Abi Jaber, E. Lifting the Heston model. 2019 Quant. Finance. 19 1995-2013
- Abi Jaber, E. ; Cuchiero, C. ; Larsson, M. ; Pulido, S. A weak solution theory for stochastic Volterra equations of convolution type. 2021 Ann. Appl. Probab.. 31 2924-2952
Paper not yet in RePEc: Add citation now
Abi Jaber, E. ; El Euch, O. Multifactor approximation of rough volatility models. 2019 SIAM J. Financial Math.. 10 309-349
- Abi Jaber, E. ; Miller, E. ; Pham, H. Linear-Quadratic control for a class of stochastic Volterra equations: solvability and approximation. 2021 Ann. Appl. Probab.. 31 2244-2274
Paper not yet in RePEc: Add citation now
- Alfonsi, A. ; Kebaier, A. Approximation of stochastic Volterra equations with kernels of completely monotone type. 2021 :
Paper not yet in RePEc: Add citation now
Arnaudon, M. ; Thalmaier, A. ; Wang, F.-Y. Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds. 2009 Stochastic Process. Appl.. 119 3653-3670
Bao, J. ; Wang, F.-Y. ; Yuan, C. Asymptotic log-Harnack inequality and applications for stochastic systems of infinite memory. 2019 Stochastic Process. Appl.. 129 4576-4596
- Barndorff-Nielsen, O. ; Benth, F. ; Veraart, A. Ambit processes and stochastic partial differential equations. 2011 En : Nunno, G. Di ; Øksendal, B. Advanced Mathematical Methods for Finance. Springer: Berlin, Heidelberg
Paper not yet in RePEc: Add citation now
Bayer, C. ; Breneis, S. Markovian approximations of stochastic Volterra equations with the fractional kernel. 2023 Quant. Finance. 23 53-70
- Benth, F.E. ; Detering, N. ; Krühner, P. Stochastic Volterra integral equations and a class of first-order stochastic partial differential equations. 2022 Stochastics. 94 1054-1076
Paper not yet in RePEc: Add citation now
- Berger, M.A. ; Mizel, V.J. Volterra equations with Itô integrals—I. 1980 J. Integral Equations. 2 187-245
Paper not yet in RePEc: Add citation now
- Berger, M.A. ; Mizel, V.J. Volterra equations with Itô integrals—II. 1980 J. Integral Equations. 2 319-337
Paper not yet in RePEc: Add citation now
- Carmona, P. ; Coutin, L. Fractional Brownian motion and the Markov property. 1998 Electron. Commun. Probab.. 3 95-107
Paper not yet in RePEc: Add citation now
- Cuchiero, C. ; Teichmann, J. Generalized Feller processes and Markovian lifts of stochastic Volterra processes: the affine case. 2020 J. Evol. Equ.. 20 1301-1348
Paper not yet in RePEc: Add citation now
Cuchiero, C. ; Teichmann, J. Markovian lifts of positive semidefinite affine Volterra-type processes. 2019 Decis. Econ. Finance. 42 407-448
- Da Prato, G. An Introduction to Infinite-Dimensional Analysis. 2006 Springer-Verlag: Berlin, Heidelberg
Paper not yet in RePEc: Add citation now
- Da Prato, G. ; Zabczyk, J. . 1996 En : Ergodicity for Infinite Dimensional Systems. Cambridge University Press: Cambridge
Paper not yet in RePEc: Add citation now
- Da Prato, G. ; Zabczyk, J. Stochastic Equations in Infinite Dimensions. 2014 Cambridge University Press: Cambridge
Paper not yet in RePEc: Add citation now
El Euch, O. ; Fukasawa, M. ; Rosenbaum, M. The microstructural foundations of leverage effect and rough volatility. 2018 Finance Stoch.. 22 241-280
- Friesen, M. ; Jin, P. Volterra square-root process: Stationarity and regularity of the law. 2024 Ann. Appl. Probab.. 34 318-356
Paper not yet in RePEc: Add citation now
Gatheral, J. ; Jaisson, T. ; Rosenbaum, M. Volatility is rough. 2018 Quant. Finance. 18 933-949
- Gawarecki, L. ; Mandrekar, V. Stochastic Differential Equations in Infinite Dimensions: with Applications to Stochastic Partial Differential Equations. 2010 Springer: Berlin
Paper not yet in RePEc: Add citation now
- Goudenège, L. ; Xie, B. Ergodicity of stochastic Cahn–Hilliard equations with logarithmic potentials driven by degenerate or nondegenerate noises. 2020 J. Differential Equations. 269 6988-7014
Paper not yet in RePEc: Add citation now
- Gripenberg, G. ; Londen, S.O. ; Staffans, O. . 1990 En : Volterra Integral and Functional Equations. Cambridge University Press: Cambridge
Paper not yet in RePEc: Add citation now
- Hairer, M. ; Mattingly, J.C. Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. 2006 Ann. of Math.. 164 993-1032
Paper not yet in RePEc: Add citation now
Harms, P. ; Stefanovits, D. Affine representations of fractional processes with applications in mathematical finance. 2019 Stochastic Process. Appl.. 129 1185-1228
Hong, W. ; Li, S. ; Liu, W. Asymptotic log-Harnack inequality and applications for SPDE with degenerate multiplicative noise. 2020 Statist. Probab. Lett.. 164 -
- Hong, W. ; Li, S. ; Liu, W. Asymptotic log-Harnack inequality and applications for stochastic 2D hydrodynamical-type systems with degenerate noise. 2021 J. Evol. Equ.. 21 419-440
Paper not yet in RePEc: Add citation now
- Hong, W. ; Li, S. ; Liu, W. Asymptotic log-Harnack inequality and ergodicity for 3D Leray-α model with degenerate type noise. 2021 Potential Anal.. 55 477-490
Paper not yet in RePEc: Add citation now
- Kechris, A.S. Classical Descriptive Set Theory. 1995 Springer-Verlag: New York
Paper not yet in RePEc: Add citation now
- Krylov, N.V. ; Rozovskii, B.L. Stochastic evolution equations. 1979 Itogi Nauk. Tekh. Ser. Sovremiennyie Probl. Mat.. 14 71-146
Paper not yet in RePEc: Add citation now
- Kurtz, T. Weak and strong solutions of general stochastic models. 2014 Electron. Commun. Probab.. 19 1-16
Paper not yet in RePEc: Add citation now
- Liu, W. ; Röckner, M. SPDE in Hilbert space with locally monotone coefficients. 2010 J. Funct. Anal.. 259 2902-2922
Paper not yet in RePEc: Add citation now
- Liu, Z. Asymptotic log-Harnack inequality for monotone SPDE with multiplicative noise. 2020 :
Paper not yet in RePEc: Add citation now
- Pettis, B.J. On integration in vector spaces. 1938 Trans. Amer. Math. Soc.. 44 277-304
Paper not yet in RePEc: Add citation now
- Protter, P.E. Stochastic Integration and Differential Equations. 2005 Springer: Berlin
Paper not yet in RePEc: Add citation now
- Samko, S.G. ; Kilbas, A.A. ; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications. 1987 Gordon and Breach Science Publishers: Yverdon, Switzerland
Paper not yet in RePEc: Add citation now
Schmiegel, J. Self-scaling tumor growth. 2006 Phys. A. 367 509-524
- Veraar, M. The stochastic Fubini theorem revisited. 2012 Stochastics. 84 543-551
Paper not yet in RePEc: Add citation now
- Wang, F.-Y. Harnack Inequalities and Applications for Stochastic Partial Differential Equations. 2013 Springer: Berlin
Paper not yet in RePEc: Add citation now
- Wang, F.-Y. Harnack inequalities on manifolds with boundary and applications. 2010 J. Math. Pures Appl.. 94 304-321
Paper not yet in RePEc: Add citation now
- Wang, F.-Y. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. 1997 Probab. Theory Related Fields. 109 417-424
Paper not yet in RePEc: Add citation now
Wang, Y. ; Wu, F. ; Yin, G. ; Zhu, C. Stochastic functional differential equations with infinite delay under non-Lipschitz coefficients: Existence and uniqueness, Markov property, ergodicity, and asymptotic log-Harnack inequality. 2022 Stochastic Process. Appl.. 149 1-38
- Xu, L. A modified log-Harnack inequality and asymptotically strong Feller property. 2011 J. Evol. Equ.. 11 925-942
Paper not yet in RePEc: Add citation now