create a website

Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. (2020). Jachimowicz, Piotr ; Nosek, Dawid ; Cydzik-Kwiatkowska, Agnieszka.
In: Energies.
RePEc:gam:jeners:v:13:y:2020:i:24:p:6596-:d:461967.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 151

References cited by this document

Cocites: 35

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Anode Modification with Fe 2 O 3 Affects the Anode Microbiome and Improves Energy Generation in Microbial Fuel Cells Powered by Wastewater. (2023). Mikoajczyk, Tomasz ; Nosek, Dawid ; Cydzik-Kwiatkowska, Agnieszka.
    In: IJERPH.
    RePEc:gam:jijerp:v:20:y:2023:i:3:p:2580-:d:1053214.

    Full description at Econpapers || Download paper

  2. Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review. (2022). Pandis, Pavlos K ; Savvidou, Maria G ; Sourkouni, Georgia ; Mamma, Diomi ; Argirusis, Christos.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:15:p:5616-:d:878757.

    Full description at Econpapers || Download paper

  3. Effect of Polypyrrole-Fe 3 O 4 Composite Modified Anode and Its Electrodeposition Time on the Performance of Microbial Fuel Cells. (2021). , Yaobin ; Fan, Liping.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:9:p:2461-:d:543484.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ahmed M.; Lin O.; Saup C.M.; Wilkins M.J.; Lin L.S. Effects of Fe/S ratio on the kinetics and microbial ecology of an Fe(III)-dosed anaerobic wastewater treatment system. J. Hazard. Mater. 2019, 369, 593-600.
    Paper not yet in RePEc: Add citation now
  2. Alahmadi N.S.; Betts J.W.; Cheng F.; Francesconi M.G.; Kelly S.M.; Kornherr A.; Prior T.J.; Wadhawan J.D. Synthesis and antibacterial effects of cobalt–cellulose magnetic nanocomposites. RSC Adv. 2017, 7, 20020-20026.
    Paper not yet in RePEc: Add citation now
  3. Aryal R.; Beltran D.; Liu J. Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell. Int. J. Green Energy 2019, 16, 1391-1399.
    Paper not yet in RePEc: Add citation now
  4. Baudler A.; Schmidt I.; Langner M.; Greiner A.; Schröder U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048-2055.
    Paper not yet in RePEc: Add citation now
  5. Bian B.; Shi D.; Cai X.; Hu M.; Guo Q.; Zhang C.; Wang Q.; Sun A.X.; Yang J. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 2018, 44, 174-180.
    Paper not yet in RePEc: Add citation now
  6. Blatter M.; Furrer C.; Cachelin C.P.; Fischer F. Phosphorus, chemical base and other renewables from wastewater with three 168-L microbial electrolysis cells and other unit operations. Chem. Eng. J. 2020, 390.
    Paper not yet in RePEc: Add citation now
  7. Blázquez E.; Baeza J.A.; Gabriel D.; Guisasola A. Treatment of real flue gas desulfurization wastewater in an autotrophic biocathode in view of elemental sulfur recovery: Microbial communities involved. Sci. Total Environ. 2019, 657, 945-952.
    Paper not yet in RePEc: Add citation now
  8. Bujdáková H.; Didiášová M.; Drahovská H.; Černáková L. Role of cell surface hydrophobicity in Candida albicans biofilm. Open Life Sci. 2013, 8, 259-262.
    Paper not yet in RePEc: Add citation now
  9. Cao Y.; Mu H.; Liu W.; Zhang R.; Guo J.; Xian M.; Liu H. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Fact. 2019, 18.
    Paper not yet in RePEc: Add citation now
  10. Capodaglio A.; Olsson G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2019, 12.

  11. Carmona-Martínez A.A.; Harnisch F.; Kuhlicke U.; Neu T.R.; Schröder U. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry 2013, 93, 23-29.
    Paper not yet in RePEc: Add citation now
  12. Catal T.; Li K.; Bermek H.; Liu H. Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources 2008, 175, 196-200.
    Paper not yet in RePEc: Add citation now
  13. Chae K.J.; Choi M.J.; Lee J.W.; Kim K.Y.; Kim I.S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 2009, 100, 3518-3525.
    Paper not yet in RePEc: Add citation now
  14. Champigneux P.; Renault-Sentenac C.; Bourrier D.; Rossi C.; Délia M.L.; Bergel A. Effect of surface roughness, porosity and roughened micro-pillar structures on the early formation of microbial anodes. Bioelectrochemistry 2019, 128, 17-29.
    Paper not yet in RePEc: Add citation now
  15. Chen X.; Li Y.; Yuan X.; Li N.; He W.; Liu J. Synergistic effect between poly (diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell. Electrochim. Acta 2020, 359.
    Paper not yet in RePEc: Add citation now
  16. Chen Y.Y.; Wang H.Y. Fabrication and characterization of polyelectrolyte microcarriers for microorganism cultivation through a microfluidic droplet system. Biomicrofluidics 2016, 10.
    Paper not yet in RePEc: Add citation now
  17. Chignell J.F.; De Long S.K.; Reardon K.F. Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells. Biotechnol. Biofuels 2018, 11, 121.
    Paper not yet in RePEc: Add citation now
  18. Cornejo J.A.; Lopez C.; Babanova S.; Santoro C.; Artyushkova K.; Ista L.; Schuler A.J.; Atanassov P. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes. J. Electrochem. Soc. 2015, 162, H597-H603.
    Paper not yet in RePEc: Add citation now
  19. Cui H.F.; Du L.; Guo P.B.; Zhu B.; Luong J.H. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J. Power Sources 2015, 283, 46-53.
    Paper not yet in RePEc: Add citation now
  20. Cui Y.; Chen X.; Pan Z.; Wang Y.; Xu Q.; Bai J.; Jia H.; Zhou J.; Yong X.; Wu X. Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell. Bioresour. Technol. 2020, 318.
    Paper not yet in RePEc: Add citation now
  21. Deng X.; Dohmae N.; Kaksonen A.H.; Okamoto A. Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria. Angew. Chemie 2020, 132, 6051-6055.
    Paper not yet in RePEc: Add citation now
  22. Du Q.; An J.; Li J.; Zhou L.; Li N.; Wang X. Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. J. Power Sources 2017, 343, 477-482.
    Paper not yet in RePEc: Add citation now
  23. Engel C.; Schattenberg F.; Dohnt K.; Schröder U.; Müller S.; Krull R. Long-term behavior of defined mixed cultures of Geobacter sulfurreducens and Shewanella oneidensis in bioelectrochemical systems. Front. Bioeng. Biotechnol. 2019, 7.
    Paper not yet in RePEc: Add citation now
  24. Esfandyari M.; Fanaei M.A.; Gheshlaghi R.; Akhavan Mahdavi M. Dynamic modeling of a continuous two-chamber microbial fuel cell with pure culture of Shewanella. Int. J. Hydrogen Energy 2017, 42, 21198-21202.
    Paper not yet in RePEc: Add citation now
  25. Eyiuche N.J.; Asakawa S.; Yamashita T.; Ikeguchi A.; Kitamura Y.; Yokoyama H. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. BMC Microbiol. 2017, 17.
    Paper not yet in RePEc: Add citation now
  26. Fan M.; Zhang W.; Sun J.; Chen L.; Li P.; Chen Y.; Zhu S.; Shen S. Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells. Int. J. Hydrogen Energy 2017, 42, 22786-22795.
    Paper not yet in RePEc: Add citation now
  27. Feng Y.; Yang Q.; Wang X.; Liu Y.; Lee H.; Ren N. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour. Technol. 2011, 102, 411-415.
    Paper not yet in RePEc: Add citation now
  28. Feng Y.; Yang Q.; Wang X.; Logan B.E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 2010, 195, 1841-1844.
    Paper not yet in RePEc: Add citation now
  29. Fu L.; Wang H.; Huang Q.; Song Shun T.; Xie J. Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell. Bioprocess Biosyst. Eng. 2020, 43, 373-381.
    Paper not yet in RePEc: Add citation now
  30. Gajda I.; Greenman J.; Ieropoulos I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl. Energy 2020, 262.

  31. Ghasemi M.; Wan Daud W.R.; Hassan S.H.A.; Jafary T.; Rahimnejad M.; Ahmad A.; Yazdi M.H. Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell. Int. J. Hydrogen Energy 2016, 41, 4872-4878.
    Paper not yet in RePEc: Add citation now
  32. Guo K.; Freguia S.; Dennis P.G.; Chen X.; Donose B.C.; Keller J.; Gooding J.J.; Rabaey K. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 2013, 47, 7563-7570.
    Paper not yet in RePEc: Add citation now
  33. Harshiny M.; Samsudeen N.; Kameswara R.J.; Matheswaran M. Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell. Int. J. Hydrog. Energy 2017, 42, 26488-26495.
    Paper not yet in RePEc: Add citation now
  34. Hassan S.H.A.; Kim Y.S.; Oh S.E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzyme Microb. Technol. 2012, 51, 269-273.
    Paper not yet in RePEc: Add citation now
  35. Hindatu Y.; Annuar M.S.M.; Gumel A.M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236-248.

  36. Hou J.; Liu Z.; Yang S.; Zhou Y. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J. Power Sources 2014, 258, 204-209.
    Paper not yet in RePEc: Add citation now
  37. Huo Y.C.; Li W.W.; Chen C.B.; Li C.X.; Zeng R.; Lau T.C.; Huang T.Y. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Enzyme Microb. Technol. 2016, 95, 236-241.
    Paper not yet in RePEc: Add citation now
  38. Jachimowicz P.; Cydzik-Kwiatkowska A.; Szklarz P. Effect of aeration mode on microbial structure and efficiency of treatment of TSS-rich wastewater from meat processing. Appl. Sci. 2020, 10.
    Paper not yet in RePEc: Add citation now
  39. Jadhav D.A.; Ghangrekar M.M. Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. Int. J. Environ. Technol. Manag. 2020, 23.

  40. Jia Y.; Ma D.; Wang X. Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech 2020, 10.
    Paper not yet in RePEc: Add citation now
  41. Jia Y.H.; Qi Z.L.; You H. Power production enhancement with polyaniline composite anode in benthic microbial fuel cells. J. Cent. South Univ. 2018, 25, 499-505.
    Paper not yet in RePEc: Add citation now
  42. Kang Y.L.; Pichiah S.; Ibrahim S. Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. Int. J. Hydrog. Energy 2017, 42, 1661-1671.
    Paper not yet in RePEc: Add citation now
  43. Kargi F.; Eker S. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. J. Chem. Technol. Biotechnol. 2007, 82, 658-662.
    Paper not yet in RePEc: Add citation now
  44. Karthikeyan R.; Krishnaraj N.; Selvam A.; Wong J.W.C.; Lee P.K.H.; Leung M.K.H.; Berchmans S. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour. Technol. 2016, 217, 113-120.
    Paper not yet in RePEc: Add citation now
  45. Khan M.E.; Khan M.M.; Min B.K.; Cho M.H. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 2018, 8, 1723.
    Paper not yet in RePEc: Add citation now
  46. Khan M.M.; Ansari A.J.; Lee J.H.; Lee J.; Cho M.C. Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies. ACS Sustain. Chem. Eng. 2014, 2, 423-432.
    Paper not yet in RePEc: Add citation now
  47. Khan M.T.; Browne W.R.; Van Dijl J.M.; Harmsen H.J.M. How can faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer?. Antioxidants Redox. Signal. 2012, 17, 1433-1440.
    Paper not yet in RePEc: Add citation now
  48. Kiely P.D.; Regan J.M.; Logan B.E. The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Curr. Opin. Biotechnol. 2011, 22, 378-385.
    Paper not yet in RePEc: Add citation now
  49. Kim B.H.; Park H.S.; Kim H.J.; Kim G.T.; Chang I.S.; Lee J.; Phung N.T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 2004, 63, 672-681.
    Paper not yet in RePEc: Add citation now
  50. Kim H.; Kim B.; Yu J. Effect of HRT and external resistances on power generation of sidestream microbial fuel cell with CNT-coated SSM anode treating actual fermentation filtrate of municipal sludge. Sci. Total Environ. 2019, 675, 390-396.
    Paper not yet in RePEc: Add citation now
  51. Kirubaharan C.J.; Kumar G.G.; Sha C.; Zhou D.; Yang H.; Nahm K.S.; Raj B.S.; Zhang Y.; Yong Y.C. Facile fabrication of Au/polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim. Acta 2019, 328.
    Paper not yet in RePEc: Add citation now
  52. Kooti M.; Saiahi S.; Motamedi H. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater 2013, 333, 138-143.
    Paper not yet in RePEc: Add citation now
  53. Kou T.; Yang Y.; Yao B.; Li Y. Interpenetrated bacteria-carbon nanotubes film for microbial fuel cells. Small Methods 2018, 2.
    Paper not yet in RePEc: Add citation now
  54. Kumar R.; Singh L.; Wahid Z.A.; Din M.F.M. Exoelectrogens in microbial fuel cells toward bioelectricity generation: A review. Int. J. Energy Res. 2015, 39, 1048-1067.
    Paper not yet in RePEc: Add citation now
  55. Kumar R.; Singh L.; Zularisam A.W. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 2016, 56, 1322-1336.

  56. Lai B.; Tang X.; Li H.; Du Z.; Liu X.; Zhang Q. Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens. Bioelectron. 2011, 28, 373-377.
    Paper not yet in RePEc: Add citation now
  57. Lan L.; Li J.; Feng Q.; Zhang L.; Fu Q.; Zhu X.; Liao Q. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells. Int. J. Hydrogen Energy 2020, 45, 3833-3839.
    Paper not yet in RePEc: Add citation now
  58. Lanas V.; Ahn Y.; Logan B.E. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J. Power Sources 2014, 247, 228-234.
    Paper not yet in RePEc: Add citation now
  59. Lee C.; Wei X.; Kysar J.W.; Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
    Paper not yet in RePEc: Add citation now
  60. Lekawa-Raus A.; Patmore J.; Kurzepa L.; Bulmer J.; Koziol K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 2014, 24, 3661-3682.
    Paper not yet in RePEc: Add citation now
  61. Leng Y.; Ming P.; Yang D.; Zhang C. Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes. J. Power Sources 2020, 451.
    Paper not yet in RePEc: Add citation now
  62. Li C.; Zhou K.; He H.; Cao J.; Zhou S. Adding zero-valent iron to enhance electricity generation during MFC start-up. Int. J. Environ. Res. Public Health 2020, 17.
    Paper not yet in RePEc: Add citation now
  63. Li F.; Wang D.; Liu Q.; Wang B.; Zhong W.; Li M.; Liu K.; Lu Z.; Jiang H.; Zhao Q. The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density. J. Power Sources 2019, 412, 514-519.
    Paper not yet in RePEc: Add citation now
  64. Li S.; Cheng C.; Thomas A. Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts. Adv. Mater. 2017, 29.
    Paper not yet in RePEc: Add citation now
  65. Li X.; Hu M.; Zeng L.; Xiong J.; Tang B.; Hu Z.; Xing L.; Huang Q.; Li W. Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells. Biosens. Bioelectron. 2019, 145.
    Paper not yet in RePEc: Add citation now
  66. Li Y.; Liu J.; Chen X.; Yuan X.; Li N.; He W.; Feng Y. Enhanced electricity generation and extracellular electron transfer by polydopamine–reduced graphene oxide (PDA–rGO) modification for high-performance anode in microbial fuel cell. Chem. Eng. J. 2020, 387.
    Paper not yet in RePEc: Add citation now
  67. Li Y.; Xu D.; Chen C.; Li X.; Jia R.; Zhang D.; Sand W.; Wang F.; Gu T. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. J. Mater. Sci. Technol. 2018, 34, 1713-1718.
    Paper not yet in RePEc: Add citation now
  68. Li Z.L.; Yang S.K.; Song Y.; Xu H.Y.; Wang Z.Z.; Wang W.K.; Zhao Y.Q. Performance evaluation of treating oil-containing restaurant wastewater in microbial fuel cell using in situ graphene/polyaniline modified titanium oxide anode. Environ. Technol. 2020, 41, 420-429.
    Paper not yet in RePEc: Add citation now
  69. Liang Y.; Zhai H.; Liu B.; Ji M.; Li J. Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Sci. Total Environ. 2020, 713.
    Paper not yet in RePEc: Add citation now
  70. Lin X.Q.; Li Z.L.; Liang B.; Nan J.; Wang A.J. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere 2019, 219, 358-364.
    Paper not yet in RePEc: Add citation now
  71. Liu H.; Zhang Z.; Xu Y.; Tan X.; Yue Z.; Ma K.; Wang Y. Reduced graphene oxide@ polydopamine decorated carbon cloth as an anode for a high-performance microbial fuel cell in Congo red/saline wastewater removal. Bioelectrochemistry 2020, 137.
    Paper not yet in RePEc: Add citation now
  72. Liu J.; Liu J.; He W.; Qu Y.; Ren N.; Feng Y. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. J. Power Sources 2014, 265, 391-396.
    Paper not yet in RePEc: Add citation now
  73. Liu S.H.; Lai Y.C.; Lin C.W. Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions. Appl. Energy 2019, 233–234, 922-929.

  74. Liu X.; Zhao X.; Yu Y.Y.; Wang Y.Z.; Shi Y.T.; Cheng Q.W.; Fang Z.; Yong Y.C. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim. Acta 2017, 255, 41-47.
    Paper not yet in RePEc: Add citation now
  75. Liu Y.; Zhang X.; Zhang Q.; Li C. Microbial fuel cells: Nanomaterials based on anode and their application. Energy Technol. 2020, 8.
    Paper not yet in RePEc: Add citation now
  76. Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375-381.
    Paper not yet in RePEc: Add citation now
  77. Logan B.E.; Hamelers B.; Rozendal R.; Schröder U.; Keller J.; Freguia S.; Aelterman P.; Verstraete W.; Rabaey K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181-5192.
    Paper not yet in RePEc: Add citation now
  78. Logan B.E.; Rossi R.; Ragab A.; Saikaly P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307-319.
    Paper not yet in RePEc: Add citation now
  79. Lovley D.R.; Phillips E.J.P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 1986, 51, 683-689.
    Paper not yet in RePEc: Add citation now
  80. Malvankar N.S.; Lau J.; Nevin K.P.; Franks A.E.; Tuominen M.T.; Lovley D.R. Electrical conductivity in a mixed-species biofilm. Appl. Environ. Microbiol. 2012, 78, 5967-5971.
    Paper not yet in RePEc: Add citation now
  81. Manickam S.S.; Karra U.; Huang L.; Bui N.N.; Li B.; McCutcheon J.R. Activated carbon nanofiber anodes for microbial fuel cells. Carbon N. Y. 2013, 53, 19-28.
    Paper not yet in RePEc: Add citation now
  82. Mashkour M.; Rahimnejad M.; Mashkour M.; Soavi F. Electro-polymerized polyaniline modified conductive bacterial cellulose anode for supercapacitive microbial fuel cells and studying the role of anodic biofilm in the capacitive behavior. J. Power Sources 2020, 478.
    Paper not yet in RePEc: Add citation now
  83. McAnulty M.J.; Wood T.K. YeeO from Escherichia coli exports flavins. Bioengineered 2014, 5, 386-392.
    Paper not yet in RePEc: Add citation now
  84. McDonough J.R.; Choi J.W.; Yang Y.; La Mantia F.; Zhang Y.; Cui Y. Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett. 2009, 95.
    Paper not yet in RePEc: Add citation now
  85. Miran W.; Jang J.; Nawaz M.; Shahzad A.; Lee D.S. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells. J. Hazard. Mater. 2018, 352, 70-79.
    Paper not yet in RePEc: Add citation now
  86. Mitra P.; Hill G.A. Continuous microbial fuel cell using a photoautotrophic cathode and a fermentative anode. Can. J. Chem. Eng. 2012, 90, 1006-1010.
    Paper not yet in RePEc: Add citation now
  87. Mukherjee P.; Saravanan P. Graphite nanopowder functionalized 3-D acrylamide polymeric anode for enhanced performance of microbial fuel cell. Int. J. Hydrog. Energy 2020, 45, 23411-23421.
    Paper not yet in RePEc: Add citation now
  88. Murugan M.; Miran W.; Masuda T.; Lee D.S.; Okamoto A. Biosynthesized iron sulfide nanocluster enhanced anodic current generation by sulfate reducing bacteria in microbial fuel cells. Chem. Electro. Chem. 2018, 5, 4015-4020.
    Paper not yet in RePEc: Add citation now
  89. Myung J.; Yang W.; Saikaly P.E.; Logan B.E. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. 2018, 4, 513-519.
    Paper not yet in RePEc: Add citation now
  90. Narayanasamy S.; Jayaprakash J. Application of carbon-polymer based composite electrodes for Microbial fuel cells. Rev. Environ. Sci. Biotechnol. 2020, 19, 595-620.
    Paper not yet in RePEc: Add citation now
  91. Nosek D.; Cydzik-Kwiatkowska A. Microbial structure and energy generation in microbial fuel cells powered with waste anaerobic digestate. Energies 2020, 13.

  92. Paul D.; Noori M.T.; Rajesh P.P.; Ghangrekar M.M.; Mitra A. Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustain. Energy Technol. Assessments 2018, 26, 77-82.
    Paper not yet in RePEc: Add citation now
  93. Penteado E.D.; Fernandez-Marchante C.M.; Zaiat M.; Gonzalez E.R.; Rodrigo M.A. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell. Environ. Technol. 2017, 38, 1333-1341.
    Paper not yet in RePEc: Add citation now
  94. Perreault F.; De Faria A.F.; Nejati S.; Elimelech M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226-7236.
    Paper not yet in RePEc: Add citation now
  95. Pocaznoi D.; Erable B.; Etcheverry L.; Delia M.L.; Bergel A. Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells. Phys. Chem. Chem. Phys. 2012, 14, 13332-13343.
    Paper not yet in RePEc: Add citation now
  96. Poland C.; Hankin S.; de Brouwere K.; Holderberke V.M. Carbon Nanotubes Criteria Document for the Scientific Committee on Occupational Exposure Limits (SCOEL); European Commission Joint Research Centre: Ispra, Italy, 2012.
    Paper not yet in RePEc: Add citation now
  97. Pu K.B.; Ma Q.; Cai W.F.; Chen Q.Y.; Wang Y.H.; Li F.J. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem. Eng. J. 2018, 132, 255-261.
    Paper not yet in RePEc: Add citation now
  98. Qian G.; Ye L.; Li L.; Hu X.; Jiang B.; Zhao X. Influence of electric field and iron on the denitrification process from nitrogen-rich wastewater in a periodic reversal bio-electrocoagulation system. Bioresour. Technol. 2018, 258, 177-186.
    Paper not yet in RePEc: Add citation now
  99. Ra E.J.; Raymundo-Piñero E.; Lee Y.H.; Béguin F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon N. Y. 2009, 47, 2984-2992.
    Paper not yet in RePEc: Add citation now
  100. Rajesh P.P.; Noori M.T.; Ghangrekar M.M. Improving performance of microbial fuel cell by using polyaniline-coated carbon–felt anode. J. Hazard. Toxic Radioact. Waste 2020, 24.
    Paper not yet in RePEc: Add citation now
  101. Rodrigues I.C.B.; Leão V.A. Producing electrical energy in microbial fuel cells based on sulphate reduction: A review. Environ. Sci. Pollut. Res. 2020, 27, 36075-36084.
    Paper not yet in RePEc: Add citation now
  102. Sanchez D.; Jacobs D.; Gregory K.; Huang J.; Hu Y.; Vidic R.; Yun M. Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1. Energies 2015, 8, 1817-1829.

  103. Santoro C.; Guilizzoni M.; Baena J.C.; Pasaogullari U.; Casalegno A.; Li B.; Babanova S.; Artyushova K.; Atanassov P. The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 2014, 67, 128-139.
    Paper not yet in RePEc: Add citation now
  104. Sayed E.T.; Alawadhi H.; Elsaid K.; Olabi A.G.; Adel Almakrani M.; Bin Tamim S.T.; Alafranji G.H.M.; Abdelkareem M.A.A. Carbon-cloth anode electroplated with iron nanostructure for microbial fuel cell operated with real wastewater. Sustainability 2020, 12.

  105. Scott K.; Rimbu G.A.; Katuri K.P.; Prasad K.K.; Head I.M. Application of modified carbon anodes in microbial fuel cells. Process Saf. Environ. Prot. 2007, 85, 481-488.
    Paper not yet in RePEc: Add citation now
  106. Shen H.B.; Yong X.Y.; Chen Y.L.; Liao Z.H.; Si R.W.; Zhou J.; Zheng T. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour. Technol. 2014, 167, 490-494.
    Paper not yet in RePEc: Add citation now
  107. Silva T.A.; Moraes F.C.; Janegitz B.C.; Fatibello-Filho O.; Ganta D. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomater. 2017.
    Paper not yet in RePEc: Add citation now
  108. Slate A.J.; Whitehead K.A.; Brownson D.A.; Banks C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60-81.

  109. Sonawane J.M.; Patil S.A.; Ghosh P.C.; Adeloju S.B. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J. Power Sources 2018, 379, 103-114.
    Paper not yet in RePEc: Add citation now
  110. Song R.B.; Zhao C.E.; Jiang L.P.; Abdel-Halim E.S.; Zhang J.R.; Zhu J.J. Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3O4 foams for high-performance microbial fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 16170-16177.
    Paper not yet in RePEc: Add citation now
  111. Sumisha A.; Haribabu K. Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications a comparative study. Int. J. Hydrogen Energy 2018, 43, 3308-3316.
    Paper not yet in RePEc: Add citation now
  112. Sun Z.; Cao R.; Huang M.; Chen D.; Zheng W.; Lin L. Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode. J. Photochem. Photobiol. A Chem. 2015, 300, 38-43.
    Paper not yet in RePEc: Add citation now
  113. Sustainable and Optimum Use of Biomass for Energy in the EU beyond 2020. 2017.
    Paper not yet in RePEc: Add citation now
  114. Tang X.; Guo K.; Li H.; Du Z.; Tian J. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol. 2011, 102, 3558-3560.
    Paper not yet in RePEc: Add citation now
  115. Thepsuparungsikul N.; Ng T.C.; Lefebvre O.; Ng H.Y. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Sci. Technol. 2014, 69, 1900-1910.
    Paper not yet in RePEc: Add citation now
  116. Veeramani V.; Rajangam K.; Nagendran J. Performance of cobalt oxide/carbon cloth composite electrode in energy generation from dairy wastewater using microbial fuel cells. Sustain. Environ. Res. 2020, 30, 1-8.
    Paper not yet in RePEc: Add citation now
  117. Von Canstein H.; Ogawa J.; Shimizu S.; Lloyd J.R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 2008, 74, 615-623.
    Paper not yet in RePEc: Add citation now
  118. Wang G.; Feng C. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell. Polymers 2017, 9.
    Paper not yet in RePEc: Add citation now
  119. Wang Y.; Chen Y.; Wen Q.; Zheng H.; Xu H.; Qi L. Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy 2019, 189.

  120. Wang Y.; Pan X.; Chen Y.; Wen Q.; Lin C.; Zheng J.; Li W.; Xu H.; Qi L. A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells. J. Appl. Electrochem. 2020, 50, 1281-1290.
    Paper not yet in RePEc: Add citation now
  121. Wang Y.; Wen Q.; Chen Y.; Li W. Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells. Energy 2020, 204.

  122. Wang Y.; Zhu L.; An L. Electricity generation and storage in microbial fuel cells with porous polypyrrole-base composite modified carbon brush anodes. Renew. Energy 2020, 162, 2220-2226.

  123. Wang Y.H.; Xi H.; Lin F.J.; Wang B.S.; Chen Q.Y. The effect of substrates and anodes on microbial fuel cell performance. Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011, ; pp. 1841-1843.
    Paper not yet in RePEc: Add citation now
  124. Wei J.; Liang P.; Cao X.; Huang X. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 2010, 44, 3187-3191.
    Paper not yet in RePEc: Add citation now
  125. Wu G.; Bao H.; Xia Z.; Yang B.; Lei L.; Li Z.; Liu C. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells. J. Power Sources 2018, 384, 86-92.
    Paper not yet in RePEc: Add citation now
  126. Wu L.; Zhang H.; Ju X. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem. 2006, 79, 453-458.
    Paper not yet in RePEc: Add citation now
  127. Wu Y.; Wang L.; Jin M.; Kong F.; Qi H.; Nan J. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Bioresour. Technol. 2019, 283, 129-137.
    Paper not yet in RePEc: Add citation now
  128. Xing X.; Liu Z.; Chen W.; Lou X.; Li Y.; Liao Q. Self-nitrogen-doped carbon nanosheets modification of anodes for improving microbial fuel cells’ performance. Catalysts 2020, 10.
    Paper not yet in RePEc: Add citation now
  129. Xiong J.; Hu M.; Li X.; Li H.; Li X.; Liu X.; Cao G.; Li W. Porous graphite: A facile synthesis from ferrous gluconate and excellent performance as anode electrocatalyst of microbial fuel cell. Biosens. Bioelectron. 2018, 109, 116-122.
    Paper not yet in RePEc: Add citation now
  130. Xu H.; Quan X.; Xiao Z.; Chen L. Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem. Eng. J. 2018, 335, 539-547.
    Paper not yet in RePEc: Add citation now
  131. Yang J.; Cheng S.; Sun Y.; Li C. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotechnol. Lett. 2017, 39, 1515-1520.
    Paper not yet in RePEc: Add citation now
  132. Yang X.; Ma X.; Wang K.; Wu D.; Lei Z.; Feng C. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim. Acta 2016, 210, 846-853.
    Paper not yet in RePEc: Add citation now
  133. Yaqoob A.A.; Ibrahim M.N.M.; Rodríguez-Couto S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J. 2020, 164.
    Paper not yet in RePEc: Add citation now
  134. Yin T.; Zhang H.; Yang G.; Wang L. Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synth. Met. 2019, 252, 8-14.
    Paper not yet in RePEc: Add citation now
  135. Yu B.; Feng L.; He Y.; Yang L.; Xun Y. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J. Hazard. Mater. 2021, 401.
    Paper not yet in RePEc: Add citation now
  136. Yu B.; Li Y.; Feng L. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe3O4 modified anode. J. Hazard. Mater. 2019, 377, 70-77.
    Paper not yet in RePEc: Add citation now
  137. Zeng L.; Chen X.; Li H.; Xiong J.; Hu M.; Li X.; Li W. Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells. Electrochim. Acta 2018, 283, 528-537.
    Paper not yet in RePEc: Add citation now
  138. Zhang E.; Cai Y.; Luo Y.; Piao Z. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells. Can. J. Microbiol. 2014, 60, 753-759.
    Paper not yet in RePEc: Add citation now
  139. Zhang K.; Ma Z.; Song H.; Zhang M.; Xu H.; Zhao N. Macroporous carbon foam with high conductivity as an efficient anode for microbial fuel cells. Int. J. Hydrog. Energy 2020, 45, 12121-12129.
    Paper not yet in RePEc: Add citation now
  140. Zhang W.; Xie B.; Yang L.; Liang D.; Zhu Y.; Liu H. Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell. Bioresour. Technol. 2017, 233, 291-295.
    Paper not yet in RePEc: Add citation now
  141. Zhang Y.; Chen X.; Yuan Y.; Lu X.; Yang Z.; Wang Y.; Sun J. Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells. Int. J. Hydrogen Energy 2018, 43, 16240-16247.
    Paper not yet in RePEc: Add citation now
  142. Zhao N.; Ma Z.; Song H.; Wang D.; Xie Y. Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells. Int. J. Hydrogen Energy 2018, 43, 17867-17872.
    Paper not yet in RePEc: Add citation now
  143. Zhao X.; Deng W.; Tan Y.; Xie Q. Promoting electricity generation of Shewanella putrefaciens in a microbial fuel cell by modification of porous poly(3-aminophenylboronic acid) film on carbon anode. Electrochim. Acta 2020, 354.
    Paper not yet in RePEc: Add citation now
  144. Zhao Y.; Ma Y.; Li T.; Dong Z.; Wang Y. Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells. RSC Adv. 2018, 8, 2059-2064.
    Paper not yet in RePEc: Add citation now
  145. Zheng J.; Cheng C.; Zhang J.; Wu X. Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells. Int. J. Hydrogen Energy 2016, 41, 23156-23163.
    Paper not yet in RePEc: Add citation now
  146. Zheng S.; Yang F.; Chen S.; Liu L.; Xiong Q.; Yu T.; Zhao F.; Schröder U.; Hou H. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources 2015, 284, 252-257.
    Paper not yet in RePEc: Add citation now
  147. Zhong D.; Liao X.; Liu Y.; Zhong N.; Xu Y. Quick start-up and performance of microbial fuel cell enhanced with a polydiallyldimethylammonium chloride modified carbon felt anode. Biosens. Bioelectron. 2018, 119, 70-78.
    Paper not yet in RePEc: Add citation now
  148. Zhou L.; Liu J.; Dong F. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 544-548.
    Paper not yet in RePEc: Add citation now
  149. Zhou M.; Chi M.; Luo J.; He H.; Jin T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427-4435.
    Paper not yet in RePEc: Add citation now
  150. Zhou M.; Chi M.; Wang H.; Jin T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochem. Eng. J. 2012, 60, 151-155.
    Paper not yet in RePEc: Add citation now
  151. Zou X.; Zhang L.; Wang Z.; Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064-2077.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Evaluating Energy Efficiency Parameters of Municipal Wastewater Treatment Plants in Terms of Management Strategies and Carbon Footprint Reduction: Insights from Three Polish Facilities. (2024). Capodaglio, Andrea G ; Kuczuk, Anna ; Boguniewicz-Zabocka, Joanna ; Rak, Adam ; Kosok-Bazan, Iwona.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:22:p:5745-:d:1522760.

    Full description at Econpapers || Download paper

  2. Facile and binder free nano-architecturing of anode with biocompatible g-C3N4-PPy for bacterial community enrichment and green energy generation in microbial fuel cells. (2024). Nehra, Satya Pal ; Rao, Vikrant Singh ; Kaushik, Anubha.
    In: Applied Energy.
    RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016337.

    Full description at Econpapers || Download paper

  3. Insights into Global Water Reuse Opportunities. (2023). Tzanakakis, Vasileios A ; Angelakis, Andreas N ; Capodaglio, Andrea G.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:17:p:13007-:d:1228022.

    Full description at Econpapers || Download paper

  4. Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies. (2023). Guo, Yutong ; Aminabhavi, Tejraj M ; Abbassi, Rouzbeh ; Dewil, Raf ; Kamali, Mohammadreza ; Appels, Lise.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:173:y:2023:i:c:s1364032122009765.

    Full description at Econpapers || Download paper

  5. The role of sustainable energy utility, natural resource utilization and waste management in reducing energy poverty: Evidence from South Asian countries. (2023). Sharif, Arshian ; Sadiq, Muhammad ; Li, LI ; Chien, Fengsheng.
    In: Utilities Policy.
    RePEc:eee:juipol:v:82:y:2023:i:c:s0957178723000930.

    Full description at Econpapers || Download paper

  6. Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations. (2022). Zieliski, Marcin ; Dbowski, Marcin ; Kazimierowicz, Joanna.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2022:i:1:p:83-:d:1010527.

    Full description at Econpapers || Download paper

  7. Review on Material and Design of Anode for Microbial Fuel Cell. (2022). Calay, Rajnish Kaur ; Mustafa, Mohamad ; Banerjee, Aritro.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2283-:d:775966.

    Full description at Econpapers || Download paper

  8. Fine-Tuning the Aeration Control for Energy-Efficient Operation in a Small Sewage Treatment Plant by Applying Biokinetic Modeling. (2022). Karches, Tamas.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:17:p:6113-:d:895519.

    Full description at Econpapers || Download paper

  9. Electricity generation in simulated benthic microbial fuel cell with conductive polyaniline-polypyrole composite hydrogel anode. (2022). Chen, YE ; Du, Yanan ; Wen, Qing ; Zheng, Jiyong ; Xu, Haitao ; Lin, Cunguo ; Qiu, Zhenghui.
    In: Renewable Energy.
    RePEc:eee:renene:v:183:y:2022:i:c:p:242-250.

    Full description at Econpapers || Download paper

  10. Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance. (2021). Marcos, Luzalen ; Mai, Kristiina Valter ; Wright, Jeremy ; Lytle, Jeremy ; Santillo, Devon.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:4:p:1972-:d:498014.

    Full description at Econpapers || Download paper

  11. Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?. (2021). Llacer-Iglesias, Rosa M ; Perez-Sanchez, Modesto ; Lopez-Jimenez, Amparo P.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:10:p:5537-:d:555422.

    Full description at Econpapers || Download paper

  12. Effect of Polypyrrole-Fe 3 O 4 Composite Modified Anode and Its Electrodeposition Time on the Performance of Microbial Fuel Cells. (2021). , Yaobin ; Fan, Liping.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:9:p:2461-:d:543484.

    Full description at Econpapers || Download paper

  13. European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects. (2021). Sanchez-Bayon, Antonio ; Vindel, Jose M ; Trincado, Estrella.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:7:p:1994-:d:530164.

    Full description at Econpapers || Download paper

  14. Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer. (2021). Xu, Ying ; Dai, Xiaohu ; Li, Lei.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121006535.

    Full description at Econpapers || Download paper

  15. Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives. (2021). Zhu, Xun ; Yang, Wei ; Liao, Qiang ; Fu, Qian ; Zhang, Liang ; Wei, Zidong.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:136:y:2021:i:c:s1364032120307462.

    Full description at Econpapers || Download paper

  16. Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system. (2021). Haapasaari, Sampo ; Sillanpaa, Mika ; Shahid, Kanwal ; Ramasamy, Deepika Lakshmi ; Pihlajamaki, Arto .
    In: Energy.
    RePEc:eee:energy:v:233:y:2021:i:c:s0360544221014614.

    Full description at Econpapers || Download paper

  17. Enhancing power generation in microbial fuel cell using tungsten carbide on reduced graphene oxide as an efficient anode catalyst material. (2021). Castao, Pedro ; Fadali, Olfat A ; Abdelkareem, Mohammad Ali ; Chae, Kyu-Jung ; Mohamed, Hend Omar ; Sayed, Enas T ; Eisa, Tasnim ; Park, Sung-Gwan ; Talas, Sawsan Abo.
    In: Energy.
    RePEc:eee:energy:v:229:y:2021:i:c:s0360544221009506.

    Full description at Econpapers || Download paper

  18. Miniature microbial fuel cells integrated with triggered power management systems to power wastewater sensors in an uninterrupted mode. (2021). Wang, Lei ; Sifat, Iram ; Qian, Fengyu ; Zhang, Chengwu ; Li, Baikun ; Depasquale, Alex ; Huang, Yuankai ; Fan, Yingzheng.
    In: Applied Energy.
    RePEc:eee:appene:v:302:y:2021:i:c:s030626192100934x.

    Full description at Econpapers || Download paper

  19. Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. (2021). Rahimnejad, Mostafa ; Mashkour, Mehrdad ; Soavi, Francesca.
    In: Applied Energy.
    RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315592.

    Full description at Econpapers || Download paper

  20. A Carbon-Cloth Anode Electroplated with Iron Nanostructure for Microbial Fuel Cell Operated with Real Wastewater. (2020). Bin, Shaikha Tamim ; Abdelkareem, Mohammad Ali ; Almakrani, Maryam Adel ; Elsaid, Khaled ; Alawadhi, Hussain ; Sayed, Enas Taha ; Olabi, A G.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:16:p:6538-:d:398314.

    Full description at Econpapers || Download paper

  21. Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis. (2020). Martin, Viktoria ; Golzar, Farzin ; Nilsson, David.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:16:p:6386-:d:396180.

    Full description at Econpapers || Download paper

  22. Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells. (2020). Jachimowicz, Piotr ; Nosek, Dawid ; Cydzik-Kwiatkowska, Agnieszka.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6596-:d:461967.

    Full description at Econpapers || Download paper

  23. The Energy Trade-Offs of Transitioning to a Locally Sourced Water Supply Portfolio in the City of Los Angeles. (2020). Sanders, Kelly T ; Zohrabian, Angineh.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5589-:d:434934.

    Full description at Econpapers || Download paper

  24. Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells. (2020). Amezaga, Jaime ; Heidrich, Elizabeth ; Leicester, Daniel.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305670.

    Full description at Econpapers || Download paper

  25. Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@NiCo2O4 performances as ORR catalysts in MFC cathode. (2020). Aber, Soheil ; Khajeh, Rana Tajdid ; Zarei, Mahmoud.
    In: Renewable Energy.
    RePEc:eee:renene:v:154:y:2020:i:c:p:1263-1271.

    Full description at Econpapers || Download paper

  26. Antimony-tin based intermetallics supported on reduced graphene oxide as anode and MnO2@rGO as cathode electrode for the study of microbial fuel cell performance. (2020). Deva, Sharon ; Setty, Pydi Y ; Shalini, P ; Priya, Divya A.
    In: Renewable Energy.
    RePEc:eee:renene:v:150:y:2020:i:c:p:156-166.

    Full description at Econpapers || Download paper

  27. Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications. (2020). Ortiz-Medina, Raul A ; Vazquez-Gutierrez, Marco A ; Valera-Montero, Luis L ; Gomez-Leyva, Juan F ; Silos-Espino, Hector ; Perales-Segovia, Catarino ; Apollon, Wilgince ; Maldonado-Ruelas, Victor A ; Flores-Benitez, Silvia ; Kamaraj, Sathish-Kumar.
    In: Applied Energy.
    RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312721.

    Full description at Econpapers || Download paper

  28. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. (2020). Greenman, John ; Gajda, Iwona ; Ieropoulos, Ioannis.
    In: Applied Energy.
    RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321634.

    Full description at Econpapers || Download paper

  29. Energy Recovery from Wastewater: A Study on Heating and Cooling of a Multipurpose Building with Sewage-Reclaimed Heat Energy. (2019). Hlavinek, Petr ; Raek, Jakub ; Cecconet, Daniele ; Callegari, Arianna.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2019:i:1:p:116-:d:300846.

    Full description at Econpapers || Download paper

  30. Selective enrichment of biocatalysts for bioelectrochemical systems: A critical review. (2019). Chatterjee, Pritha ; Lens, Piet ; Dessi, Paolo ; Kokko, Marika ; Lakaniemi, Aino-Maija.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:109:y:2019:i:c:p:10-23.

    Full description at Econpapers || Download paper

  31. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. (2019). Zhang, Ying ; Gu, Tingyue ; Zhou, Minghua ; Liu, Mengmeng ; Liang, Liang ; Yang, Huijia.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:103:y:2019:i:c:p:13-29.

    Full description at Econpapers || Download paper

  32. Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode. (2019). Jayabalan, Tamilmani ; Mohamed, Samsudeen Naina ; Chandrasekaran, Nivedhini Iswarya ; Matheswaran, Manickam ; Muthukumar, Harshiny.
    In: Energy.
    RePEc:eee:energy:v:172:y:2019:i:c:p:173-180.

    Full description at Econpapers || Download paper

  33. Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions. (2019). Lai, Yu-Chuan ; Liu, Shu-Hui ; Lin, Chi-Wen.
    In: Applied Energy.
    RePEc:eee:appene:v:233-234:y:2019:i::p:922-929.

    Full description at Econpapers || Download paper

  34. Overview of porous media/metal foam application in fuel cells and solar power systems. (2018). Cai, Zuansi ; Tan, Weng Cheong ; Yew, Ming Chian ; Saw, Lip Huat ; Xuan, Jin ; san Thiam, Hui.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:96:y:2018:i:c:p:181-197.

    Full description at Econpapers || Download paper

  35. Driving force of the better performance of metal-doped carbonaceous anodes in microbial fuel cells. (2018). Mateo, Sara ; Caizares, Pablo ; Rodrigo, Manuel Andres ; Fernandez-Morales, Francisco Jesus.
    In: Applied Energy.
    RePEc:eee:appene:v:225:y:2018:i:c:p:52-59.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 09:01:39 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.