Aassve, A.; Alfani, G.; Gandolfi, F.; Le Moglie, M. Epidemics and Trust: The Case of the Spanish Flu. Health Econ. 2021, 30, 840–857. [CrossRef]
- Abeynayake, A.D.L.; Sunethra, A.A.; Deshani, K.A.D. A Stylometric Approach for Reliable News Detection Using Machine Learning Methods. In Proceedings of the 2022 22nd International Conference on Advances in ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 30 November–1 December 2022.
Paper not yet in RePEc: Add citation now
- Adalja, A.A.; Watson, M.; Toner, E.S.; Cicero, A.; Inglesby, T.V. Characteristics of Microbes Most Likely to Cause Pandemics and Global Catastrophes. In Current Topics in Microbiology and Immunology; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–20, ISBN 9783030363109.
Paper not yet in RePEc: Add citation now
- Adawi, M.; Bragazzi, N.L.; Watad, A.; Sharif, K.; Amital, H.; Mahroum, N. Discrepancies between Classic and Digital Epidemiology in Searching for the Mayaro Virus: Preliminary Qualitative and Quantitative Analysis of Google Trends. JMIR Public Health Surveill. 2017, 3, e93. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Adomavicius, G.; Tuzhilin, A. Toward the next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng. 2005, 17, 734–749. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alexander, D.J. Summary of Avian Influenza Activity in Europe, Asia, Africa, and Australasia, 2002–2006. Avian Dis. 2007, 51, 161–166. [CrossRef] [PubMed] Data 2023, 8, 163 24 of 24
Paper not yet in RePEc: Add citation now
Arezooji, D.M. A Big Data Analysis of the Ethereum Network: From Blockchain to Google Trends. arXiv 2021, arXiv:2104.01764.
- Arora, V.S.; McKee, M.; Stuckler, D. Google Trends: Opportunities and Limitations in Health and Health Policy Research. Health Policy 2019, 123, 338–341. [CrossRef]
Paper not yet in RePEc: Add citation now
- Artyukhov, A.; Barvinok, V.; Rehak, R.; Matvieieva, Y.; Lyeonov, S. Dynamics of Interest in Higher Education before and during Ongoing War: Google Trends Analysis. Knowl. Perform. Manag. 2023, 7, 47–63. [CrossRef] Data 2023, 8, 163 23 of 24
Paper not yet in RePEc: Add citation now
- Aslanidis, N.; Bariviera, A.F.; López, Ó.G. The Link between Cryptocurrencies and Google Trends Attention. Fin. Res. Lett. 2022, 47, 102654. [CrossRef]
Paper not yet in RePEc: Add citation now
- Banda, J.M.; Tekumalla, R.; Wang, G.; Yu, J.; Liu, T.; Ding, Y.; Artemova, E.; Tutubalina, E.; Chowell, G. A Large-Scale COVID-19 Twitter Chatter Dataset for Open Scientific Research—An International Collaboration. Epidemiologia 2021, 2, 315–324. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Barnes, T. World Health Organisation Fears New “Disease X” Could Cause a Global Pandemic. Available online: https://www.independent.co.uk/news/science/disease-x-what-is-infection-virus-world-health-organisation-warningebola -zika-sars-a8250766.html (accessed on 17 August 2023).
Paper not yet in RePEc: Add citation now
- Belk, M.; Papatheocharous, E.; Germanakos, P.; Samaras, G. Modeling Users on the World Wide Web Based on Cognitive Factors, Navigation Behavior and Clustering Techniques. J. Syst. Softw. 2013, 86, 2995–3012. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bento, A.I.; Nguyen, T.; Wing, C.; Lozano-Rojas, F.; Ahn, Y.-Y.; Simon, K. Evidence from Internet Search Data Shows InformationSeeking Responses to News of Local COVID-19 Cases. Proc. Natl. Acad. Sci. USA 2020, 117, 11220–11222. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Bragazzi, N.L.; Barberis, I.; Rosselli, R.; Gianfredi, V.; Nucci, D.; Moretti, M.; Salvatori, T.; Martucci, G.; Martini, M. How Often People Google for Vaccination: Qualitative and Quantitative Insights from a Systematic Search of the Web-Based Activities Using Google Trends. Hum. Vaccin. Immunother. 2017, 13, 464–469. [CrossRef]
Paper not yet in RePEc: Add citation now
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate Change Increases Cross-Species Viral Transmission Risk. Nature 2022, 607, 555–562. [CrossRef]
Paper not yet in RePEc: Add citation now
- Carrière-Swallow, Y.; Labbé, F. Nowcasting with Google Trends in an Emerging Market: Nowcasting with Google Trends in an Emerging Market. J. Forecast. 2013, 32, 289–298. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cervellin, G.; Comelli, I.; Lippi, G. Is Google Trends a Reliable Tool for Digital Epidemiology? Insights from Different Clinical Settings. J. Epidemiol. Glob. Health 2017, 7, 185. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Chan, E.H.; Sahai, V.; Conrad, C.; Brownstein, J.S. Using Web Search Query Data to Monitor Dengue Epidemics: A New Model for Neglected Tropical Disease Surveillance. PLoS Negl. Trop. Dis. 2011, 5, e1206. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Chatterjee, P.; Nair, P.; Chersich, M.; Terefe, Y.; Chauhan, A.; Quesada, F.; Simpson, G. One Health, “Disease X” & the Challenge of “Unknown” Unknowns. Indian J. Med. Res. 2021, 153, 264. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cho, S.; Sohn, C.H.; Jo, M.W.; Shin, S.-Y.; Lee, J.H.; Ryoo, S.M.; Kim, W.Y.; Seo, D.-W. Correlation between National Influenza Surveillance Data and Google Trends in South Korea. PLoS ONE 2013, 8, e81422. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Dolkar, T.; Gowda, S.; Chatterjee, S. Cardiac Symptoms during the Russia-Ukraine War: A Google Trends Analysis. Cureus 2023, 15, e36676. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Dreher, P.C.; Tong, C.; Ghiraldi, E.; Friedlander, J.I. Use of Google Trends to Track Online Behavior and Interest in Kidney Stone Surgery. Urology 2018, 121, 74–78. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Eirinaki, M.; Vazirgiannis, M. Web Mining for Web Personalization. ACM Trans. Internet Technol. 2003, 3, 1–27. [CrossRef]
Paper not yet in RePEc: Add citation now
- Explainers, F.P. “Deadlier than COVID”: How Dangerous Is Disease X? Available online: https://www.firstpost.com/explainers/ deadlier-than-covid-how-dangerous-is-disease-x-13192892.html (accessed on 3 October 2023).
Paper not yet in RePEc: Add citation now
- Fauci, A.S.; Lane, H.C.; Redfield, R.R. COVID-19—Navigating the Uncharted. N. Engl. J. Med. 2020, 382, 1268–1269. [CrossRef]
Paper not yet in RePEc: Add citation now
- Faugère, C.; Gergaud, O. Business Ethics Searches: A Socioeconomic and Demographic Analysis of U.S. Google Trends in the Context of the 2008 Financial Crisis: Faugere and Gergaud. Bus. Ethics 2017, 26, 271–287. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fazeli Dehkordy, S.; Carlos, R.C.; Hall, K.S.; Dalton, V.K. Novel Data Sources for Women’s Health Research. Acad. Radiol. 2014, 21, 1172–1176. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fontanet, A.; Cauchemez, S. COVID-19 Herd Immunity: Where Are We? Nat. Rev. Immunol. 2020, 20, 583–584. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Frederiksen, L.S.F.; Zhang, Y.; Foged, C.; Thakur, A. The Long Road toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Front. Immunol. 2020, 11, 1817. [CrossRef] [PubMed] Data 2023, 8, 163 21 of 24
Paper not yet in RePEc: Add citation now
- Gao, J.; Xing, D.; Li, J.; Li, T.; Huang, C.; Wang, W. Is Robotic Assistance More Eye-Catching than Computer Navigation in Joint Arthroplasty? A Google Trends Analysis from the Point of Public Interest. J. Robot. Surg. 2023, 17, 2167–2176. [CrossRef]
Paper not yet in RePEc: Add citation now
Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting Influenza Epidemics Using Search Engine Query Data. Nature 2009, 457, 1012–1014. [CrossRef] [PubMed]
- Gjerding, M.N.; Taghizadeh, A.; Rasmussen, A.; Ali, S.; Bertoldo, F.; Deilmann, T.; Knøsgaard, N.R.; Kruse, M.; Larsen, A.H.; Manti, S.; et al. Recent Progress of the Computational 2D Materials Database (C2DB). 2D Mater. 2021, 8, 044002. [CrossRef]
Paper not yet in RePEc: Add citation now
Golan, M.S.; Jernegan, L.H.; Linkov, I. Trends and Applications of Resilience Analytics in Supply Chain Modeling: Systematic Literature Review in the Context of the COVID-19 Pandemic. Environ. Syst. Decis. 2020, 40, 222–243. [CrossRef]
- Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; et al. RCSB Protein Data Bank: Enabling Biomedical Research and Drug Discovery. Protein Sci. 2020, 29, 52–65. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Google Trends. Available online: https://trends.google.com/trends/ (accessed on 18 August 2023).
Paper not yet in RePEc: Add citation now
- Health Ministry Says on High Alert for Any Possible Existence of ‘Disease X’ in Malaysia. Available online: https://www. theborneopost.com/2023/09/30/health-ministry-says-on-high-alert-for-any-possible-existence-of-disease-x-in-malaysia/ (accessed on 3 October 2023).
Paper not yet in RePEc: Add citation now
- Horák, J.; Ivan, I.; Kukuliač, P.; Inspektor, T.; Devečka, B.; Návratová, M. Google Trends for Data Mining. Study of Czech Towns. In Computational Collective Intelligence. Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 100–109. ISBN 9783642404948.
Paper not yet in RePEc: Add citation now
- Husnayain, A.; Fuad, A.; Lazuardi, L. Correlation between Google Trends on Dengue Fever and National Surveillance Report in Indonesia. Glob. Health Action 2019, 12, 1552652. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- IEEE DataPort. Available online: https://ieee-dataport.org/ (accessed on 18 August 2023).
Paper not yet in RePEc: Add citation now
- Iserson, K. The next Pandemic: Prepare for “Disease X”. West. J. Emerg. Med. 2020, 21, 756. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Jacob, S.T.; Crozier, I.; Fischer, W.A., II; Hewlett, A.; Kraft, C.S.; de la Vega, M.-A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola Virus Disease. Nat. Rev. Dis. Primers 2020, 6, 13. [CrossRef]
Paper not yet in RePEc: Add citation now
Jalan, A.; Matkovskyy, R.; Urquhart, A.; Yarovaya, L. The Role of Interpersonal Trust in Cryptocurrency Adoption. J. Int. Financ. Mark. Inst. Money 2023, 83, 101715. [CrossRef]
- Jin, R.; Si, L.; Zhai, C. A Study of Mixture Models for Collaborative Filtering. Inf. Retr. Boston. 2006, 9, 357–382. [CrossRef]
Paper not yet in RePEc: Add citation now
- Johnson, A.K.; Mehta, S.D. A Comparison of Internet Search Trends and Sexually Transmitted Infection Rates Using Google Trends. Sex. Transm. Dis. 2014, 41, 61–63. [CrossRef]
Paper not yet in RePEc: Add citation now
- Joint United Nations Programme on HIV/AIDS. World Health Organization 2008 Report on the Global AIDS Epidemic; World Health Organization: Genève, Switzerland, 2008; ISBN 9789291737116.
Paper not yet in RePEc: Add citation now
Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [CrossRef]
- Jun, S.-P.; Yoo, H.S.; Choi, S. Ten Years of Research Change Using Google Trends: From the Perspective of Big Data Utilizations and Applications. Technol. Forecast. Soc. Chang. 2018, 130, 69–87. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kao, Y.-S. Do People Use ChatGPT to Replace Doctor? A Google Trends Analysis. Ann. Biomed. Eng. 2023. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Kapitány-Fövény, M.; Ferenci, T.; Sulyok, Z.; Kegele, J.; Richter, H.; Vályi-Nagy, I.; Sulyok, M. Can Google Trends Data Improve Forecasting of Lyme Disease Incidence? Zoonoses Public Health 2019, 66, 101–107. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Kearnes, S.M.; Maser, M.R.; Wleklinski, M.; Kast, A.; Doyle, A.G.; Dreher, S.D.; Hawkins, J.M.; Jensen, K.F.; Coley, C.W. The Open Reaction Database. J. Am. Chem. Soc. 2021, 143, 18820–18826. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kiviniemi, M.T.; Orom, H.; Hay, J.L.; Waters, E.A. Prevention Is Political: Political Party Affiliation Predicts Perceived Risk and Prevention Behaviors for COVID-19. BMC Public Health 2022, 22, 298. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Kooli, C. COVID-19: Public Health Issues and Ethical Dilemmas. Ethics Med. Public Health 2021, 17, 100635. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kreuder Johnson, C.; Hitchens, P.L.; Smiley Evans, T.; Goldstein, T.; Thomas, K.; Clements, A.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; Karesh, W.B.; et al. Spillover and Pandemic Properties of Zoonotic Viruses with High Host Plasticity. Sci. Rep. 2015, 5, 14830. [CrossRef]
Paper not yet in RePEc: Add citation now
- Krishnan, N.; Anand, S.; Sandlas, G. Evaluating the Impact of COVID-19 Pandemic on Public Interest in Minimally Invasive Surgery: An Infodemiology Study Using Google Trends. Cureus 2021, 13, e18848. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Kristoufek, L. BitCoin Meets Google Trends and Wikipedia: Quantifying the Relationship between Phenomena of the Internet Era. Sci. Rep. 2013, 3, 3415. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Kupfer, A.; Puhr, H. The Russian View on the War in Ukraine: Insights from Google Trends. SSRN Electron. J. 2022. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, Y. How Is Data Visualization Shaping Our Life? The Application of Analytics from Google Trends during the Epidemic of COVID-19. In Studies in Systems, Decision and Control; Springer International Publishing: Cham, Switzerland, 2021; pp. 223–239, ISBN 9783030766313.
Paper not yet in RePEc: Add citation now
- Li, Y.; Zhu, T.; Li, A.; Zhang, F.; Xu, X. Web Behavior and Personality: A Review. In Proceedings of the 2011 3rd Symposium on Web Society, Port Elizabeth, South Africa, 26–28 October 2011.
Paper not yet in RePEc: Add citation now
- Lippi, G.; Mattiuzzi, C.; Cervellin, G.; Favaloro, E.J. Direct Oral Anticoagulants: Analysis of Worldwide Use and Popularity Using Google Trends. Ann. Transl. Med. 2017, 5, 322. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mair, P.; Treiblmaier, H.; Lowry, P.B. Using Multistage Competing Risks Approaches to Model Web Page Transitions. Internet Res. 2017, 27, 650–669. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mavragani, A.; Ochoa, G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill. 2019, 5, e13439. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Mercer, T.R.; Salit, M. Testing at Scale during the COVID-19 Pandemic. Nat. Rev. Genet. 2021, 22, 415–426. [CrossRef]
Paper not yet in RePEc: Add citation now
- Miraz, M.H.; Ali, M.; Excell, P.S.; Picking, R. A Review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT). In Proceedings of the 2015 Internet Technologies and Applications (ITA), Wrexham, UK, 8–11 September 2015; p. 219.
Paper not yet in RePEc: Add citation now
- Morsy, S.; Dang, T.N.; Kamel, M.G.; Zayan, A.H.; Makram, O.M.; Elhady, M.; Hirayama, K.; Huy, N.T. Prediction of ZikaConfirmed Cases in Brazil and Colombia Using Google Trends. Epidemiol. Infect. 2018, 146, 1625–1627. [CrossRef]
Paper not yet in RePEc: Add citation now
Mulero, R.; García-Hiernaux, A. Forecasting Spanish Unemployment with Google Trends and Dimension Reduction Techniques. SERIEs 2021, 12, 329–349. [CrossRef]
- Nghiem, L.T.P.; Papworth, S.K.; Lim, F.K.S.; Carrasco, L.R. Analysis of the Capacity of Google Trends to Measure Interest in Conservation Topics and the Role of Online News. PLoS ONE 2016, 11, e0152802. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nuti, S.V.; Wayda, B.; Ranasinghe, I.; Wang, S.; Dreyer, R.P.; Chen, S.I.; Murugiah, K. The Use of Google Trends in Health Care Research: A Systematic Review. PLoS ONE 2014, 9, e109583. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ortiz-Martínez, Y.; Garcia-Robledo, J.E.; Vásquez-Castañeda, D.L.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Can Google Trends Predict COVID-19 Incidence and Help Preparedness? The Situation in Colombia. Travel Med. Infect. Dis. 2020, 37, 101703. [CrossRef]
Paper not yet in RePEc: Add citation now
- Padhi, S.S.; Pati, R.K. Quantifying Potential Tourist Behavior in Choice of Destination Using Google Trends. Tour. Manag. Perspect. 2017, 24, 34–47. [CrossRef]
Paper not yet in RePEc: Add citation now
- Peiris, J.S.M.; Tu, W.-W.; Yen, H.-L. A Novel H1N1 Virus Causes the First Pandemic of the 21st Century. Eur. J. Immunol. 2009, 39, 2946–2954. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Preis, T.; Moat, H.S.; Stanley, H.E. Quantifying Trading Behavior in Financial Markets Using Google Trends. Sci. Rep. 2013, 3,
Paper not yet in RePEc: Add citation now
- Prentice, M.B.; Rahalison, L. Plague. Lancet 2007, 369, 1196–1207. [CrossRef]
Paper not yet in RePEc: Add citation now
- Prioritizing Diseases for Research and Development in Emergency Contexts. Available online: https://www.who.int/activities/ prioritizing-diseases-for-research-and-development-in-emergency-contexts (accessed on 17 August 2023).
Paper not yet in RePEc: Add citation now
- Quintanilha, L.F.; Souza, L.N.; Sanchez, D.; Demarco, R.S.; Fukutani, K.F. The Impact of Cancer Campaigns in Brazil: A Google Trends Analysis. Ecancermedicalscience 2019, 13, 963. [CrossRef] Data 2023, 8, 163 22 of 24
Paper not yet in RePEc: Add citation now
- Rabin, C.; Dutra, S. Predicting Engagement in Behaviors to Reduce the Spread of COVID-19: The Roles of the Health Belief Model and Political Party Affiliation. Psychol. Health Med. 2022, 27, 379–388. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Radanliev, P.; De Roure, D. Disease X Vaccine Production and Supply Chains: Risk Assessing Healthcare Systems Operating with Artificial Intelligence and Industry 4.0. Health Technol. 2023, 13, 11–15. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rasheed, R.T.; Mohammed, M.A.; Tapus, N. Big Data Analysis. Mesopotamian J. Big Data 2021, 2021, 22–25. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sadeq, N.; Hamzeh, Z.; Nassreddine, G.; ElHassan, T. The Impact of Blockchain Technique on Trustworthy Healthcare Sector. Mesopotamian J. Cyber Secur. 2023, 2023, 105–115. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sampath, S.; Khedr, A.; Qamar, S.; Tekin, A.; Singh, R.; Green, R.; Kashyap, R. Pandemics throughout the History. Cureus 2021, 13, e18136. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sampri, A.; Mavragani, A.; Tsagarakis, K.P. Evaluating Google Trends as a Tool for Integrating the ‘Smart Health’ Concept in the Smart Cities’ Governance in USA. Procedia Eng. 2016, 162, 585–592. [CrossRef]
Paper not yet in RePEc: Add citation now
- Schuerger, C.; Batalis, S.; Quinn, K.; Adalja, A.; Puglisi, A. Viral Families and Disease X: A Framework for U.S. Pandemic Preparedness Policy. Available online: https://cset.georgetown.edu/wp-content/uploads/CSET-Viral-Families-and-Disease-XA -Framework-for-U.S.-Pandemic-Preparedness-Policy.pdf (accessed on 17 August 2023).
Paper not yet in RePEc: Add citation now
- Scutti, S. World Health Organization Gets Ready for ‘Disease X’. Available online: https://www.cnn.com/2018/03/12/health/ disease-x-blueprint-who/index.html (accessed on 17 August 2023).
Paper not yet in RePEc: Add citation now
- Simpson, S.; Chakrabarti, A.; Robinson, D.; Chirgwin, K.; Lumpkin, M. Navigating Facilitated Regulatory Pathways during a Disease X Pandemic. NPJ Vaccines 2020, 5, 101. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Simpson, S.; Kaufmann, M.C.; Glozman, V.; Chakrabarti, A. Disease X: Accelerating the Development of Medical Countermeasures for the next Pandemic. Lancet Infect. Dis. 2020, 20, e108–e115. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Singh, R.; Sarsaiya, S.; Singh, T.A.; Singh, T.; Pandey, L.K.; Pandey, P.K.; Khare, N.; Sobin, F.; Sikarwar, R.; Gupta, M.K. Corona Virus (COVID-19) Symptoms Prevention and Treatment: A Short Review. J. Drug Deliv. Ther. 2021, 11, 118–120. [CrossRef]
Paper not yet in RePEc: Add citation now
- Slenter, D.N.; Kutmon, M.; Hanspers, K.; Riutta, A.; Windsor, J.; Nunes, N.; Mélius, J.; Cirillo, E.; Coort, S.L.; Digles, D.; et al. WikiPathways: A Multifaceted Pathway Database Bridging Metabolomics to Other Omics Research. Nucleic Acids Res. 2018, 46, D661–D667. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Szmuda, T.; Ali, S.; Hetzger, T.V.; Rosvall, P.; Słoniewski, P. Are Online Searches for the Novel Coronavirus (COVID-19) Related to Media or Epidemiology? A Cross-Sectional Study. Int. J. Infect. Dis. 2020, 97, 386–390. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Tahir, M.J.; Sawal, I.; Essar, M.Y.; Jabbar, A.; Ullah, I.; Ahmed, A. Disease X: A Hidden but Inevitable Creeping Danger. Infect. Control Hosp. Epidemiol. 2022, 43, 1758–1759. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Teng, Y.; Bi, D.; Xie, G.; Jin, Y.; Huang, Y.; Lin, B.; An, X.; Feng, D.; Tong, Y. Dynamic Forecasting of Zika Epidemics Using Google Trends. PLoS ONE 2017, 12, e0165085. [CrossRef]
Paper not yet in RePEc: Add citation now
- Thakur, N. A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave. Data 2022, 7, 109. [CrossRef]
Paper not yet in RePEc: Add citation now
- Thakur, N. MonkeyPox2022Tweets: A Large-Scale Twitter Dataset on the 2022 Monkeypox Outbreak, Findings from Analysis of Tweets, and Open Research Questions. Infect. Dis. Rep. 2022, 14, 855–883. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Thakur, N. Sentiment Analysis and Text Analysis of the Public Discourse on Twitter about COVID-19 and MPox. Big Data Cogn. Comput. 2023, 7, 116. [CrossRef]
Paper not yet in RePEc: Add citation now
- Thakur, N.; Duggal, Y.N.; Liu, Z. Analyzing Public Reactions, Perceptions, and Attitudes during the MPox Outbreak: Findings from Topic Modeling of Tweets. Computers 2023, 12, 191. [CrossRef]
Paper not yet in RePEc: Add citation now
- Thakur, N.; Hall, I.; Han, C.Y. A Comprehensive Study to Analyze Trends in Web Search Interests Related to Fall Detection before and after COVID-19. In Proceedings of the 2022 5th International Conference on Computer Science and Software Engineering (CSSE 2022), New York, NY, USA, 21–23 October 2022.
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C. An Exploratory Study of Tweets about the SARS-CoV-2 Omicron Variant: Insights from Sentiment Analysis, Language Interpretation, Source Tracking, Type Classification, and Embedded URL Detection. COVID 2022, 2, 1026–1049. [CrossRef]
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C.Y. A Framework for Prediction of Cramps during Activities of Daily Living in Elderly. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020.
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C.Y. A Human-Human Interaction-Driven Framework to Address Societal Issues. In Human Interaction, Emerging Technologies and Future Systems V; Springer International Publishing: Cham, Switzerland, 2022; pp. 563–571, ISBN 9783030855390.
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C.Y. A Multimodal Approach for Early Detection of Cognitive Impairment from Tweets. In Human Interaction, Emerging Technologies and Future Systems V; Springer International Publishing: Cham, Switzerland, 2022; pp. 11–19, ISBN 9783030855390.
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C.Y. An Approach for Detection of Walking Related Falls during Activities of Daily Living. In Proceedings of the 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020.
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C.Y. An Intelligent Ubiquitous Activity Aware Framework for Smart Home. In Human Interaction, Emerging Technologies and Future Applications III; Springer International Publishing: Cham, Switzerland, 2021; pp. 296–302, ISBN 9783030553067.
Paper not yet in RePEc: Add citation now
Thakur, N.; Han, C.Y. Country-Specific Interests towards Fall Detection from 2004–2021: An Open Access Dataset and Research Questions. Data 2021, 6, 92. [CrossRef]
- Thakur, N.; Han, C.Y. Google Trends to Investigate the Degree of Global Interest Related to Indoor Location Detection. In Human Interaction, Emerging Technologies and Future Systems V; Springer International Publishing: Cham, Switzerland, 2022; pp. 580–588, ISBN 9783030855390.
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C.Y. Indoor Localization for Personalized Ambient Assisted Living of Multiple Users in Multi-Floor Smart Environments. Big Data Cogn. Comput. 2021, 5, 42. [CrossRef]
Paper not yet in RePEc: Add citation now
- Thakur, N.; Han, C.Y. Pervasive Activity Logging for Indoor Localization in Smart Homes. In Proceedings of the 2021 4th International Conference on Data Science and Information Technology, Shanghai, China, 23–25 July 2021.
Paper not yet in RePEc: Add citation now
- Tijerina, J.D.; Morrison, S.D.; Nolan, I.T.; Parham, M.J.; Richardson, M.T.; Nazerali, R. Celebrity Influence Affecting Public Interest in Plastic Surgery Procedures: Google Trends Analysis. Aesthetic Plast. Surg. 2019, 43, 1669–1680. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Tkachenko, N.; Chotvijit, S.; Gupta, N.; Bradley, E.; Gilks, C.; Guo, W.; Crosby, H.; Shore, E.; Thiarai, M.; Procter, R.; et al. Google Trends Can Improve Surveillance of Type 2 Diabetes. Sci. Rep. 2017, 7, 4993. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Tran, U.S.; Andel, R.; Niederkrotenthaler, T.; Till, B.; Ajdacic-Gross, V.; Voracek, M. Low Validity of Google Trends for Behavioral Forecasting of National Suicide Rates. PLoS ONE 2017, 12, e0183149. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; De Silva, N.; Martinez, M.C.; Pedro, H.; Yates, A.D.; et al. PHI-Base: The Pathogen–Host Interactions Database. Nucleic Acids Res. 2019, 48, D613–D620. [CrossRef]
Paper not yet in RePEc: Add citation now
- Van Kerkhove, M.D.; Ryan, M.J.; Ghebreyesus, T.A. Preparing for “Disease X”. Science 2021, 374, 377. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vasconcellos-Silva, P.R.; Carvalho, D.B.F.; Trajano, V.; de La Rocque, L.R.; Sawada, A.C.M.B.; Juvanhol, L.L. Using Google Trends Data to Study Public Interest in Breast Cancer Screening in Brazil: Why Not a Pink February? JMIR Public Health Surveill. 2017, 3, e17. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vats, V. What Is Disease X? It Could Bring the next Pandemic, Says Expert. Available online: https://www.ndtv.com/health/ what-is-disease-x-it-could-bring-the-next-pandemic-deadlier-than-covid-19-says-expert-4424840 (accessed on 3 October 2023). Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Vaughan, L.; Chen, Y. Data Mining from Web Search Queries: A Comparison of Google Trends and Baidu Index: Data Mining from Web Search Queries: A Comparison of Google Trends and Baidu Index. J. Assoc. Inf. Sci. Technol. 2015, 66, 13–22. [CrossRef]
Paper not yet in RePEc: Add citation now
- Verma, M.; Kishore, K.; Kumar, M.; Sondh, A.R.; Aggarwal, G.; Kathirvel, S. Google Search Trends Predicting Disease Outbreaks: An Analysis from India. Healthc. Inform. Res. 2018, 24, 300. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Wang, D.; Guerra, A.; Wittke, F.; Lang, J.C.; Bakker, K.; Lee, A.W.; Finelli, L.; Chen, Y.-H. Real-Time Monitoring of Infectious Disease Outbreaks with a Combination of Google Trends Search Results and the Moving Epidemic Method: A Respiratory Syncytial Virus Case Study. Trop. Med. Infect. Dis. 2023, 8, 75. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [CrossRef]
Paper not yet in RePEc: Add citation now
- Young, S.D.; Torrone, E.A.; Urata, J.; Aral, S.O. Using Search Engine Data as a Tool to Predict Syphilis. Epidemiology 2018, 29, 574–578. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Young, S.D.; Zhang, Q. Using Search Engine Big Data for Predicting New HIV Diagnoses. PLoS ONE 2018, 13, e0199527. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Yu, L.; Zhao, Y.; Tang, L.; Yang, Z. Online Big Data-Driven Oil Consumption Forecasting with Google Trends. Int. J. Forecast. 2019, 35, 213–223. [CrossRef]
Paper not yet in RePEc: Add citation now