create a website

Bank failure prediction models: Review and outlook. (2024). Citterio, Alberto.
In: Socio-Economic Planning Sciences.
RePEc:eee:soceps:v:92:y:2024:i:c:s003801212400017x.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 221

References cited by this document

Cocites: 63

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Tailored microprudential recommendations for bank profit retention using a risk tolerance framework. (2025). Moinescu, Bogdan-Gabriel ; Jakubík, Petr.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025001145.

    Full description at Econpapers || Download paper

  2. Predicting U.S. bank failures and stress testing with machine learning algorithms. (2025). Hu, Wendi ; Shao, Chujian ; Zhang, Wenyu.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:75:y:2025:i:c:s1544612325000674.

    Full description at Econpapers || Download paper

  3. CAMELS parameters’ impact on the risk of losing financial stability: The case of Russian banks. (2024). Shershneva, Elena G.
    In: Journal of New Economy.
    RePEc:url:izvest:v:25:y:2024:i:2:p:130-152.

    Full description at Econpapers || Download paper

  4. Russian Banks Financial Stability Loss Diagnostic: Multidimensional Logit-Model Approach. (2024). Hao, Min Zhou.
    In: Journal of Applied Economic Research.
    RePEc:aiy:jnjaer:v:23:y:2024:i:2:p:476-498.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abou Fayad, A. ; Ayoub, R. ; Ayoub, M. Causal relationship between CSR and FB in banks. 2017 Arab Economic and Business Journal. 12 93-98
    Paper not yet in RePEc: Add citation now
  2. Adadi, A. ; Berrada, M. Peeking inside the black-box: a survey on explainable artificial intelligence (xai). 2018 IEEE Access. 6 52138-52160
    Paper not yet in RePEc: Add citation now
  3. Adnan Aziz, M. ; Dar, H.A. Predicting corporate bankruptcy: where we stand?. 2006 Corp Govern. 6 18-33
    Paper not yet in RePEc: Add citation now
  4. Adya, M. ; Collopy, F. How effective are neural networks at forecasting and prediction? A review and evaluation. 1998 J Forecast. 17 481-495
    Paper not yet in RePEc: Add citation now
  5. Affes, Z. ; Hentati-Kaffel, R. Predicting US banks bankruptcy: logit versus canonical discriminant analysis. 2019 Comput Econ. 54 199-244

  6. Agarwal, V. ; Taffler, R. Comparing the performance of market-based and accounting-based bankruptcy prediction models. 2008 J Bank Finance. 32 1541-1551

  7. Al‐Hadi, A. ; Chatterjee, B. ; Yaftian, A. ; Taylor, G. ; Monzur Hasan, M. Corporate social responsibility performance, financial distress and firm life cycle: evidence from Australia. 2017 Account Finance. 59 961-989
    Paper not yet in RePEc: Add citation now
  8. Alam, P. ; Booth, D. ; Lee, K. ; Thordarson, T. The use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: an experimental study. 2000 Expert Syst Appl. 18 185-199
    Paper not yet in RePEc: Add citation now
  9. Allen, F. ; Gale, D. Competition and financial stability. 2004 J Money Credit Bank. 36 453-480

  10. Alonso, A. ; Carbo, J.M. Machine learning in credit risk: measuring the dilemma between prediction and supervisory cost. 2020 En : Banco de Espana Working Paper. :

  11. Altman, E.I. A further empirical investigation of the bankruptcy cost question. 1984 J Finance. 39 1067-1089

  12. Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. 1968 J Finance. 23 589-609

  13. Altman, E.I. ; Iwanicz‐Drozdowska, M. ; Laitinen, E.K. ; Suvas, A. Financial distress prediction in an international context: a review and empirical analysis of altman's Z‐ score model. 2017 J Int Financ Manag Account. 28 131-171
    Paper not yet in RePEc: Add citation now
  14. Altman, E.I. ; Narayanan, P. An international survey of business failure classification models. 1997 Financ Mark Inst Instrum. 6 1-57
    Paper not yet in RePEc: Add citation now
  15. Arena, M. Bank failures and bank fundamentals: a comparative analysis of Latin America and East Asia during the nineties using bank-level data. 2008 J Bank Finance. 32 299-310

  16. Audrino, F. ; Kostrov, A. ; Ortega, J.-P. Predicting U.S. Bank failures with MIDAS logit models. 2019 J Financ Quant Anal. 54 2575-2603
    Paper not yet in RePEc: Add citation now
  17. Avkiran, N.K. ; Cai, L.C. Predicting bank financial distress prior to crises. 2012 En : New Zealand finance colloquium. :
    Paper not yet in RePEc: Add citation now
  18. Balcaen, S. ; Ooghe, H. 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. 2006 Br Account Rev. 38 63-93

  19. Bank of England Machine learning explainability in finance: an application to default risk analysis. 2019 :
    Paper not yet in RePEc: Add citation now
  20. Barker, D. ; Holdsworth, D. The causes of bank failures in the 1980s. 1993 Federal Reserve Bank of: New York

  21. Bassen, A. ; Meyer, K. ; Schlange, J. The influence of corporate responsibility on the cost of capital. 2006 SSRN Network Papers:
    Paper not yet in RePEc: Add citation now
  22. Beaver, W.H. Financial ratios as predictors of failure. 1966 J Account Res. 4 71-

  23. Beck, T. ; Demirgüç-Kunt, A. ; Levine, R. Financial institutions and markets across countries and over time: the updated financial development and structure database. 2010 World Bank Econ Rev. 24 77-92

  24. Begley, J. ; Ming, J. ; Watts, S. Bankruptcy classification errors in the 1980s: an empirical analysis of Altman's and Ohlson's models. 1996 Rev Account Stud. 1 267-284
    Paper not yet in RePEc: Add citation now
  25. Bell, T.B. ; Ribar, G.S. ; Verichio, J. Neural nets versus logistic regression: a comparison of each model's ability to predict commercial bank failures. X Auditing Symposium Deloitteand Touche. 1990 University of KS: KS
    Paper not yet in RePEc: Add citation now
  26. Bellovary, J. ; Giacomino, D. ; Akers, M. A review of bankruptcy prediction studies: 1930 to present. 2007 Journal of Financial Education. 33 1-42
    Paper not yet in RePEc: Add citation now
  27. Benston, G.J. ; Kaufman, G.G. Is the banking and payments system fragile?. 1995 J Financ Serv Res. 9 209-240
    Paper not yet in RePEc: Add citation now
  28. Berg, F. ; Koelbel, J.F. ; Rigobon, R. Aggregate confusion: the divergence of ESG ratings. 2019 MIT Working Paper:
    Paper not yet in RePEc: Add citation now
  29. Berger, A.N. ; Imbierowicz, B. ; Rauch, C. The roles of corporate governance in bank failures during the recent financial crisis. 2016 J Money Credit Bank. 48 729-770

  30. Bernd, T. ; Kleutges, M. ; Kroll, A. Nonlinear black box modelling – fuzzy networks versus neural networks. 1999 Neural Comput Appl. 8 151-162
    Paper not yet in RePEc: Add citation now
  31. Betz, F. ; Oprică, S. ; Peltonen, T.A. ; Sarlin, P. Predicting distress in European banks. 2014 J Bank Finance. 45 225-241

  32. Bhattacharya, S. ; Boot, A.W.A. ; Thakor, A.V. The economics of bank regulation. 1998 J Money Credit Bank. 30 745-

  33. Bhattacharya, S. ; Thakor, A.V. Contemporary banking theory. 1993 J Financ Intermediation. 3 2-50

  34. Bilderbeek, J. An empirical study of the predictive ability of financial ratios in The Netherlands. 1979 Zeitschrift fur Betriebswirtschaft. 5 388-407
    Paper not yet in RePEc: Add citation now
  35. Bongini, P. ; Laeven, L. ; Majnoni, G. How good is the market at assessing bank fragility? A horse race between different indicators. 2002 J Bank Finance. 26 1011-1028

  36. Bose, I. Deciding the financial health of dot-coms using rough sets. 2006 Inf Manag. 43 835-846
    Paper not yet in RePEc: Add citation now
  37. Boyacioglu, M.A. ; Kara, Y. ; Baykan, Ö.K. Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: a comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey. 2009 Expert Syst Appl. 36 3355-3366
    Paper not yet in RePEc: Add citation now
  38. Boyd, J.H. ; De Nicolò, G. The theory of bank risk taking and competition revisited. 2005 J Finance. 60 1329-1343

  39. Branco, M.C. ; Rodrigues, L.L. Corporate social responsibility and resource-based perspectives. 2006 J Bus Ethics. 69 111-132

  40. Bräuning, M. ; Malikkidou, D. ; Scricco, G. ; Scalone, S. A new approach to Early Warning Systems for small European banks. 2019 ECB Working Paper Series:

  41. Brogi, M. ; Lagasio, V. Environmental, social, and governance and company profitability: are financial intermediaries different?. 2019 Corp Soc Responsib Environ Manag. 26 576-587

  42. Brooks, C. ; Oikonomou, I. The effects of environmental, social and governance disclosures and performance on firm value: a review of the literature in accounting and finance. 2018 Br Account Rev. 50 1-15
    Paper not yet in RePEc: Add citation now
  43. Calabrese, R. ; Giudici, P. Estimating bank default with generalised extreme value regression models. 2015 J Oper Res Soc. 66 1783-1792

  44. Campbell, J.Y. ; Hilscher, J.D. ; Szilagyi, J. Predicting financial distress and the performance of distressed stocks. 2011 J Invest Manag. 9 14-34

  45. Canbas, S. ; Cabuk, A. ; Kilic, S.B. Prediction of commercial bank failure via multivariate statistical analysis of financial structures: the Turkish case. 2005 Eur J Oper Res. 166 528-546

  46. Carmona, P. ; Climent, F. ; Momparler, A. Predicting failure in the US banking sector: an extreme gradient boosting approach. 2019 Int Rev Econ Finance. 61 304-323

  47. Carnevale, C. ; Mazzuca, M. Sustainability report and bank valuation: evidence from European stock markets. 2014 Bus Ethics Eur Rev. 23 69-90
    Paper not yet in RePEc: Add citation now
  48. Carreras, E. ; Alloza, Á. ; Carreras, A. . 2013 LID Editorial:
    Paper not yet in RePEc: Add citation now
  49. Cascarino, G. ; Moscatelli, M. ; Parlapiano, F. Explainable artificial intelligence: interpreting default forecasting models based on machine learning. Occasional papers n. 674. 2022 Banca d'Italia:

  50. Cerchiello, P. ; Nicola, G. ; Rönnqvist, S. ; Sarlin, P. Assessing banks' distress using news and regular financial data. 2022 Frontiers in Artificial Intelligence. 5 -
    Paper not yet in RePEc: Add citation now
  51. Charitou, A. ; Neophytou, E. ; Charalambous, C. Predicting corporate failure: empirical evidence for the UK. 2004 Eur Account Rev. 13 465-497

  52. Chen, T.-H. ; Lee, C.-C. ; Shen, C.-H. Liquidity indicators, early warning signals in banks, and financial crises. 2022 N Am J Econ Finance. 62 -

  53. Cheng, B. ; Ioannou, I. ; Serafeim, G. Corporate social responsibility and access to finance. 2014 Strat Manag J. 35 1-23
    Paper not yet in RePEc: Add citation now
  54. Chiaramonte, L. ; Casu, B. Capital and liquidity ratios and financial distress. Evidence from the European banking industry. 2017 Br Account Rev. 49 138-161

  55. Chiaramonte, L. ; Liu, H. ; Poli, F. ; Zhou, M. How accurately can Z‐score predict bank failure?. 2016 Financ Mark Inst Instrum. 25 333-360
    Paper not yet in RePEc: Add citation now
  56. Chih, H.L. ; Chih, H.H. ; Chen, T.Y. On the determinants of corporate social responsibility: international evidence on the financial industry. 2010 J Bus Ethics. 93 115-135

  57. Ciciretti, R. ; Kobeissi, N. ; Zhu, Y. Corporate social responsibility and financial performance: an analysis of bank community responsibility. 2014 Int J Bank Account Finance. 5 342-373
    Paper not yet in RePEc: Add citation now
  58. Cipollini, A. ; Fiordelisi, F. Economic value, competition and financial distress in the European banking system. 2012 J Bank Finance. 36 3101-3109

  59. Cleary, S. ; Hebb, G. An efficient and functional model for predicting bank distress: in and out of sample evidence. 2016 J Bank Finance. 64 101-111

  60. Climent, F. ; Momparler, A. ; Carmona, P. Anticipating bank distress in the eurozone: an extreme gradient boosting approach. 2019 J Bus Res. 101 885-896

  61. Cole, R.A. ; Gunther, J. A CAMEL rating's shelf life. 1995 Federal Reserve Bank of Dallas Review:
    Paper not yet in RePEc: Add citation now
  62. Cole, R.A. ; White, L.J. Déjà vu all over again: the causes of US commercial bank failures this time around. 2012 J Financ Serv Res. 42 5-29

  63. Constantin, A. ; Peltonen, T.A. ; Sarlin, P. Network linkages to predict bank distress. 2018 J Financ Stabil. 35 226-241

  64. Cornett, M.M. ; Erhemjamts, O. ; Tehranian, H. Greed or good deeds: an examination of the relation between corporate social responsibility and the financial performance of US commercial banks around the financial crisis. 2016 J Bank Finance. 70 137-159

  65. Cox, R.A. ; Wang, G.W.Y. Predicting the US bank failure: a discriminant analysis. 2014 Econ Anal Pol. 44 202-211

  66. Curry, T.J. ; Elmer, P.J. ; Fissel, G.S. Equity market data, bank failures and market efficiency. 2007 J Econ Bus. 59 536-559

  67. Curry, T.J. ; Elmer, P.J. ; Fissel, G.S. Using market information to help identify distressed institutions: a regulatory perspective. 2003 FDIC Bank Rev. 15 1-16
    Paper not yet in RePEc: Add citation now
  68. Dastile, X. ; Celik, T. ; Potsane, M. Statistical and machine learning models in credit scoring: a systematic literature survey. 2020 Appl Soft Comput. 91 -
    Paper not yet in RePEc: Add citation now
  69. Davis, E.P. ; Karim, D. Comparing early warning systems for banking crises. 2008 J Financ Stabil. 4 89-120

  70. de Haan, J. ; Fang, Y. ; Jing, Z. Does the risk on banks' balance sheets predict banking crises? New evidence for developing countries. 2020 Int Rev Econ Finance. 68 254-268

  71. Dell'Atti, S. ; Trotta, A. ; Iannuzzi, A.P. ; Demaria, F. Corporate social responsibility engagement as a determinant of bank reputation: an empirical analysis. 2017 Corp Soc Responsib Environ Manag. 24 589-605

  72. Demyanyk, Y. ; Hasan, I. Financial crises and bank failures: a review of prediction methods. 2010 Omega. 38 315-324

  73. Diamond, D.W. Financial intermediation and delegated monitoring. 1984 Rev Econ Stud. 51 393-

  74. Diamond, D.W. ; Dybvig, P.H. Bank runs, deposit insurance, and liquidity. 1983 J Polit Econ. 91 401-419

  75. Dimitras, A.I. ; Zanakis, S.H. ; Zopounidis, C. A survey of business failures with an emphasis on prediction methods and industrial applications. 1996 Eur J Oper Res. 90 487-513

  76. Distinguin, I. ; Hasan, I. ; Tarazi, A. Predicting rating changes for banks: how accurate are accounting and stock market indicators?. 2013 Ann Finance. 9 471-500

  77. Distinguin, I. ; Hasan, I. ; Tarazi, A. The use of accounting data to predict bank financial distress in MENA countries. 2010 Int J Bank Account Finance. 2 332-

  78. Distinguin, I. ; Rous, P. ; Tarazi, A. Market discipline and the use of stock market data to predict bank financial distress. 2006 J Financ Serv Res. 30 151-176

  79. Drechsler, I. ; Savov, A. ; Schnabl, P. The deposits channel of monetary policy. 2017 Q J Econ. 132 1819-1876

  80. Drehmann, M. ; Juselius, M. Evaluating early warning indicators of banking crises: satisfying policy requirements. 2014 Int J Forecast. 30 759-780
    Paper not yet in RePEc: Add citation now
  81. Dyer, W.G. ; Whetten, D.A. Family firms and social responsibility: preliminary evidence from the S&P 500. 2006 Entrep Theory Pract. 30 785-802

  82. EBA Consultation paper. Draft implementing standards on prudential disclosures on ESG risks in accordance with article 449a CRR. 2021 European Banking Authority: Paris
    Paper not yet in RePEc: Add citation now
  83. EBA EBA Action plan on sustainable finance. 2019 European Banking Authority: Paris
    Paper not yet in RePEc: Add citation now
  84. EBA EBA Report on management and supervision of ESG risks for credit institutions and investment firms. 2021 European Banking Authority: Paris
    Paper not yet in RePEc: Add citation now
  85. EBA Report on big data and advanced analytics. 2020 European Banking Authority: Paris
    Paper not yet in RePEc: Add citation now
  86. Ecer, F. Comparing the bank failure prediction performance of neural networks and support vector machines: the Turkish case. 2013 Econ Res. 26 81-98

  87. Ekinci, A. ; Erdal, H.İ. Forecasting bank failure: base learners, ensembles and hybrid ensembles. 2017 Comput Econ. 49 677-686

  88. Esteban-Sanchez, P. ; de la Cuesta-Gonzalez, M. ; Paredes-Gazquez, J.D. Corporate social performance and its relation with corporate financial performance: international evidence in the banking industry. 2017 J Clean Prod. 162 1102-1110
    Paper not yet in RePEc: Add citation now
  89. Fama, E.F. Efficient capital markets: a review of theory and empirical work. 1970 J Finance. 25 383-417

  90. Fassin, Y. ; Gosselin, D. The collapse of a European bank in the financial crisis: an analysis from stakeholder and ethical perspectives. 2011 J Bus Ethics. 102 169-191

  91. FDIC FDIC's supervision of Signature Bank. 2023 Federal Deposit Insurance Corporation:
    Paper not yet in RePEc: Add citation now
  92. Fernando, J.M.R. ; Li, L. ; Hou, Y. Corporate governance and default prediction: a reality test. 2019 Appl Econ. 51 2669-2686

  93. Ferreira, A.J. ; Figueiredo, M.A. Boosting algorithms: a review of methods, theory, and applications. 2012 En : Ensemble machine learning. Springer: New York
    Paper not yet in RePEc: Add citation now
  94. Filippopoulou, C. ; Galariotis, E. ; Spyrou, S. An early warning system for predicting systemic banking crises in the Eurozone: a logit regression approach. 2020 J Econ Behav Organ. 172 344-363

  95. Fiordelisi, F. ; Mare, D.S. Probability of default and efficiency in cooperative banking. 2013 J Int Financ Mark Inst Money. 26 30-45

  96. Fiordelisi, F. ; Soana, M.-G. ; Schwizer, P. The determinants of reputational risk in the banking sector. 2013 J Bank Finance. 37 1359-1371

  97. Flannery, M.J. Using market information in prudential bank supervision: a review of the US empirical evidence. 1998 J Money Credit Bank. 273-305

  98. Forcadell, F.J. ; Aracil, E. European banks' reputation for corporate social responsibility. 2017 Corp Soc Responsib Environ Manag. 24 1-14

  99. Friede, G. ; Busch, T. ; Bassen, A. ESG and financial performance: aggregated evidence from more than 2000 empirical studies. 2015 Journal of Sustainable Finance & Investment. 5 210-233

  100. Gandhi, P. ; Loughran, T. ; McDonald, B. Using annual report sentiment as a proxy for financial distress in U.S. Banks. 2019 J Behav Finance. 20 424-436

  101. Gangi, F. ; Meles, A. ; D'Angelo, E. ; Daniele, L.M. Sustainable development and corporate governance in the financial system: are environmentally friendly banks less risky?. 2019 Corp Soc Responsib Environ Manag. 26 529-547

  102. García‐Sánchez, I.M. ; García‐Meca, E. CSR engagement and earnings quality in banks. The moderating role of institutional factors. 2017 Corp Soc Responsib Environ Manag. 24 145-158

  103. Gillet, R. ; Hübner, G. ; Plunus, S. Operational risk and reputation in the financial industry. 2010 J Bank Finance. 34 224-235

  104. Glavas, A. ; Kelley, K. The effects of perceived corporate social responsibility on employee attitudes. 2014 Bus Ethics Q. 24 165-202

  105. Gogas, P. ; Papadimitriou, T. ; Agrapetidou, A. Forecasting bank failures and stress testing: a machine learning approach. 2018 Int J Forecast. 34 440-455

  106. Gramlich, D. ; Finster, N. Corporate sustainability and risk. 2013 J Bus Econ. 83 631-664
    Paper not yet in RePEc: Add citation now
  107. Guo, W. Explainable artificial intelligence for 6G: improving trust between human and machine. 2020 IEEE Commun Mag. 58 39-45
    Paper not yet in RePEc: Add citation now
  108. Halteh, K. ; Kumar, K. ; Gepp, A. Financial distress prediction of Islamic banks using tree-based stochastic techniques. 2018 Manag Finance. 44 759-773

  109. Hillegeist, S.A. ; Keating, E.K. ; Cram, D.P. ; Lundstedt, K.G. Assessing the probability of bankruptcy. 2004 Rev Account Stud. 9 5-34
    Paper not yet in RePEc: Add citation now
  110. Hong, H. ; Huang, J.Z. ; Wu, D. The information content of Basel III liquidity risk measures. 2014 J Financ Stabil. 15 91-111

  111. Hsieh, N.C. Hybrid mining approach in the design of credit scoring models. 2005 Expert Syst Appl. 28 655-665
    Paper not yet in RePEc: Add citation now
  112. Huysmans, J. ; Baesens, B. ; Vanthienen, J. ; Van Gestel, T. Failure prediction with self organizing maps. 2006 Expert Syst Appl. 30 479-487
    Paper not yet in RePEc: Add citation now
  113. IIF IIF machine learning recommendations for policymakers. 2019 Institute of International Finance:
    Paper not yet in RePEc: Add citation now
  114. IMF World economic outlook financial crises: causes and indicators. 1998 International Monetary Fund: Washington DC
    Paper not yet in RePEc: Add citation now
  115. Jagtiani, J. ; Lemieux, C. Market discipline prior to bank failure. 2001 J Econ Bus. 53 313-324

  116. Jeucken, M. Sustainable finance and banking: the financial sector and the future of the planet. 2010 Earthscan: London
    Paper not yet in RePEc: Add citation now
  117. Jiang, E.X. ; Matvos, G. ; Piskorski, T. ; Seru, A. Monetary tightening and U.S. Bank fragility in 2023: mark-to-market losses and uninsured depositor runs?. 2023 National Bureau of Economic Research working paper:

  118. Jin, J.Y. ; Kanagaretnam, K. ; Lobo, G.J. Ability of accounting and audit quality variables to predict bank failure during the financial crisis. 2011 J Bank Finance. 35 2811-2819

  119. Jing, Z. ; Fang, Y. Predicting US bank failures: a comparison of logit and data mining models. 2018 J Forecast. 37 235-256

  120. Jo, H. ; Kim, H. ; Park, K. Corporate environmental responsibility and firm performance in the financial services sector. 2015 J Bus Ethics. 131 257-284

  121. Jones, S. ; Johnstone, D. ; Wilson, R. An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. 2015 J Bank Finance. 56 72-85

  122. Karels, G.V. ; Prakash, A.J. Multivariate normality and forecasting of business bankruptcy. 1987 J Bus Finance Account. 14 573-593
    Paper not yet in RePEc: Add citation now
  123. Kaufmann, D. ; Kraay, A. ; Mastruzzi, M. The worldwide governance indicators: a summary of methodology, data and analytical issues. 2010 World Bank. 5430 -
    Paper not yet in RePEc: Add citation now
  124. Kazienko, P. ; Lughofer, E. ; Trawinski, B. Editorial on the special issue “Hybrid and ensemble techniques in soft computing: recent advances and emerging trends”. 2015 Soft Comput. 19 3353-3355
    Paper not yet in RePEc: Add citation now
  125. Kemp-Benedict, E. Investing in a green transition. 2018 Ecol Econ. 153 218-236

  126. Kerber, R. ; Flaherty, M. Investing with green ratings? A gray area. 2017 Reuters:
    Paper not yet in RePEc: Add citation now
  127. Kerstein, J. ; Kozberg, A. Using accounting proxies of proprietary FDIC ratings to predict bank failures and enforcement actions during the recent financial crisis. 2013 J Account Audit Finance. 28 128-151
    Paper not yet in RePEc: Add citation now
  128. Khan, M.A. ESG disclosure and Firm performance: a bibliometric and meta analysis. 2022 Res Int Bus Finance. 61 -

  129. Kim, D. ; Kim, S.-H. ; Kim, T. ; Kang, B.B. ; Lee, M. ; Park, W. ; Ku, S. Review of machine learning methods in soft robotics. 2021 PLoS One. 16 -

  130. Kimmel, R.K. ; Thornton, J.H. ; Bennett, S.E. Can statistics-based early warning systems detect problem banks before markets?. 2016 N Am J Econ Finance. 37 190-216

  131. King, T. ; Bozos, K. ; Koutmos, D. Shareholder activism and equity price reactions. 160, 2017 Economics Letters. 100-104
    Paper not yet in RePEc: Add citation now
  132. Kolari, J. ; Glennon, D. ; Shin, H. ; Caputo, M. Predicting large US commercial bank failures. 2002 J Econ Bus. 54 361-387

  133. Kolari, J.W. ; López-Iturriaga, F.J. ; Sanz, I.P. Predicting European bank stress tests: survival of the fittest. 2019 Global Finance J. 39 44-57

  134. Kristóf, T. ; Virág, M. EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks. 2022 Res Int Bus Finance. 61 -
    Paper not yet in RePEc: Add citation now
  135. Krueger, T.M. ; Wrolstad, Mark ; Shane Van Dalsem, Contemporaneous relationship between corporate reputation and return. 2010 Managerial Finance. 36 482-490

  136. Kumar, P.R. ; Ravi, V. Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. 2007 Eur J Oper Res. 180 1-28

  137. LaBella, M.J. ; Russell, J. ; Novikov, D. The devil is in the details: the divergence in ESG data and implications for responsible investing. 2019 Research paper QS Investor:
    Paper not yet in RePEc: Add citation now
  138. Laeven, L. Banking crises: a review. 2011 Annual Review of Financial Economics. 3 17-40

  139. Laguir, I. ; Marais, M. ; El Baz, J. ; Stekelorum, R. Reversing the business rationale for environmental commitment in banking. 2018 Manag Decis. 56 358-375

  140. Lanine, G. ; Vennet, R. Vander Failure prediction in the Russian bank sector with logit and trait recognition models. 2006 Expert Syst Appl. 30 463-478
    Paper not yet in RePEc: Add citation now
  141. Lau, A.H.-L. A five-state financial distress prediction model. 1987 J Account Res. 25 127-
    Paper not yet in RePEc: Add citation now
  142. Le, H.H. ; Viviani, J.L. Predicting bank failure: an improvement by implementing a machine-learning approach to classical financial ratios. 2018 Res Int Bus Finance. 44 16-25

  143. Li, Y. ; Shi, Y. ; Huang, A. ; Yang, H. Failure prediction in commercial banks with a hybrid prediction model. 2014 Annals of Data Science. 1 209-220
    Paper not yet in RePEc: Add citation now
  144. Libby, R. Accounting ratios and the prediction of failure: some behavioral evidence. 1975 J Account Res. 13 150-

  145. Lin, W.Y. ; Hu, Y.H. ; Tsai, C.F. Machine learning in financial crisis prediction: a survey. 2011 IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 42 421-436
    Paper not yet in RePEc: Add citation now
  146. Linthicum, C. ; Reitenga, A.L. ; Sanchez, J.M. Social responsibility and corporate reputation: the case of the Arthur Andersen Enron audit failure. 2010 J Account Publ Pol. 29 160-176

  147. Liston-Heyes, C. ; Ceton, G. An investigation of real versus perceived CSP in S&P-500 firms. 2009 J Bus Ethics. 89 283-296

  148. Liu, C.C. ; Ryan, S.G. Income smoothing over the business cycle: changes in banks' coordinated management of provisions for loan losses and loan charge‐offs from the pre‐1990 bust to the 1990s boom. 2006 Account Rev. 81 421-441
    Paper not yet in RePEc: Add citation now
  149. López-Iturriaga, F.J. ; Sanz, I.P. Bankruptcy visualization and prediction using neural networks: a study of US commercial banks. 2015 Expert Syst Appl. 42 2857-2869
    Paper not yet in RePEc: Add citation now
  150. Lucas, R.E. Econometric policy evaluation: a critique. 1976 Carnegie-Rochester Conf Ser Public Policy. 1 19-46

  151. Maghyereh, A.I. ; Awartani, B. Bank distress prediction: empirical evidence from the gulf cooperation council countries. 2014 Res Int Bus Finance. 30 126-147

  152. Männasoo, K. ; Mayes, D.G. Explaining bank distress in Eastern European transition economies. 2009 J Bank Finance. 33 244-253
    Paper not yet in RePEc: Add citation now
  153. Manthoulis, G. ; Doumpos, M. ; Zopounidis, C. ; Galariotis, E. An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks. 2020 Eur J Oper Res. 282 786-801

  154. Maqbool, S. ; Zameer, M.N. Corporate social responsibility and financial performance: an empirical analysis of Indian banks. 2018 Future Business Journal. 4 84-93
    Paper not yet in RePEc: Add citation now
  155. Margolis, J.D. ; Walsh, J.P. Misery loves companies: rethinking social initiatives by business. 2003 Adm Sci Q. 48 268-305
    Paper not yet in RePEc: Add citation now
  156. Martin, D. Early warning of bank failure. 1977 J Bank Finance. 1 249-276
    Paper not yet in RePEc: Add citation now
  157. Mayes, D.G. ; Stremmel, H. The effectiveness of capital adequacy measures in predicting bank distress: SUERF Study 2014/1. 2014 Larcier: Brussels
    Paper not yet in RePEc: Add citation now
  158. McLeay, S. ; Omar, A. The sensitivity of prediction models to the non-normality of bounded and unbounded financial ratios. 2000 Br Account Rev. 32 213-230
    Paper not yet in RePEc: Add citation now
  159. Mechelli, A. ; Cimini, R. ; Mazzocchetti, F. The usefulness of the business model disclosure for investors' judgements in financial entities. A European study. 2017 Rev Contab - Spanish Accounting Rev. 20 1-12

  160. Meyer, P.A. ; Pifer, H.W. Prediction of bank failures. 1970 J Finance. 25 853-868

  161. Miralles‐Quirós, M.M. ; Miralles‐Quirós, J.L. ; Redondo‐Hernández, J. The impact of environmental, social, and governance performance on stock prices: evidence from the banking industry. 2019 Corp Soc Responsib Environ Manag. 26 1446-1456
    Paper not yet in RePEc: Add citation now
  162. Mishraz, N. ; Ashok, S. ; Tandon, D. Predicting financial distress in the Indian banking sector: a comparative study between the logistic regression, LDA and ANN models. 2021 Global Bus Rev. -
    Paper not yet in RePEc: Add citation now
  163. Molina, C.A. Predicting bank failures using a hazard model: the Venezuelan banking crisis. 2002 Emerg Mark Rev. 3 31-50
    Paper not yet in RePEc: Add citation now
  164. Momparler, A. ; Carmona, P. ; Climent, F. Banking failure prediction: a boosting classification tree approach. 2016 Revista Española De Financiación Y Contabilidad. 45 63-91
    Paper not yet in RePEc: Add citation now
  165. Ng, G. ; Quek, C. ; Jiang, H. FCMAC-EWS: a bank failure early warning system based on a novel localized pattern learning and semantically associative fuzzy neural network. 2008 Expert Syst Appl. 34 989-1003
    Paper not yet in RePEc: Add citation now
  166. Nizam, E. ; Ng, A. ; Dewandaru, G. ; Nagayev, R. ; Nkoba, M.A. The impact of social and environmental sustainability on financial performance: a global analysis of the banking sector. 2019 J Multinatl Financ Manag. 49 35-53

  167. Nobanee, H. ; Ellili, N. Corporate sustainability disclosure in annual reports: evidence from UAE banks: Islamic versus conventional. 2016 Renew Sustain Energy Rev. 55 1336-1341

  168. Nur Ozkan‐Gunay, E. ; Ozkan, M. Prediction of bank failures in emerging financial markets: an ANN approach. 2007 J Risk Finance. 8 465-480

  169. Nyman, R. ; Kapadia, S. ; Tuckett, D. News and narratives in financial systems: exploiting big data for systemic risk assessment. 2021 J Econ Dynam Control. 127 -

  170. O'Leary, D.E. Using neural networks to predict corporate failure. 1998 Int J Intell Syst Account Finance Manag. 7 187-197

  171. Ohlson, J.A. Financial ratios and the probabilistic prediction of bankruptcy. 1980 J Account Res. 18 109-

  172. Olmeda, I. ; Fernández, E. Hybrid classifiers for financial multicriteria decision making: the case of bankruptcy prediction. 1997 Comput Econ. 10 317-335
    Paper not yet in RePEc: Add citation now
  173. Papadimitriou, T. ; Gogas, P. ; Plakandaras, V. ; Mourmouris, J.C. Forecasting the insolvency of US banks using support vector machines (SVMs) based on local learning feature selection. 2013 Int J Comput Econ Econom. 3 83-90

  174. Papanikolaou, N.I. A dual early warning model of bank distress. 2018 Econ Lett. 162 127-130

  175. Paule-Vianez, J. ; Gutiérrez-Fernández, M. ; Coca-Pérez, J.L. Prediction of financial distress in the Spanish banking system. 2019 Applied Economic Analysis. 28 69-87

  176. Peresetsky, A.A. ; Karminsky, A.A. ; Golovan, S.V. Probability of default models of Russian banks. 2011 Econ Change Restruct. 44 297-334

  177. Persons, O. Using financial information to differentiate failed vs. surviving finance companies in Thailand: an implication for emerging economies. 1999 Multinatl Finance J. 3 127-145

  178. Petropoulos, A. ; Siakoulis, V. ; Stavroulakis, E. ; Vlachogiannakis, N.E. Predicting bank insolvencies using machine learning techniques. 2020 Int J Forecast. 36 1092-1113

  179. Pham, X.T.T. ; Ho, T.H. Using boosting algorithms to predict bank failure: an untold story. 2021 Int Rev Econ Finance. 76 40-54

  180. Platt, H.D. ; Platt, M.B. Predicting corporate financial distress: reflections on choice-based sample bias. 2002 J Econ Finance. 26 184-199

  181. Poghosyan, T. ; Čihak, M. Determinants of bank distress in Europe: evidence from a new data set. 2011 J Financ Serv Res. 40 163-184

  182. Rajan, R.G. ; Zingales, L. Power in a theory of the firm. 1998 Q J Econ. 113 387-432

  183. Ravi, V. ; Pramodh, C. Threshold accepting trained principal component neural network and feature subset selection: application to bankruptcy prediction in banks. 2008 Appl Soft Comput. 8 1539-1548
    Paper not yet in RePEc: Add citation now
  184. Ravisankar, P. ; Ravi, V. Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP. 2010 Knowl Base Syst. 23 823-831
    Paper not yet in RePEc: Add citation now
  185. Ristolainen, K. Predicting banking crises with artificial neural networks: the role of nonlinearity and heterogeneity. 2018 Scand J Econ. 120 31-62

  186. Rosa, P.S. ; Gartner, I.R. Financial distress in Brazilian banks: an early warning model. 2017 Revista Contabilidade & Finanças. 29 312-331
    Paper not yet in RePEc: Add citation now
  187. Sarkar, S. ; Sriram, R.S. Bayesian models for early warning of bank failures. 2001 Manag Sci. 47 1457-1475

  188. Sassen, R. ; Hinze, A.-K. ; Hardeck, I. Impact of ESG factors on firm risk in Europe. 2016 J Bus Econ. 86 867-904

  189. Saxena, M. ; Kohli, A.S. Impact of corporate social responsibility on corporate sustainability: a study of the Indian banking industry. 2012 IUP J Corp Gov. 11 -
    Paper not yet in RePEc: Add citation now
  190. Scholtens, B. ; van’t Klooster, S. Sustainability and bank risk. 2019 Palgrave Communications. 5 1-8

  191. Serrano-Cinca, C. ; Gutiérrez-Nieto, B. Partial least square discriminant analysis for bankruptcy prediction. 2013 Decis Support Syst. 54 1245-1255
    Paper not yet in RePEc: Add citation now
  192. Shin, D. The effects of explainability and causability on perception, trust, and acceptance: implications for explainable AI. 2021 Int J Hum Comput Stud. 146 -
    Paper not yet in RePEc: Add citation now
  193. Shrivastav, S.K. ; Ramudu, P.J. Bankruptcy prediction and stress quantification using support vector machine: evidence from Indian banks. 2020 Risks. 8 52-

  194. Shrivastava, S. ; Jeyanthi, P.M. ; Singh, S. Failure prediction of Indian Banks using SMOTE, Lasso regression, bagging and boosting. 2020 Cogent Economics & Finance. 8 -

  195. Simpson, W.G. ; Gleason, A.E. Board structure, ownership, and financial distress in banking firms. 1999 Int Rev Econ Finance. 8 281-292

  196. Simpson, W.G. ; Kohers, T. The link between corporate social and financial performance: evidence from the banking industry. 2002 J Bus Ethics. 35 97-109
    Paper not yet in RePEc: Add citation now
  197. Sinkey, J.F. A multivariate statistical analysis of the characteristics of problem banks. 1975 J Finance. 30 21-36

  198. Soana, M.G. The relationship between corporate social performance and corporate financial performance in the banking sector. 2011 J Bus Ethics. 104 133-148

  199. Stiroh, K.J. Diversification in banking. 2010 En : Berger, A.N. ; Molyneux, P. ; Wilson, J.O.S. Oxford handbook of banking. Oxford University Press: Oxford
    Paper not yet in RePEc: Add citation now
  200. Stolz, S.M. ; Wedow, M. Government measures in support of the financial sector in the EU and the United States. 2011 Intereconomics. 46 53-60

  201. Sun, J. ; Li, H. ; Huang, Q.H. ; He, K.Y. Predicting financial distress and corporate failure: a review from the state-of-the-art definitions, modeling, sampling, and featuring approaches. 2014 Knowl Base Syst. 57 41-56
    Paper not yet in RePEc: Add citation now
  202. Swicegood, P. ; Clark, J.A. Off‐site monitoring systems for predicting bank underperformance: a comparison of neural networks, discriminant analysis, and professional human judgment. 2001 Intell Syst Account Finance Manag. 10 169-186
    Paper not yet in RePEc: Add citation now
  203. Switzer, L.N. ; Tu, Q. ; Wang, J. Corporate governance and default risk in financial firms over the post-financial crisis period: international evidence. 2018 J Int Financ Mark Inst Money. 52 196-210

  204. Switzer, L.N. ; Wang, J. Default risk and corporate governance in financial vs. non-financial firms. 2013 Risk Decis Anal. 4 243-253
    Paper not yet in RePEc: Add citation now
  205. Tam, K. Neural network models and the prediction of bank bankruptcy. 1991 Omega. 19 429-445

  206. Tam, K.Y. ; Kiang, M.Y. Managerial applications of neural networks: the case of bank failure predictions. 1992 Manag Sci. 38 926-947

  207. Thompson, P. ; Cowton, C.J. Bringing the environment into bank lending: implications for environmental reporting. 2004 Br Account Rev. 36 197-218
    Paper not yet in RePEc: Add citation now
  208. Thomson, J.B. Predicting bank failures in the 1980s. 1991 Federal Reserve Bank of Cleveland Economic Review. 27 9-20

  209. Tsai, C.F. ; Chen, M.L. Credit rating by hybrid machine learning techniques. 2010 Appl Soft Comput. 10 374-380
    Paper not yet in RePEc: Add citation now
  210. Tung, W.L. ; Quek, C. ; Cheng, P. GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failures. 2004 Neural Network. 17 567-587
    Paper not yet in RePEc: Add citation now
  211. Turban, D.B. ; Greening, D.W. Corporate social performance and organizational attractiveness to prospective employees. 1997 Acad Manag J. 40 658-672
    Paper not yet in RePEc: Add citation now
  212. Verikas, A. ; Kalsyte, Z. ; Bacauskiene, M. ; Gelzinis, A. Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey. 2010 Soft Comput. 14 995-1010
    Paper not yet in RePEc: Add citation now
  213. Wang, T. ; Zhao, S. ; Zhu, G. ; Zheng, H. A machine learning-based early warning system for systemic banking crises. 2021 Appl Econ. 53 2974-2992

  214. Weber, O. Corporate sustainability and financial performance of Chinese banks. 2017 Sustainability Accounting, Management and Policy Journal. 8 358-385

  215. Weber, O. The financial sector's impact on sustainable development. 2014 Journal of Sustainable Finance & Investment. 4 1-8

  216. Wong, B.K. ; Bodnovich, T.A. ; Selvi, Y. Neural network applications in business: a review and analysis of the literature (1988–1995). 1997 Decis Support Syst. 19 301-320
    Paper not yet in RePEc: Add citation now
  217. World Bank Global economic prospects, June 2020. 2020 World Bank: Washington, DC

  218. Wu, M.W. ; Shen, C.H. Corporate social responsibility in the banking industry: motives and financial performance. 2013 J Bank Finance. 37 3529-3547

  219. Zaghdoudi, T. Bank failure prediction with logistic regression. 2013 Int J Econ Financ Issues. 3 537-

  220. Zaki, E. ; Bah, R. ; Rao, A. Assessing probabilities of financial distress of banks in UAE. 2011 Int J Manag Finance. 7 304-320

  221. Zhao, H. ; Sinha, A.P. ; Ge, W. Effects of feature construction on classification performance: an empirical study in bank failure prediction. 2009 Expert Syst Appl. 36 2633-2644
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A Machine Learning-Based Analysis on the Causality of Financial Stress in Banking Institutions. (2024). Gartner, Ivan Ricardo ; Peng, Yaohao ; Castro, Daniel Tavares ; Moraes, Joao Gabriel.
    In: Computational Economics.
    RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10514-z.

    Full description at Econpapers || Download paper

  2. Bank failure prediction models: Review and outlook. (2024). Citterio, Alberto.
    In: Socio-Economic Planning Sciences.
    RePEc:eee:soceps:v:92:y:2024:i:c:s003801212400017x.

    Full description at Econpapers || Download paper

  3. Predicting trips to health care facilities: A binary logit and receiver operating characteristics (ROC) approach. (2024). McCarthy, Patrick.
    In: Research in Transportation Economics.
    RePEc:eee:retrec:v:103:y:2024:i:c:s0739885924000064.

    Full description at Econpapers || Download paper

  4. Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression. (2023). Imovi, Petra P ; Sun, Edward W.
    In: Computational Economics.
    RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-022-10275-1.

    Full description at Econpapers || Download paper

  5. Domain Knowledge Features versus LASSO Features in Predicting Risk of Corporate Bankruptcy—DEA Approach. (2023). Mokriova, Martina ; Horvathova, Jarmila.
    In: Risks.
    RePEc:gam:jrisks:v:11:y:2023:i:11:p:199-:d:1280888.

    Full description at Econpapers || Download paper

  6. Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data. (2022). Brygaa, Magdalena.
    In: Risks.
    RePEc:gam:jrisks:v:10:y:2022:i:2:p:24-:d:727536.

    Full description at Econpapers || Download paper

  7. An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression. (2021). Zizi, Youssef ; Oudgou, Mohamed ; el Goumi, Badreddine ; Jamali-Alaoui, Amine ; el Moudden, Abdeslam.
    In: Risks.
    RePEc:gam:jrisks:v:9:y:2021:i:11:p:200-:d:674179.

    Full description at Econpapers || Download paper

  8. Classifying variety of customers online engagement for churn prediction with mixed-penalty logistic regression. (2021). Sun, Edward ; Posedel Šimović, Petra ; Vsimovi, Petra Posedel ; Horvatic, Davor.
    In: Papers.
    RePEc:arx:papers:2105.07671.

    Full description at Econpapers || Download paper

  9. Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods. (2020). Valaskova, Katarina ; Adamko, Peter ; Tumpach, Milos ; Jaros, Jaroslav ; Gregova, Elena.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:10:p:3954-:d:357046.

    Full description at Econpapers || Download paper

  10. Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach. (2020). Zizi, Youssef ; Oudgou, Mohamed ; el Moudden, Abdeslam.
    In: Risks.
    RePEc:gam:jrisks:v:8:y:2020:i:4:p:107-:d:429254.

    Full description at Econpapers || Download paper

  11. Wavelet coherence as a tool for retrospective analysis of bank activities. (2020). Lyashenko, V ; Vasiurenko, O.
    In: Economy and Forecasting.
    RePEc:eip:journl:y:2020:i:1:p:43-60.

    Full description at Econpapers || Download paper

  12. An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks. (2020). Doumpos, Michalis ; Manthoulis, Georgios ; Galariotis, Emilios ; Zopounidis, Constantin.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:282:y:2020:i:2:p:786-801.

    Full description at Econpapers || Download paper

  13. “Incorporating creditors seniority into contingent claim models:Application to peripheral euro area countries”. (2018). Sosvilla-Rivero, Simon ; Singh, Manish ; Gómez-Puig, Marta ; Gomez-Puig, Marta.
    In: IREA Working Papers.
    RePEc:ira:wpaper:201803.

    Full description at Econpapers || Download paper

  14. Prediction of company failure: Past, present and promising directions for the future. (2018). Jayasekera, Ranadeva.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:55:y:2018:i:c:p:196-208.

    Full description at Econpapers || Download paper

  15. Default prediction models: The role of forward-looking measures of returns and volatility. (2018). Wang, Tianyang ; Miao, Hong ; Ramchander, Sanjay ; Ryan, Patricia.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:46:y:2018:i:c:p:146-162.

    Full description at Econpapers || Download paper

  16. Board Composition and Financial Distress of Listed Firms in Kenya. An Empirical Analysis. (2017). Ombaba, Kennedy ; Mwengei, Kennedy ; Kosgei, David.
    In: Journal of Finance and Investment Analysis.
    RePEc:spt:fininv:v:6:y:2017:i:4:f:6_4_4.

    Full description at Econpapers || Download paper

  17. Capital Investment Decisions of Micro, Small and Medium Enterprises: The Case of Digos City. (2017). Diasana, Sarah Jean ; Sumayang, Mildred ; Relativo, Jona Princess ; Murcia, John Vianne .
    In: MPRA Paper.
    RePEc:pra:mprapa:79574.

    Full description at Econpapers || Download paper

  18. Financial Bankruptcy across European Countries. (2017). Succurro, Marianna.
    In: International Journal of Economics and Finance.
    RePEc:ibn:ijefaa:v:9:y:2017:i:7:p:132-146.

    Full description at Econpapers || Download paper

  19. Forewarning Bankruptcy: An Indigenous Model for Pakistan. (2017). Hunjra, Ahmed ; Azam, Rauf I ; Ijaz, Muhammad Shahzad.
    In: Business & Economic Review.
    RePEc:bec:imsber:v:9:y:2017:i:4:p:259-286.

    Full description at Econpapers || Download paper

  20. Financial Distress, Employees’ Welfare and Entrepreneurship Among SMEs. (2016). Inekwe, John.
    In: Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement.
    RePEc:spr:soinre:v:129:y:2016:i:3:d:10.1007_s11205-015-1164-6.

    Full description at Econpapers || Download paper

  21. Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies. (2016). Singh, Bhanu ; Mishra, Alok.
    In: Financial Innovation.
    RePEc:spr:fininn:v:2:y:2016:i:1:d:10.1186_s40854-016-0026-9.

    Full description at Econpapers || Download paper

  22. On the prediction of financial distress in developed and emerging markets: Does the choice of accounting and market information matter? A comparison of UK and Indian Firms. (2016). Charalambakis, Evangelos ; Garrett, Ian.
    In: Review of Quantitative Finance and Accounting.
    RePEc:kap:rqfnac:v:47:y:2016:i:1:d:10.1007_s11156-014-0492-y.

    Full description at Econpapers || Download paper

  23. An Empirical Analysis of Financially Distressed Italian Companies. (2016). Sensini, Luca.
    In: International Business Research.
    RePEc:ibn:ibrjnl:v:9:y:2016:i:10:p:75-85.

    Full description at Econpapers || Download paper

  24. Predicting Operational Loss Exposure Using Past Losses. (2016). Migueis, Marco ; Curti, Filippo.
    In: Finance and Economics Discussion Series.
    RePEc:fip:fedgfe:2016-02.

    Full description at Econpapers || Download paper

  25. Validation of default probability models: A stress testing approach. (2016). Kimura, Herbert ; Arismendi Zambrano, Juan ; Sobreiro, Vinicius Amorim ; Tsukahara, Fabio Yasuhiro .
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:47:y:2016:i:c:p:70-85.

    Full description at Econpapers || Download paper

  26. Using Merton model for default prediction: An empirical assessment of selected alternatives. (2016). Galil, Koresh ; Afik, Zvika ; Arad, Ohad .
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:35:y:2016:i:c:p:43-67.

    Full description at Econpapers || Download paper

  27. MEASURING FINANCIAL DISTRESS AND PREDICTING CORPORATE BANKRUPTCY: AN INDEX APPROACH. (2016). Mehdian, Seyed ; Liao, Qunfeng.
    In: Review of Economic and Business Studies.
    RePEc:aic:revebs:y:2016:j:17:liaoq.

    Full description at Econpapers || Download paper

  28. Predicting probability of default of Indian companies: A market based approach. (2016). Singh, Bhanu ; Mishra, Alok.
    In: Theoretical and Applied Economics.
    RePEc:agr:journl:v:xxiii:y:2016:i:3(608):p:197-204.

    Full description at Econpapers || Download paper

  29. Predicting probability of default of Indian companies: A market based approach. (2016). Singh, Bhanu Pratap ; Mishra, Alok Kumar.
    In: Theoretical and Applied Economics.
    RePEc:agr:journl:v:3(608):y:2016:i:3(608):p:197-204.

    Full description at Econpapers || Download paper

  30. “Bank risk behavior and connectedness in EMU countries”. (2015). Sosvilla-Rivero, Simon ; Singh, Manish ; Gómez-Puig, Marta ; Gomez-Puig, Marta.
    In: IREA Working Papers.
    RePEc:ira:wpaper:201517.

    Full description at Econpapers || Download paper

  31. Accounting data and the credit spread: An empirical investigation. (2015). Tucker, Jon ; Guermat, Cherif ; Demirovic, Amer.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:34:y:2015:i:c:p:233-250.

    Full description at Econpapers || Download paper

  32. Financial sustainability of wind electricity sectors in the Baltic States. (2015). Bobinaite, Viktorija.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:47:y:2015:i:c:p:794-815.

    Full description at Econpapers || Download paper

  33. Comparative credit risk in Islamic and conventional bank. (2015). Worthington, Andrew ; Kabir, Md Nurul ; Gupta, Rakesh ; Nurul, MD.
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:34:y:2015:i:c:p:327-353.

    Full description at Econpapers || Download paper

  34. Bank risk behavior and connectedness in EMU countries. (2015). Sosvilla-Rivero, Simon ; Singh, Manish ; Gómez-Puig, Marta ; Gomez-Puig, Marta.
    In: Journal of International Money and Finance.
    RePEc:eee:jimfin:v:57:y:2015:i:c:p:161-184.

    Full description at Econpapers || Download paper

  35. Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms. (2015). Doumpos, Michael ; Andriosopoulos, Kostas ; Niklis, Dimitrios ; Zopounidis, Constantin.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:50:y:2015:i:c:p:599-607.

    Full description at Econpapers || Download paper

  36. Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework. (2015). Xu, Bing ; Mousavi, Mohammad M ; Ouenniche, Jamal.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:42:y:2015:i:c:p:64-75.

    Full description at Econpapers || Download paper

  37. “Forward Looking Banking Stress in EMU Countries”. (2014). Sosvilla-Rivero, Simon ; Singh, Manish ; Gómez-Puig, Marta ; Gomez-Puig, Marta.
    In: IREA Working Papers.
    RePEc:ira:wpaper:201421.

    Full description at Econpapers || Download paper

  38. Predicting distress in European banks. (2014). Sarlin, Peter ; Peltonen, Tuomas ; Opric, Silviu ; Betz, Frank.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:45:y:2014:i:c:p:225-241.

    Full description at Econpapers || Download paper

  39. Are hazard models superior to traditional bankruptcy prediction approaches? A comprehensive test. (2014). Agarwal, Vineet ; Bauer, Julian.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:40:y:2014:i:c:p:432-442.

    Full description at Econpapers || Download paper

  40. Bank competition and financial stability in Asia Pacific. (2014). Molyneux, Philip ; Lin, Yongjia ; Fu, Xiaoqing.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:38:y:2014:i:c:p:64-77.

    Full description at Econpapers || Download paper

  41. Default risk and equity prices in the U.S. banking sector: Regime switching effects of regulatory changes. (2014). Kanas, Angelos.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:33:y:2014:i:c:p:244-258.

    Full description at Econpapers || Download paper

  42. The characteristics of changes in construction companies to become insolvent by size following macroeconomic fluctuations. (2013). Kwon, Taein ; Lee, Sanghyo ; Kim, Jaejun.
    In: E3 Journal of Business Management and Economics..
    RePEc:etr:series:v:4:y:2013:i:4:p:082-092.

    Full description at Econpapers || Download paper

  43. Alternative bankruptcy prediction models using option-pricing theory. (2013). Lambertides, Neophytos ; Trigeorgis, Lenos ; Dionysiou, Dionysia ; Charitou, Andreas.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:7:p:2329-2341.

    Full description at Econpapers || Download paper

  44. Product market competition and credit risk. (2013). Huang, Hsing-Hua ; Lee, Han-Hsing.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:2:p:324-340.

    Full description at Econpapers || Download paper

  45. The impact of diverse measures of default risk on UK stock returns. (2013). Hill, Paul A ; Chen, Jie.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:12:p:5118-5131.

    Full description at Econpapers || Download paper

  46. Is the Distance to Default a good measure in predicting bank failures? A case study of Japanese major banks. (2013). Takahashi, Shuhei ; Ito, Takatoshi ; Harada, Kimie.
    In: Japan and the World Economy.
    RePEc:eee:japwor:v:27:y:2013:i:c:p:70-82.

    Full description at Econpapers || Download paper

  47. Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. (2013). Wilson, Nicholas ; Tinoco, Mario Hernandez.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:30:y:2013:i:c:p:394-419.

    Full description at Econpapers || Download paper

  48. Predicting distress in European banks. (2013). Sarlin, Peter ; Peltonen, Tuomas ; Oprica, Silviu ; Betz, Frank.
    In: Working Paper Series.
    RePEc:ecb:ecbwps:20131597.

    Full description at Econpapers || Download paper

  49. On the prediction of corporate financial distress in the light of the financial crisis: empirical evidence from Greek listed firms. (2013). Charalambakis, Evangelos.
    In: Working Papers.
    RePEc:bog:wpaper:164.

    Full description at Econpapers || Download paper

  50. Examining what best explains corporate credit risk: accounting-based versus market-based models. (2012). Samaniego-Medina, Reyes ; Cardone-Riportella, Clara ; Trujillo-Ponce, Antonio.
    In: Working Papers.
    RePEc:pab:wpbsad:12.07.

    Full description at Econpapers || Download paper

  51. Examining what best explains corporate credit risk: accounting-based versus market-based models. (2012). Trujillo-Ponce, Antonio ; CARDONE RIPORTELLA, CLARA ; Samaniego-Medina, Reyes ; Cardone-Riportella, Clara.
    In: Working Papers.
    RePEc:pab:fiecac:12.03.

    Full description at Econpapers || Download paper

  52. Multi-period credit default prediction with time-varying covariates.. (2011). Orth, Walter .
    In: MPRA Paper.
    RePEc:pra:mprapa:30507.

    Full description at Econpapers || Download paper

  53. Assessing bankruptcy prediction models via information content of technical inefficiency. (2011). Hwang, Ruey-Ching ; Siao, Jhao-Siang ; Chung, Huimin.
    In: Journal of Productivity Analysis.
    RePEc:kap:jproda:v:36:y:2011:i:3:p:263-273.

    Full description at Econpapers || Download paper

  54. The predictive ability of “conservatism” and “governance” variables in corporate financial disclosures. (2011). Ren, Yun ; Dong, Yinan ; Smith, Malcolm.
    In: Asian Review of Accounting.
    RePEc:eme:arapps:v:19:y:2011:i:2:p:171-185.

    Full description at Econpapers || Download paper

  55. The term structure of banking crisis risk in the United States: A market data based compound option approach. (2011). Eichler, Stefan ; Maltritz, Dominik ; Karmann, Alexander.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:35:y:2011:i:4:p:876-885.

    Full description at Econpapers || Download paper

  56. Dynamic analysis of the business failure process: A study of bankruptcy trajectories. (2010). du Jardin, Philippe ; Severin, Eric.
    In: MPRA Paper.
    RePEc:pra:mprapa:44379.

    Full description at Econpapers || Download paper

  57. Is hazard or probit more accurate in predicting financial distress? Evidence from U.S. bank failures. (2010). Cole, Rebel ; Wu, Qiongbing.
    In: MPRA Paper.
    RePEc:pra:mprapa:24688.

    Full description at Econpapers || Download paper

  58. A compound option approach to model the interrelation between banking crises and country defaults: The case of Hungary 2008. (2010). Maltritz, Dominik.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:34:y:2010:i:12:p:3025-3036.

    Full description at Econpapers || Download paper

  59. Is the diversification discount caused by the book value bias of debt?. (2010). Muller, Sebastian ; Glaser, Markus.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:34:y:2010:i:10:p:2307-2317.

    Full description at Econpapers || Download paper

  60. A hybrid bankruptcy prediction model with dynamic loadings on accounting-ratio-based and market-based information: A binary quantile regression approach. (2010). Miu, Peter ; Li, Ming-Yuan Leon.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:17:y:2010:i:4:p:818-833.

    Full description at Econpapers || Download paper

  61. Bankruptcy prediction models: How to choose the most relevant variables?. (2009). du Jardin, Philippe.
    In: MPRA Paper.
    RePEc:pra:mprapa:44380.

    Full description at Econpapers || Download paper

  62. Accounting-based versus market-based cross-sectional models of CDS spreads. (2009). Sarin, Atulya ; Das, Sanjiv ; Hanouna, Paul.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:33:y:2009:i:4:p:719-730.

    Full description at Econpapers || Download paper

  63. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-24 08:26:25 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.