create a website

Deep reinforcement learning for dynamic incident-responsive traffic information dissemination. (2022). Liu, Yang ; Lai, Xiongfei ; Teng, Teck-Hou ; Xie, Jiaohong ; Tham, Chen-Khong ; Yang, Zhenyu.
In: Transportation Research Part E: Logistics and Transportation Review.
RePEc:eee:transe:v:166:y:2022:i:c:s1366554522002514.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 74

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Integrated reinforcement learning of automated guided vehicles dynamic path planning for smart logistics and operations. (2025). Ho, G. T. S., ; Tang, Yuk Ming ; Tong, P H.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:196:y:2025:i:c:s1366554525000493.

    Full description at Econpapers || Download paper

  2. Markov game for CV joint adaptive routing in stochastic traffic networks: A scalable learning approach. (2024). Liu, Yang ; Yang, Shan.
    In: Transportation Research Part B: Methodological.
    RePEc:eee:transb:v:189:y:2024:i:c:s0191261524001218.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Antoniou, C. ; Koutsopoulos, H.N. ; Ben-Akiva, M. ; Chauhan, A.S. Evaluation of diversion strategies using dynamic traffic assignment. 2011 Transp. Plan. Technol.. 34 199-216

  2. Arellano, W. An Ant Inspired Dynamic Traffic Assignment for VANETs: Early Notification of Traffic Congestion and Traffic Incidents. 2016 Florida Atlantic University: United States, Florida
    Paper not yet in RePEc: Add citation now
  3. Asadi, A. ; Pinkley, S.N. A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations. 2021 Transp. Res. Part E: Logist. Transp. Rev.. 146 -

  4. Basso, R. ; Kulcsár, B. ; Sanchez-Diaz, I. ; Qu, X. Dynamic stochastic electric vehicle routing with safe reinforcement learning. 2022 Transp. Res. Part E: Logist. Transp. Rev.. 157 -

  5. Belletti, F. ; Haziza, D. ; Gomes, G. ; Bayen, A.M. Expert level control of ramp metering based on multi-task deep reinforcement learning. 2017 IEEE Trans. Intell. Transp. Syst.. 19 1198-1207
    Paper not yet in RePEc: Add citation now
  6. Brocken, M.G.M., Vlist, M.J.M.V.d., 1991. Traffic control with variable message signs. In: Vehicle Navigation and Information Systems Conference, 1991, Vol. 2. pp. 27–45.
    Paper not yet in RePEc: Add citation now
  7. Chatterjee, K. ; Hounsell, N.B. ; Firmin, P.E. ; Bonsall, P.W. Driver response to variable message sign information in London. 2002 Transp. Res. Part C: Emerg. Technol.. 10 149-169
    Paper not yet in RePEc: Add citation now
  8. Chen, C. ; Wei, H. ; Xu, N. ; Zheng, G. ; Yang, M. ; Xiong, Y. ; Xu, K. ; Li, Z. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. 2020 En : . :
    Paper not yet in RePEc: Add citation now
  9. Chen, D. ; Ahn, S. ; Hegyi, A. Variable speed limit control for steady and oscillatory queues at fixed freeway bottlenecks. 2014 Transp. Res. B. 70 340-358

  10. Chen, S. ; Sun, D.J. An improved adaptive signal control method for isolated signalized intersection based on dynamic programming. 2016 IEEE Intell. Transp. Syst. Mag.. 8 4-14
    Paper not yet in RePEc: Add citation now
  11. Chen, Y. ; Liu, F. ; Bai, Q. ; Tao, C. ; Qi, X. Coordinated ramp metering based on real-time od information. 2019 IEEE Access. 7 79233-79243
    Paper not yet in RePEc: Add citation now
  12. Chow, Y. ; Yu, J.Y. ; Pavone, M. Two phase Q-learning for bidding-based vehicle sharing. 2015 :
    Paper not yet in RePEc: Add citation now
  13. Chu, T. ; Wang, J. ; Codecà, L. ; Li, Z. Multi-agent deep reinforcement learning for large-scale traffic signal control. 2019 IEEE Trans. Intell. Transp. Syst.. 21 1086-1095
    Paper not yet in RePEc: Add citation now
  14. Durrani, U. ; Lee, C. ; Maoh, H. Calibrating the wiedemanns vehicle-following model using mixed vehicle-pair interactions. 2016 Transp. Res. C. 67 227-242
    Paper not yet in RePEc: Add citation now
  15. Elefteriadou, L.A. The highway capacity manual 6th edition: A guide for multimodal mobility analysis. 2016 ITE J.. 86 -
    Paper not yet in RePEc: Add citation now
  16. Gan, H., He, S., Dong, J., 2011. A Model for Determining Optimal Variable Message Sign Locations. In: 2011 International Conference on Business Management and Electronic Information, Vol. 5. pp. 15–19.
    Paper not yet in RePEc: Add citation now
  17. Gao, J. ; Shen, Y. ; Liu, J. ; Ito, M. ; Shiratori, N. Adaptive traffic signal control: Deep reinforcement learning algorithm with experience replay and target network. 2017 :
    Paper not yet in RePEc: Add citation now
  18. Genders, W. ; Razavi, S. Using a deep reinforcement learning agent for traffic signal control. 2016 :
    Paper not yet in RePEc: Add citation now
  19. Gregurić, M., Kušić, K., Vrbanić, F., Ivanjko, E., 2020. Variable Speed Limit Control Based on Deep Reinforcement Learning: A Possible Implementation. In: 2020 International Symposium ELMAR, Vol. 6. pp. 7–72.
    Paper not yet in RePEc: Add citation now
  20. Haliem, M. ; Mani, G. ; Aggarwal, V. ; Bhargava, B. A distributed model-free ride-sharing approach for joint matching, pricing, and dispatching using deep reinforcement learning. 2020 :
    Paper not yet in RePEc: Add citation now
  21. Han, Y. ; Ramezani, M. ; Hegyi, A. ; Yuan, Y. ; Hoogendoorn, S. Hierarchical ramp metering in freeways: An aggregated modeling and control approach. 2020 Transp. Res. Part C: Emerg. Technol.. 110 1-19
    Paper not yet in RePEc: Add citation now
  22. Haydari, A. ; Yilmaz, Y. Deep reinforcement learning for intelligent transportation systems: A survey. 2020 IEEE Trans. Intell. Transp. Syst.. -
    Paper not yet in RePEc: Add citation now
  23. Jacob, C., Abdulhai, B., Hadayeghi, A., Malone, B.J., 2006. Highway Work Zone Dynamic Traffic Control using Machine Learning. In: 2006 IEEE Intelligent Transportation Systems Conference. pp. 267–272.
    Paper not yet in RePEc: Add citation now
  24. Ji, X. ; Shao, C. ; Wang, B. Stochastic dynamic traffic assignment model under emergent incidents. 2016 Procedia Eng.. 137 620-629
    Paper not yet in RePEc: Add citation now
  25. Johnston, K. ; Ferreira, L. ; Bunker, J. Using risk analysis to prioritize intelligent transport systems: Variable message sign case study in Gold Coast City, Australia. 2006 Transportation Research Record. 1959 28-36
    Paper not yet in RePEc: Add citation now
  26. Ke, J. ; Yang, H. ; Ye, J. Learning to delay in ride-sourcing systems: A multi-agent deep reinforcement learning framework. 2020 IEEE Trans. Knowl. Data Eng.. -
    Paper not yet in RePEc: Add citation now
  27. Kesting, A. ; Treiber, M. Calibrating car-following models by using trajectory data: Methodological study. 2008 Transp. Res. Rec.. 2088 148-156
    Paper not yet in RePEc: Add citation now
  28. Khoo, H.L. ; Asitha, K.S. An impact analysis of traffic image information system on driver travel choice. 2016 Transp. Res. Part A: Policy Pract.. 88 175-194

  29. Kušić, K. ; Dusparic, I. ; Guériau, M. ; Gregurić, M. ; Ivanjko, E. Extended variable speed limit control using multi-agent reinforcement learning. 2020 En : 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. IEEE:
    Paper not yet in RePEc: Add citation now
  30. Lee, S. ; Shin, S. Variable message sign operating strategies: Simple examples. 2011 Transportmetrica. 7 443-454
    Paper not yet in RePEc: Add citation now
  31. Li, M. ; Qin, Z. ; Jiao, Y. ; Yang, Y. ; Wang, J. ; Wang, C. ; Wu, G. ; Ye, J. Efficient ridesharing order dispatching with mean field multi-agent reinforcement learning. 2019 En : The World Wide Web Conference. Association for Computing Machinery: New York, NY, USA
    Paper not yet in RePEc: Add citation now
  32. Li, S., Fu, B., Dang, W., 2015. Dynamic Variable Speed Limit Strategies Based on Traffic Flow Model for Urban Expressway. In: 2015 International Conference on Transportation Information and Safety. ICTIS, pp. 55–63.
    Paper not yet in RePEc: Add citation now
  33. Li, Y. ; Yuan, Y. Convergence analysis of two-layer neural networks with ReLU activation. 2017 :
    Paper not yet in RePEc: Add citation now
  34. Li, Z. ; Liu, P. ; Wang, W. ; Xu, C. Development of a control strategy of variable speed limits to reduce rear-end collision risks near freeway recurrent bottlenecks. 2014 IEEE Trans. Intell. Transp. Syst.. 15 866-877
    Paper not yet in RePEc: Add citation now
  35. Li, Z. ; Liu, P. ; Xu, C. ; Duan, H. ; Wang, W. Reinforcement learning-based variable speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks. 2017 IEEE Trans. Intell. Transp. Syst.. 18 3204-3217
    Paper not yet in RePEc: Add citation now
  36. Liu, P. ; Liu, Y. Optimal information provision at bottleneck equilibrium with risk-averse travelers. 2018 Transportation Research Record. 2672 69-78
    Paper not yet in RePEc: Add citation now
  37. Liu, Y. ; Yang, Z. Information provision and congestion pricing in a risky two-route network with heterogeneous travelers. 2021 Transp. Res. Part C: Emerg. Technol.. 128 -
    Paper not yet in RePEc: Add citation now
  38. Lu, C. ; Huang, J. ; Deng, L. ; Gong, J. Coordinated ramp metering with equity consideration using reinforcement learning. 2017 J. Transp. Eng., Part A: Syst.. 143 -
    Paper not yet in RePEc: Add citation now
  39. Ma, M. ; Yang, Q. ; Liang, S. ; Wang, Y. A new coordinated control method on the intersection of traffic region. 2016 :

  40. Mammar, S. ; Messmer, A. ; Jensen, P. ; Papageorgiou, M. ; Haj-Salem, H. ; Jensen, L. Automatic control of variable message signs in Aalborg. 1996 Transp. Res. Part C: Emerg. Technol.. 4 131-150
    Paper not yet in RePEc: Add citation now
  41. Mao, C. ; Liu, Y. ; Shen, Z.-J.M. Dispatch of autonomous vehicles for taxi services: A deep reinforcement learning approach. 2020 Transp. Res. C. 115 -
    Paper not yet in RePEc: Add citation now
  42. McDonald, M., Hounsell, N.B., Njoze, S.R., 1995. Strategies for route guidance systems taking account of driver response. In: Pacific Rim TransTech Conference. 1995 Vehicle Navigation and Information Systems Conference Proceedings. 6th International VNIS. A Ride Into the Future. pp. 328–333.
    Paper not yet in RePEc: Add citation now
  43. Mehr, N. ; Sadigh, D. ; Horowitz, R. ; Sastry, S.S. ; Seshia, S.A. Stochastic predictive freeway ramp metering from signal temporal logic specifications. 2017 En : 2017 American Control Conference. IEEE:
    Paper not yet in RePEc: Add citation now
  44. Messmer, A. ; Papageorgiou, M. ; Mackenzie, N. Automatic control of variable message signs in the interurban Scottish highway network. 1998 Transp. Res. C. 6 173-187
    Paper not yet in RePEc: Add citation now
  45. Mnih, V. ; Kavukcuoglu, K. ; Silver, D. ; Rusu, A.A. ; Veness, J. ; Bellemare, M.G. ; Graves, A. ; Riedmiller, M. ; Fidjeland, A.K. ; Ostrovski, G. Human-level control through deep reinforcement learning. 2015 Nature. 518 529-533

  46. Nazari, M. ; Oroojlooy, A. ; Snyder, L.V. ; Takáč, M. Reinforcement learning for solving the vehicle routing problem. 2018 :
    Paper not yet in RePEc: Add citation now
  47. Nygårdhs, S. Literature review on variable message signs (vms) 2006–2009. 2011 :
    Paper not yet in RePEc: Add citation now
  48. OregonDOT, Analysis procedures manual version 2 - addendum 15a - protocol for vissim simulation, OregonDOT. 2011 :
    Paper not yet in RePEc: Add citation now
  49. Papageorgiou, M. ; Kotsialos, A. Freeway ramp metering: An overview. 2002 IEEE Trans. Intell. Transp. Syst.. 3 271-281
    Paper not yet in RePEc: Add citation now
  50. Peeta, S. ; Gedela, S. Real-time variable message sign-based route guidance consistent with driver behavior. 2001 Transp. Res. Rec.. 1752 117-125
    Paper not yet in RePEc: Add citation now
  51. Pi, X. ; Qian, Z.S. A stochastic optimal control approach for real-time traffic routing considering demand uncertainties and travelers choice heterogeneity. 2017 Transp. Res. Part B: Methodol.. 104 710-732

  52. Punzo, V. ; Zheng, Z. ; Montanino, M. About calibration of car-following dynamics of automated and human-driven vehicles: Methodology, guidelines and codes. 2021 Transp. Res. Part C: Emerg. Technol.. 128 -
    Paper not yet in RePEc: Add citation now
  53. Shen, J. ; Yang, G. Integrated empirical analysis of the effect of variable message sign on driver route choice behavior. 2020 J. Transp. Eng., Part A: Syst.. 146 -
    Paper not yet in RePEc: Add citation now
  54. Shi, W. ; Wu, J. ; Zhou, S. ; Zhang, L. ; Tang, Z. ; Yin, Y. ; Kuang, L. ; Wu, Z. Variable message sign and dynamic regional traffic guidance. 2009 IEEE Intell. Transp. Syst. Mag.. 1 15-21
    Paper not yet in RePEc: Add citation now
  55. Si, B. ; He, Z. ; Yang, X. ; Gao, Z. Data-based sorting algorithm for variable message sign location: Case study of Beijing. 2017 Transp. Res. Rec.. 2645 86-93
    Paper not yet in RePEc: Add citation now
  56. Song, J. ; Cho, Y.J. ; Kang, M.H. ; Hwang, K.Y. An application of reinforced learning-based dynamic pricing for improvement of ridesharing platform service in Seoul. 2020 Electronics. 9 1818-
    Paper not yet in RePEc: Add citation now
  57. Tang, X. ; Li, M. ; Lin, X. ; He, F. Online operations of automated electric taxi fleets: An advisor-student reinforcement learning framework. 2020 Transp. Res. C. 121 -
    Paper not yet in RePEc: Add citation now
  58. Turan, B. ; Pedarsani, R. ; Alizadeh, M. Dynamic pricing and fleet management for electric autonomous mobility on demand systems. 2020 :
    Paper not yet in RePEc: Add citation now
  59. Van Hasselt, H., Guez, A., Silver, D., 2016. Deep reinforcement learning with double Q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.
    Paper not yet in RePEc: Add citation now
  60. Wang, C. ; Zhang, J. ; Xu, L. ; Li, L. ; Ran, B. A new solution for freeway congestion: Cooperative speed limit control using distributed reinforcement learning. 2019 IEEE Access. 7 41947-41957
    Paper not yet in RePEc: Add citation now
  61. Wang, Y. ; Li, M. ; Lin, X. ; He, F. Online operations strategies for automated multistory parking facilities. 2021 Transp. Res. Part E: Logist. Transp. Rev.. 145 -

  62. Wen, K. ; Qu, S. ; Zhang, Y. A machine learning method for dynamic traffic control and guidance on freeway networks. 2009 :
    Paper not yet in RePEc: Add citation now
  63. Wu, Y. ; Tan, H. ; Qin, L. ; Ran, B. Differential variable speed limits control for freeway recurrent bottlenecks via deep actor-critic algorithm. 2020 Transp. Res. C. 117 -
    Paper not yet in RePEc: Add citation now
  64. Wu, Z. ; Liang, Y. Variable message sign location selection basing on drivers perception. 2017 Transp. Res. Procedia. 25 1745-1754
    Paper not yet in RePEc: Add citation now
  65. Xie, T. ; Liu, Y. Heterogeneous traffic information provision on road networks with competitive or cooperative information providers. 2022 Transportation Research Part C: Emerging Technologies. 142 103762-
    Paper not yet in RePEc: Add citation now
  66. Xie, X.-F. ; Smith, S.F. ; Lu, L. ; Barlow, G.J. Schedule-driven intersection control. 2012 Transp. Res. C. 24 168-189
    Paper not yet in RePEc: Add citation now
  67. Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., Ye, J., 2018. Large-Scale Order Dispatch in on-Demand Ride-Hailing Platforms: A Learning and Planning Approach. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. pp. 905–913.
    Paper not yet in RePEc: Add citation now
  68. Yang, Y. ; Luo, R. ; Li, M. ; Zhou, M. ; Zhang, W. ; Wang, J. Mean field multi-agent reinforcement learning. 2018 PMLR:
    Paper not yet in RePEc: Add citation now
  69. Yang, Z. ; Liu, Y. Optimal routing policy for a mixed traffic flow of connected vehicles and regular vehicles with en-route information. 2021 :
    Paper not yet in RePEc: Add citation now
  70. Yu, R. ; Abdel-Aty, M. An optimal variable speed limits system to ameliorate traffic safety risk. 2014 Transp. Res. Part C: Emerg. Technol.. 46 235-246
    Paper not yet in RePEc: Add citation now
  71. Zeng, M. ; Wang, M. ; Liu, Y. ; Sheu, JB. Modeling evacuation route choices under influence of variable message signs. 2020 Computer-Aided Civil and Infrastructure Engineering. 35 793-817
    Paper not yet in RePEc: Add citation now
  72. Zhang, Q. ; Zheng, H. ; Lan, J. ; An, J. ; Peng, H. An autonomous information collection and dissemination model for large-scale urban road networks. 2016 IEEE Trans. Intell. Transp. Syst.. 17 1085-1095
    Paper not yet in RePEc: Add citation now
  73. Zhao, W. ; Ma, Z. ; Yang, K. ; Huang, H. ; Monsuur, F. ; Lee, J. Impacts of variable message signs on en-route route choice behavior. 2020 Transp. Res. Part A: Policy Pract.. 139 335-349

  74. Zhu, M. ; Wang, X. ; Tarko, A. Modeling car-following behavior on urban expressways in Shanghai: A naturalistic driving study. 2018 Transp. Res. Part C: Emerg. Technol.. 93 425-445
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Collaboration and Resource Sharing for the Multi-Depot Electric Vehicle Routing Problem with Time Windows and Dynamic Customer Demands. (2025). Wang, Yong ; Wei, Yuanfan ; Chen, Can.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:6:p:2700-:d:1615166.

    Full description at Econpapers || Download paper

  2. Data-driven optimization for drone delivery service planning with online demand. (2025). Paul, Aditya ; Levin, Michael W ; Waller, Travis S ; Rey, David.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:198:y:2025:i:c:s136655452500136x.

    Full description at Econpapers || Download paper

  3. Integrated reinforcement learning of automated guided vehicles dynamic path planning for smart logistics and operations. (2025). Ho, G. T. S., ; Tang, Yuk Ming ; Tong, P H.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:196:y:2025:i:c:s1366554525000493.

    Full description at Econpapers || Download paper

  4. Green drives: Understanding how environmental propensity, range and technological anxiety shape electric vehicle adoption intentions. (2025). Kumar, Vikas ; Kaushik, Arun Kumar ; Mathiyazhagan, K ; Sindhwani, Rahul ; Noravesh, Farima.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:210:y:2025:i:c:s0040162524006577.

    Full description at Econpapers || Download paper

  5. Routing and charging scheduling for the electric carsharing system with mobile charging vehicles. (2025). Wang, Yunpeng ; Yu, Bin ; Yao, Baozhen ; Chen, Tingting ; Zhang, LI.
    In: Omega.
    RePEc:eee:jomega:v:131:y:2025:i:c:s0305048324001750.

    Full description at Econpapers || Download paper

  6. As a service or a product? A comparison of electric vehicle battery supply models. (2025). Tang, Runyu ; Pang, Bowen ; Zhou, Xiaoyang.
    In: Omega.
    RePEc:eee:jomega:v:130:y:2025:i:c:s0305048324001312.

    Full description at Econpapers || Download paper

  7. Optimizing autonomous electric taxi operations with integrated mobile charging services: An approximate dynamic programming approach. (2025). Chen, Xiqun ; Ouyang, Yanfeng ; Hu, Qinru ; Shen, Shiyu.
    In: Applied Energy.
    RePEc:eee:appene:v:378:y:2025:i:pb:s0306261924022062.

    Full description at Econpapers || Download paper

  8. Balancing resources for dynamic vehicle routing with stochastic customer requests. (2024). Soeffker, Ninja ; Ulmer, Marlin W ; Mattfeld, Dirk C.
    In: OR Spectrum: Quantitative Approaches in Management.
    RePEc:spr:orspec:v:46:y:2024:i:2:d:10.1007_s00291-024-00747-1.

    Full description at Econpapers || Download paper

  9. Dynamic migratory beekeeping route recommendation based on spatio-temporal distribution of nectar sources. (2024). Yang, Fei ; Ma, Minghong.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:341:y:2024:i:2:d:10.1007_s10479-024-06061-x.

    Full description at Econpapers || Download paper

  10. A reinforcement learning approach for the online dynamic home health care scheduling problem. (2024). Pham, Tu-San ; Ta-Dinh, Quy ; Hong, Minh ; Rousseau, Louis-Martin.
    In: Health Care Management Science.
    RePEc:kap:hcarem:v:27:y:2024:i:4:d:10.1007_s10729-024-09692-5.

    Full description at Econpapers || Download paper

  11. Integrating Risk-Averse and Constrained Reinforcement Learning for Robust Decision-Making in High-Stakes Scenarios. (2024). Habib, Muhammad Salman ; Omair, Muhammad ; Ramzan, Muhammad Babar ; Ahmad, Moiz.
    In: Mathematics.
    RePEc:gam:jmathe:v:12:y:2024:i:13:p:1954-:d:1420914.

    Full description at Econpapers || Download paper

  12. Electric Vehicle Routing Problem with an Enhanced Vehicle Dispatching Approach Considering Real-Life Data. (2024). Tabaa, Mohamed ; Abid, Meryem ; Hachimi, Hanaa.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:7:p:1596-:d:1364654.

    Full description at Econpapers || Download paper

  13. Battery Management in Electric Vehicle Routing Problems: A Review. (2024). Juan, Angel ; Martin, Xabier A ; Escoto, Marc ; Guerrero, Antoni.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:5:p:1141-:d:1347517.

    Full description at Econpapers || Download paper

  14. A sequential transit network design algorithm with optimal learning under correlated beliefs. (2024). , Joseph ; Yoon, Gyugeun.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:191:y:2024:i:c:s1366554524002989.

    Full description at Econpapers || Download paper

  15. Reinforcement learning for electric vehicle charging scheduling: A systematic review. (2024). Zhao, Zhonghao ; Yan, Xiaoyuan ; Wang, Haonan.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:190:y:2024:i:c:s1366554524002898.

    Full description at Econpapers || Download paper

  16. Bus fleet decarbonization under macroeconomic and technological uncertainties: A real options approach to support decision-making. (2024). Giagnorio, Mirko ; Matteucci, Giorgio ; de Santis, Daniele ; Avenali, Alessandro.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:190:y:2024:i:c:s1366554524002813.

    Full description at Econpapers || Download paper

  17. Planning of electric vehicle charging stations: An integrated deep learning and queueing theory approach. (2024). Azad, N ; Taghavi, M ; Sarhadi, H ; Pourvaziri, H ; Afshari, H.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001595.

    Full description at Econpapers || Download paper

  18. Promoting intelligent IoT-driven logistics through integrating dynamic demand and sustainable logistics operations. (2024). Liu, Weihua ; Lim, Ming K ; Wang, Jianxin.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:185:y:2024:i:c:s1366554524001303.

    Full description at Econpapers || Download paper

  19. Efficient inventory routing for Bike-Sharing Systems: A combinatorial reinforcement learning framework. (2024). Guo, Yuhan ; Zhang, Lufang ; Xiao, Linfan ; Li, Jinning ; Allaoui, Hamid ; Choudhary, Alok.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:182:y:2024:i:c:s136655452400005x.

    Full description at Econpapers || Download paper

  20. Technician routing and scheduling with employees’ learning through implicit cross-training strategy. (2024). Chen, XI ; Ding, Xiaosong ; Lin, Sidian.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:271:y:2024:i:c:s0925527324000653.

    Full description at Econpapers || Download paper

  21. A recent review of solution approaches for green vehicle routing problem and its variants. (2024). Ahmad, Robiah ; Bin, Mohd Nabil ; Garside, Annisa Kesy.
    In: Operations Research Perspectives.
    RePEc:eee:oprepe:v:12:y:2024:i:c:s2214716024000071.

    Full description at Econpapers || Download paper

  22. A novel multi-attention reinforcement learning for the scheduling of unmanned shipment vessels (USV) in automated container terminals. (2024). Guo, Xinghai ; Zhang, Weidan ; Yu, Lean ; Zhu, Jianxin.
    In: Omega.
    RePEc:eee:jomega:v:129:y:2024:i:c:s030504832400118x.

    Full description at Econpapers || Download paper

  23. Modeling the dynamic allocation problem of multi-service storage system with strategy learning. (2024). Bai, Yang ; Zhou, Peng ; Xiao, Ludi ; Zhang, Kai.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224013707.

    Full description at Econpapers || Download paper

  24. A win-win relationship? New evidence on artificial intelligence and new energy vehicles. (2024). Wu, Zhan ; Song, Yubing ; Gu, Jianqiang ; Nicolescu, Ana-Cristina.
    In: Energy Economics.
    RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324003219.

    Full description at Econpapers || Download paper

  25. Centrally-chosen versus user-selected swaps: How the selection of swapping stations impacts standby battery inventories. (2024). Boysen, Nils ; Briskorn, Dirk ; Schulz, Arne.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:319:y:2024:i:3:p:726-738.

    Full description at Econpapers || Download paper

  26. Energy management for scalable battery swapping stations: A deep reinforcement learning and mathematical optimization cascade approach. (2024). Su, Yongxin ; Yue, Shuaixian ; Wang, Rui ; Tan, Mao ; Qiu, Lei ; Chen, Jie.
    In: Applied Energy.
    RePEc:eee:appene:v:365:y:2024:i:c:s0306261924005956.

    Full description at Econpapers || Download paper

  27. Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing. (2023). Xia, Yang ; Xing, Xinjie ; Zeng, Wenjia ; Tan, Kim Hua ; Kumar, Ajay ; Zhan, Yuanzhu.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:327:y:2023:i:1:d:10.1007_s10479-021-04459-5.

    Full description at Econpapers || Download paper

  28. Joint optimisation of drone routing and battery wear for sustainable supply chain development. (2023). Zhan, Yuanzhu ; Xia, Yang ; Xing, Xinjie ; Zeng, Wenjia ; Tan, Kim Hua ; Kumar, Ajay.
    In: Post-Print.
    RePEc:hal:journl:hal-04381308.

    Full description at Econpapers || Download paper

  29. Review of Stochastic Dynamic Vehicle Routing in the Evolving Urban Logistics Environment. (2023). Cari, Toni ; Erdeli, Tomislav ; Mardei, Nikola ; Urasevi, Marko.
    In: Mathematics.
    RePEc:gam:jmathe:v:12:y:2023:i:1:p:28-:d:1305140.

    Full description at Econpapers || Download paper

  30. Efficient Management of Energy Consumption of Electric Vehicles Using Machine Learning—A Systematic and Comprehensive Survey. (2023). Adnane, Marouane ; Pedro, Joo ; Khoumsi, Ahmed.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:13:p:4897-:d:1177517.

    Full description at Econpapers || Download paper

  31. Towards efficient airline disruption recovery with reinforcement learning. (2023). Xu, Yifan ; Ding, Yida ; Sun, Xiaoqian ; Wandelt, Sebastian ; Wu, Guohua.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:179:y:2023:i:c:s1366554523002831.

    Full description at Econpapers || Download paper

  32. Deep attention models with dimension-reduction and gate mechanisms for solving practical time-dependent vehicle routing problems. (2023). Wallace, Stein ; Guo, Zhaoxia ; Wei, QU ; Wang, Miao.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:173:y:2023:i:c:s1366554523000832.

    Full description at Econpapers || Download paper

  33. Optimization of ride-sharing with passenger transfer via deep reinforcement learning. (2023). Yin, Yunqiang ; Wang, QI ; Cheng, T. C. E., .
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:172:y:2023:i:c:s1366554523000686.

    Full description at Econpapers || Download paper

  34. Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing. (2023). Fescioglu-Unver, Nilgun ; Akta, Melike Yildiz.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:188:y:2023:i:c:s1364032123007311.

    Full description at Econpapers || Download paper

  35. EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning. (2023). Zhao, Zhonghao ; Huo, Jiage.
    In: Energy.
    RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034429.

    Full description at Econpapers || Download paper

  36. Incentive Compensation Mechanism for the Infrastructure Construction of Electric Vehicle Battery Swapping Station under Asymmetric Information. (2022). Zheng, Shanshui ; Cheng, Huibing.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:12:p:7041-:d:834416.

    Full description at Econpapers || Download paper

  37. Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows. (2022). Wang, Yong ; Sun, Yaoyao ; Zhe, Jiayi.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:11:p:6709-:d:828411.

    Full description at Econpapers || Download paper

  38. Using Four Metaheuristic Algorithms to Reduce Supplier Disruption Risk in a Mathematical Inventory Model for Supplying Spare Parts. (2022). Ebadi, Nafiseh ; Juma, Luay ; Baghizadeh, Komeyl ; Zimon, Dominik.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2022:i:1:p:42-:d:1011795.

    Full description at Econpapers || Download paper

  39. Dynamic Scheduling Strategy for Shared Agricultural Machinery for On-Demand Farming Services. (2022). Wang, Yi-Jia ; Zhang, Yanjiao ; Xin, Minghan ; Ma, LI.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:21:p:3933-:d:950914.

    Full description at Econpapers || Download paper

  40. Economics of Battery Swapping for Electric Vehicles—Simulation-Based Analysis. (2022). Wu, Yongzhong ; Xie, Wei ; Zhuge, Siyi ; Han, Guoxin.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:5:p:1714-:d:758189.

    Full description at Econpapers || Download paper

  41. A patrol routing problem for maritime Crime-Fighting. (2022). Liu, Yannick ; Chen, Xinyuan ; Wu, Weiwei ; Wang, Shuaian.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:168:y:2022:i:c:s1366554522003179.

    Full description at Econpapers || Download paper

  42. Multi-mode hybrid electric vehicle routing problem. (2022). Sabbagh, Mohammad Saeid ; Seyfi, Majid ; Alinaghian, Mahdi ; Ghorbani, Erfan ; Atay, Bulent.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:166:y:2022:i:c:s1366554522002605.

    Full description at Econpapers || Download paper

  43. Plug-in hybrid electric refuse vehicle routing problem for waste collection. (2022). Coelho, Leandro C ; Demir, Emrah ; Masmoudi, Amine M.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:166:y:2022:i:c:s1366554522002551.

    Full description at Econpapers || Download paper

  44. Deep reinforcement learning for dynamic incident-responsive traffic information dissemination. (2022). Liu, Yang ; Lai, Xiongfei ; Teng, Teck-Hou ; Xie, Jiaohong ; Tham, Chen-Khong ; Yang, Zhenyu.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:166:y:2022:i:c:s1366554522002514.

    Full description at Econpapers || Download paper

  45. The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning approach. (2022). Liu, Zeyu ; Khojandi, Anahita.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:164:y:2022:i:c:s1366554522002034.

    Full description at Econpapers || Download paper

  46. Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects. (2022). Tan, Zhen ; Gao, Oliver H ; Chan, Hing Kai ; Liu, Fan.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001521.

    Full description at Econpapers || Download paper

  47. Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities. (2022). Kuo, Yong-Hong ; Yan, Yimo ; Wu, Qihao ; Ho, Chin Pang ; Ying, Chengshuo.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:162:y:2022:i:c:s136655452200103x.

    Full description at Econpapers || Download paper

  48. A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations. (2022). Wang, Zhenpo ; Zhan, Weipeng ; Liu, Peng ; Zhang, Lei ; Cui, Dingsong ; Dorrell, David G.
    In: Energy.
    RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016267.

    Full description at Econpapers || Download paper

  49. Construction Planning and Operation of Battery Swapping Stations for Electric Vehicles: A Literature Review. (2021). Feng, YU ; Lu, Xiaochun.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:24:p:8202-:d:696593.

    Full description at Econpapers || Download paper

  50. A branch-and-price algorithm for a green location routing problem with multi-type charging infrastructure. (2021). Wang, Mengtong ; Miao, Lixin ; Zhang, Canrong.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:156:y:2021:i:c:s136655452100288x.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 19:12:43 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.