Ahamed, T. ; Zou, B. ; Farazi, N.P. ; Tulabandhula, T. Deep reinforcement learning for crowdsourced urban delivery. 2021 Transport. Res. Part B. 152 227-257
- Bello I., Pham H., Le Q.V., Norouzi M., Bengio S., 2016. Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940.
Paper not yet in RePEc: Add citation now
Braekers, K. ; Caris, A. ; Janssens, G.K. Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots. 2014 Transport. Res. Part B. 67 166-186
Braekers, K. ; Kovacs, A.A. A multi-period dial-a-ride problem with driver consistency. 2016 Transport. Res. Part B. 94 355-377
Cavallaro, F. ; Nocera, S. Flexible-route integrated passenger-freight transport in rural areas. 2023 Transport. Res. Part A. 169 -
Chen, P. ; Nie, Y. Analysis of an idealized system of demand adaptive paired-line hybrid transit. 2017 Transport. Res. Part B. 102 38-54
- Chen, P. ; Nie, Y. Connecting e-hailing to mass transit platform: analysis of relative spatial position. 2017 Transportation. Research Part C. 77 444-461
Paper not yet in RePEc: Add citation now
- Chen, X.Y. ; Tian, Y. Learning to perform local rewriting for combinatorial optimization. 2019 Adv. Neural Inf. Process. Syst.. 32 6281-6292
Paper not yet in RePEc: Add citation now
- Daganzo, C.F. An approximate analytic model of many-to-many demand responsive transportation system. 1978 Transportation Research. 12 325-333
Paper not yet in RePEc: Add citation now
- Delgado, J.M.D. ; Oyedele, L. Robotics in construction: a critical review of the reinforcement learning and imitation learning paradigms. 2022 Advanced Engineering Informatics. 54 -
Paper not yet in RePEc: Add citation now
- Desrosiers, J. ; Dumas, Y. ; Soumis, F. A dynamic programming solution of the large-scale single-vehicle dial-a-ride problem with time windows. 1986 American J. Math. Manag. Sci.. 6 301-325
Paper not yet in RePEc: Add citation now
Detti, P. ; Papalini, F. ; de Lara, G.Z.M. A multi-depot dial-a-ride problem with heterogeneous vehicles and compatibility constraints in healthcare. 2017 Omega (Westport). 70 1-14
Diana, M. ; Dessouky, M.M. ; Xia, N. A model for the fleet sizing of demand responsive transportation services with time windows. 2006 Transportation Res. Part B. 40 651-666
Donne, D.D. ; Afandari, L. ; Archetti, C. ; Ljubić, I. Freight-on-Transit for urban last-mile deliveries: a strategic planning approach. 2023 Transport. Res. Part B. 169 53-81
- Drori, I. ; Kharkar, A. ; Sickinger, W.R. ; Kates, B. ; Ma, Q. ; Ge, S. ; Dolev, E. ; Dietrich, B. ; Williamson, D.P. ; Udell, M. Learning to solve combinatorial optimization problems on real-world graphs in linear time. 2020 En : 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE:
Paper not yet in RePEc: Add citation now
Fehn, F. ; Engelhardt, R. ; Dandl, F. ; Bogenberger, K. ; Busch, F. Integrating parcel deliveries into a ride-pooling service-An agent-based simulation study. 2023 Transport. Res. Part A. 169 -
He, D. ; Ceder, A. ; Zhang, W. ; Guan, W. ; Qi, G. Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China. 2023 Transport. Res. Part E. 172 -
Ho, S.C. ; Szeto, W.Y. ; Kuo, Y. ; Leung, J.M.Y. ; Petering, M. ; Tou, T.W.H. A survey of dial-a-ride problems: literature review and recent developments. 2018 Transport. Res. Part B. 111 395-421
- Jiang, G. ; Lam, S.K. ; Ning, F. ; He, P. ; Xie, J. Peak-hour vehicle routing for first-mile transportation: problem formulation and algorithms. 2020 IEEE Trans. Intelligent Transport. Syst.. 21 3308-3321
Paper not yet in RePEc: Add citation now
- Joe, W. ; Lau, H.C. Deep reinforcement learning approach to solve dynamic vehicle routing problem with stochastic customers. 2020 En : Proceedings of the International Conference on Automated Planning and Scheduling. :
Paper not yet in RePEc: Add citation now
- Kalakanti, A.K. ; Verma, S. ; Paul, T. ; Yoshida, T. RL SolVeR pro: reinforcement learning for solving vehicle routing problem. 2019 En : 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). IEEE:
Paper not yet in RePEc: Add citation now
Kim, M. ; Schonfeld, P. Integration of conventional and flexible bus services with timed transfers. 2014 Transport. Res. Part B. 68 76-97
Kim, M. ; Schonfeld, P. Maximizing net benefits for conventional and flexible bus services. 2015 Transport. Res. Part A. 80 116-133
- Kool, W. ; Van Hoof, H. ; Welling, M. Attention, learn to solve routing problems!. 2019 En : Proceedings of the International Conference on Learning Representations. :
Paper not yet in RePEc: Add citation now
Lee, E. ; Cen, X. ; Lo, H.K. Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time. 2022 Transport. Res. Part E. 168 -
- Lee, E. ; Cen, X. ; Lo, H.K. ; Ng, K.F. Designing zonal-based flexible bus services under stochastic demand. 2021 Transportation Science. 55 1227-1458
Paper not yet in RePEc: Add citation now
- Li, Y. ; Zheng, Y. ; Yang, Q. Dynamic Bike Reposition: a Spatio-Temporal Reinforcement Learning Approach. 2018 En : Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :
Paper not yet in RePEc: Add citation now
Lim, A. ; Zhang, Z. ; Qin, H. Pickup and delivery service with manpower planning in Hong Kong public hospitals. 2017 Transportation Science. 51 688-705
- Lin, K. ; Zhao, R. ; Xu, Z. ; Zhou, J. Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning. 2018 En : Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :
Paper not yet in RePEc: Add citation now
Liu, Y. ; Wu, F. ; Lyu, C. ; Li, S. ; Ye, J. ; Qu, X. Deep dispatching: a deep reinforcement learning approach for vehicle dispatching on online ride-hailing platform. 2022 Transport. Res. Part E. 161 -
- Lowe, R. ; Wu, Y. ; Tamar, A. ; Harb, J. ; Abbeel, P. ; Mordatch, I. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. 2017 En : Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc.:
Paper not yet in RePEc: Add citation now
- Lyu, Y. ; Chow, C.Y. ; Lee, V.C.S. ; Ng, J.K.Y. ; Li, Y. ; Zeng, J. CB-Planner: a bus line planning framework for customized bus systems. 2019 Transport. Res. Part C. 101 233-253
Paper not yet in RePEc: Add citation now
- Mao, C. ; Liu, Y. ; Shen, Z. Dispatch of autonomous vehicles for taxi services: a deep reinforcement learning approach. 2020 Transport. Res. Part C. 115 -
Paper not yet in RePEc: Add citation now
- Masmoudi, M.A. ; Braekers, K. ; Masmoudi, M. ; Dammak, A. A hybrid genetic algorithm for the heterogeneous dial-a-ride problem. 2017 Comput. Oper. Res.. 81 1-13
Paper not yet in RePEc: Add citation now
Masmoudi, M.A. ; Hosny, M. ; Braekers, K. ; Dammak, A. Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem. 2016 Transport. Res. Part E. 96 60-80
- Masson, R. ; Lehuédé, F. ; Péton, O. The dial-a-ride problem with transfers. 2014 Comput. Oper. Res.. 41 12-23
Paper not yet in RePEc: Add citation now
Molenbruch, Y. ; Braekers, K. ; Caris, A. Benefits of horizontal cooperation in dial-a-ride services. 2017 Transport. Res. Part E. 107 97-119
- Montenegro, B.D.G. ; Sörensen, K. ; Vansteenwegen, P. A large neighborhood search algorithm to optimize ademand-responsive feeder service. 2021 Transporation Research Part C. 127 -
Paper not yet in RePEc: Add citation now
- Nazari, M. ; Oroojlooy, A. ; Snyder, L.V. ; Takáč, M. Reinforcement learning for solving the vehicle routing problem. 2018 En : Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). :
Paper not yet in RePEc: Add citation now
- Oda, T. ; Joe-Wong, C. MOVI: a model-free approach to dynamic fleet management. 2018 En : IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE:
Paper not yet in RePEc: Add citation now
- Peter, S. ; Guy, L. ; Audrunas, G. ; Wojciech, M.C. ; Vinicius, Z. ; Max, J. ; Marc, L. ; Nicolas, S. ; Joel, Z.L. ; Karl, T. ; Thore, G. Value-Decomposition Networks For Cooperative Multi-Agent Learning Based On Team Reward. 2018 En : Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS '18). International Foundation for Autonomous Agents and Multiagent Systems. :
Paper not yet in RePEc: Add citation now
Posada, M. ; Andersson, H. ; Häll, C.H. The integrated dial-a-ride problem with timetabled fixed route service. 2017 Public Transport. 9 217-241
Psaraftis, H.N. A dynamic programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. 1980 Transportation Science. 14 130-154
Quadrifoglio, L. ; Li, X. A methodology to derive the critical demand density for designing and operating feeder transit services. 2009 Transport. Res. Part B. 43 922-935
- Ren, J. ; Jin, W. ; Wu, W. Multi-objective optimization for multi-depot heterogeneous first-mile transportation system considering requests’ preference ranks for pick-up stops. 2022 Transportmetrica A. 19 -
Paper not yet in RePEc: Add citation now
Schasché, S.E. ; Sposato, R.G. ; Hampl, N. The dilemma of demand-responsive transport services in rural areas: conflicting expectations and weak user acceptance. 2022 Transp. Policy. (Oxf). 126 43-54
- Schenekemberg, C.M. ; Chaves, A.A. ; Coelho, L.C. ; Guimarães, T.A. ; Avelino, G.G. The dial-a-ride problem with private fleet and common carrier. 2022 Computers&Operations Research. 147 -
Paper not yet in RePEc: Add citation now
- Shehadeh, K.S. ; Wang, H. ; Zhang, P. Fleet sizing and allocation for on-demand last-mile transportation systems. 2021 Transport. Res. Part C. 132 -
Paper not yet in RePEc: Add citation now
- Singh, A. ; Al-Abbasi, A. ; Aggarwal, V. A reinforcement learning based algorithm for multi-hop ride-sharing: model-free approach. 2019 En : Neural Information Processing Systems (Neurips) Workshop. :
Paper not yet in RePEc: Add citation now
- Tan, K.C. ; Lee, L.H. ; Zhu, Q.L. ; Ou, K. Heuristic methods for vehicle routing problem with time windows. 2001 Artificial Intell. Eng.. 15 281-295
Paper not yet in RePEc: Add citation now
- Tong, L. ; Zhou, L. ; Liu, J. ; Zhou, X. Customized bus service design for jointly optimizing passenger-to-vehicle assignment and vehicle routing. 2017 Transport. Res. Part C. 85 451-475
Paper not yet in RePEc: Add citation now
- Vansteenwegen, P. ; Melis, L. ; Aktaş, D. ; Montenegro, B. ; Vieira, F. ; Sörensen, K. A survey on demand-responsive public bus systems. 2022 Transport. Res. Part C. 137 -
Paper not yet in RePEc: Add citation now
Wang, H. Routing and scheduling for a last-mile transportation system. 2019 Transportation Science. 53 131-147
- Wang, Y. ; Yin, H. ; Chen, H. ; Wo, T. ; Xu, J. ; Zheng, K. Origin-Destination Matrix Prediction via Graph Convolution: a New Perspective of Passenger Demand Modeling. 2019 En : Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '19). Association for Computing Machinery:
Paper not yet in RePEc: Add citation now
Wu, W. ; Li, Y. Pareto truck fleet sizing for bike relocation with stochastic demand: risk-averse multi-stage approximate stochastic programming. 2024 Transport. Res. Part E. 183 -
- Wu, W. ; Zhou, W. ; Lin, Y. ; Xie, Y. ; Jin, W. A hybrid metaheuristic algorithm for location inventory routing problem with time windows and fuel consumption. 2021 Expert. Syst. Appl.. 166 -
Paper not yet in RePEc: Add citation now
- Wu, W. ; Zou, H. ; Liu, R. Prediction-failure-risk-aware online dial-a-ride scheduling considering spatial demand correlation via approximate dynamic programming and scenario approach. 2024 Transport. Res. Part C. 169 104801-
Paper not yet in RePEc: Add citation now
Yan, Y. ; Andy, H.F.C. ; Chin, P.H. ; Kuo, Y.H. ; Wu, Q. ; Ying, C. Reinforcement learning for logistics and supply chain management: methodologies, state of the art, and future opportunities. 2022 Transport. Res. Part E. 162 -
Ying, C. ; Chow, A.H.F. ; Nguyen, H.T.M. ; Chin, K.S. Multi-agent deep reinforcement learning for adaptive coordinated metro service operations with flexible train composition. 2022 Transp. Res. Part B. 161 36-59
- Zhang, J. ; Wang, D.Z.W. ; Meng, M. Analyzing customized bus service on a multimodal travel corridor: an analytical modeling approach. 2017 J. Transport. Eng. Part A: Systems. 143 1-12
Paper not yet in RePEc: Add citation now
- Zhang, Z. ; Liu, H. ; Zhou, M. ; Wang, J. Solving dynamic traveling salesman problems with deep reinforcement learning. 2023 IEEe Trans. Neural Netw. Learn. Syst.. 34 2119-2132
Paper not yet in RePEc: Add citation now
- Zhao, J. ; Mao, M. ; Zhao, X. ; Zou, J. A hybrid of deep reinforcement learning and local search for the vehicle routing problems. 2020 IEEE Trans. Intell. Transport. Syst.. 22 7208-7218
Paper not yet in RePEc: Add citation now
- Zhou, T. ; Law, M.Y. ; Kris, M.Y.L.K. ; Creighton, D. ; Wu, C. GMIX: graph-based spatial–temporal multi-agent reinforcement learning for dynamic electric vehicle dispatching system. 2022 Transport. Res. Part C. 144 -
Paper not yet in RePEc: Add citation now