEc: Add citation now
Li, Y. ; Bu, H. ; Li, J. ; Wu, J. The role of text-extracted investor sentiment in Chinese stock price prediction with the enhancement of deep learning. 2020 Int. J. Forecast.. 36 1541-1562
Lin, A.J. ; Chang, H.Y. ; Hsiao, J.L. Does the Baltic Dry Index drive volatility spillovers in the commodities, currency, or stock markets?. 2019 Transp. Res. Part E: Logist. Transp. Rev.. 127 265-283
- Lin, Y. ; Chen, K. ; Zhang, X. ; Tan, B. ; Lu, Q. Forecasting crude oil futures prices using BiLSTM-Attention-CNN model with Wavelet transform. 2022 Appl. Soft Comput.. 130 -
Paper not yet in RePEc: Add citation now
- Liu, M. ; Zhao, Y. ; Wang, J. ; Liu, C. ; Li, G. A deep learning framework for Baltic Dry Index forecasting. 2022 Procedia Comput. Sci.. 199 821-828
Paper not yet in RePEc: Add citation now
- Lu, W. ; Li, J. ; Wang, J. ; Qin, L. A CNN-BiLSTM-AM method for stock price prediction. 2021 Neural Comput. Appl.. 33 4741-4753
Paper not yet in RePEc: Add citation now
Main, S. ; Irwin, S.H. ; Sanders, D.R. ; Smith, A. Financialization and the returns to commodity investments. 2018 J. Commod. Mark.. 10 22-28
Makridakis, S. ; Merikas, A. ; Merika, A. ; Tsionas, M.G. ; Izzeldin, M. A novel forecasting model for the Baltic dry index utilizing optimal squeezing. 2020 J. Forecast.. 39 56-68
Mo, D. ; Gupta, R. ; Li, B. ; Singh, T. The macroeconomic determinants of commodity futures volatility: Evidence from Chinese and Indian markets. 2018 Econ. Model.. 70 543-560
Niu, D. ; Yu, M. ; Sun, L. ; Gao, T. ; Wang, K. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. 2022 Appl. Energy. 313 -
Papailias, F. ; Thomakos, D.D. ; Liu, J. The Baltic Dry Index: cyclicalities, forecasting and hedging strategies. 2017 Empir. Econ.. 52 255-282
Prokopczuk, M. Pricing and hedging in the freight futures market. 2011 J. Futures Mark.. 31 440-464
- Şahin, B. ; Gürgen, S. ; Ünver, B. ; Altin, I. Forecasting the Baltic Dry Index by using an artificial neural network approach. 2018 Turk. J. Electr. Eng. Comput. Sci.. 26 1673-1684
Paper not yet in RePEc: Add citation now
- Siami-Namini, S. ; Tavakoli, N. ; Namin, A.S. The performance of LSTM and BiLSTM in forecasting time series. 2019 IEEE:
Paper not yet in RePEc: Add citation now
- Su, M. ; Park, K.S. ; Bae, S.H. A new exploration in Baltic Dry Index forecasting learning: application of a deep ensemble model. 2023 Marit. Econ. Logist.. 1-23
Paper not yet in RePEc: Add citation now
Sun, X. ; Liu, C. ; Wang, J. ; Li, J. Assessing the extreme risk spillovers of international commodities on maritime markets: a GARCH-Copula-CoVaR approach. 2020 Int. Rev. Financ. Anal.. 68 -
Tiwari, A.K. ; Abakah, E.J.A. ; Trabelsi, N. ; Wohar, M. Do shipping freight markets impact commodity markets?. 2024 Int. Rev. Econ. Financ.. 91 986-1014
- Tsioumas, V. ; Papadimitriou, S. ; Smirlis, Y. ; Zahran, S.Z. A novel approach to forecasting the bulk freight market. 2017 Asian J. Shipp. Logist.. 33 33-41
Paper not yet in RePEc: Add citation now
- United Nations Conference on Trade and Development. (2022). Review of Maritime Transport 2022. UNCTAD. 〈https://unctad.org/rmt2022〉.
Paper not yet in RePEc: Add citation now
Veenstra, A.W. ; Franses, P.H. A co-integration approach to forecasting freight rates in the dry bulk shipping sector. 1997 Transp. Res. Part A: Policy Pract.. 31 447-458
- Visvikis, I.D. (2002). An econometric analysis of the forward freight market (Unpublished doctoral dissertation, City University London).
Paper not yet in RePEc: Add citation now
Wang, X. ; Zhang, L. ; Cheng, Q. ; Shi, S. ; Niu, H. What drives risk in China’s soybean futures market? Evidence from a flexible GARCH-MIDAS model.. 2022 J. Appl. Econ.. 25 454-475
Zeng, Q. ; Qu, C. ; Ng, A.K. ; Zhao, X. A new approach for Baltic Dry Index forecasting based on empirical mode decomposition and neural networks. 2016 Marit. Econ. Logist.. 18 192-210
Zhang, X. ; Chen, M.Y. ; Wang, M.G. ; Ge, Y.E. ; Stanley, H.E. A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method. 2019 Appl. Math. Comput.. 361 499-516
Zhang, Y. ; Ding, S. Liquidity effects on price and return co-movements in commodity futures markets. 2021 Int. Rev. Financ. Anal.. 76 -
Zhao, H.M. ; He, H.D. ; Lu, K.F. ; Han, X.L. ; Ding, Y. ; Peng, Z.R. Measuring the impact of an exogenous factor: An exponential smoothing model of the response of shipping to COVID-19. 2022 Transp. Policy. 118 91-100