- Ahmed M.; Lin O.; Saup C.M.; Wilkins M.J.; Lin L.S. Effects of Fe/S ratio on the kinetics and microbial ecology of an Fe(III)-dosed anaerobic wastewater treatment system. J. Hazard. Mater. 2019, 369, 593-600.
Paper not yet in RePEc: Add citation now
- Alahmadi N.S.; Betts J.W.; Cheng F.; Francesconi M.G.; Kelly S.M.; Kornherr A.; Prior T.J.; Wadhawan J.D. Synthesis and antibacterial effects of cobalt–cellulose magnetic nanocomposites. RSC Adv. 2017, 7, 20020-20026.
Paper not yet in RePEc: Add citation now
- Aryal R.; Beltran D.; Liu J. Effects of Ni nanoparticles, MWCNT, and MWCNT/Ni on the power production and the wastewater treatment of a microbial fuel cell. Int. J. Green Energy 2019, 16, 1391-1399.
Paper not yet in RePEc: Add citation now
- Baudler A.; Schmidt I.; Langner M.; Greiner A.; Schröder U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048-2055.
Paper not yet in RePEc: Add citation now
- Bian B.; Shi D.; Cai X.; Hu M.; Guo Q.; Zhang C.; Wang Q.; Sun A.X.; Yang J. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell. Nano Energy 2018, 44, 174-180.
Paper not yet in RePEc: Add citation now
- Blatter M.; Furrer C.; Cachelin C.P.; Fischer F. Phosphorus, chemical base and other renewables from wastewater with three 168-L microbial electrolysis cells and other unit operations. Chem. Eng. J. 2020, 390.
Paper not yet in RePEc: Add citation now
- Blázquez E.; Baeza J.A.; Gabriel D.; Guisasola A. Treatment of real flue gas desulfurization wastewater in an autotrophic biocathode in view of elemental sulfur recovery: Microbial communities involved. Sci. Total Environ. 2019, 657, 945-952.
Paper not yet in RePEc: Add citation now
- Bujdáková H.; Didiášová M.; Drahovská H.; Černáková L. Role of cell surface hydrophobicity in Candida albicans biofilm. Open Life Sci. 2013, 8, 259-262.
Paper not yet in RePEc: Add citation now
- Cao Y.; Mu H.; Liu W.; Zhang R.; Guo J.; Xian M.; Liu H. Electricigens in the anode of microbial fuel cells: Pure cultures versus mixed communities. Microb. Cell Fact. 2019, 18.
Paper not yet in RePEc: Add citation now
Capodaglio A.; Olsson G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2019, 12.
- Carmona-Martínez A.A.; Harnisch F.; Kuhlicke U.; Neu T.R.; Schröder U. Electron transfer and biofilm formation of Shewanella putrefaciens as function of anode potential. Bioelectrochemistry 2013, 93, 23-29.
Paper not yet in RePEc: Add citation now
- Catal T.; Li K.; Bermek H.; Liu H. Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources 2008, 175, 196-200.
Paper not yet in RePEc: Add citation now
- Chae K.J.; Choi M.J.; Lee J.W.; Kim K.Y.; Kim I.S. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour. Technol. 2009, 100, 3518-3525.
Paper not yet in RePEc: Add citation now
- Champigneux P.; Renault-Sentenac C.; Bourrier D.; Rossi C.; Délia M.L.; Bergel A. Effect of surface roughness, porosity and roughened micro-pillar structures on the early formation of microbial anodes. Bioelectrochemistry 2019, 128, 17-29.
Paper not yet in RePEc: Add citation now
- Chen X.; Li Y.; Yuan X.; Li N.; He W.; Liu J. Synergistic effect between poly (diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell. Electrochim. Acta 2020, 359.
Paper not yet in RePEc: Add citation now
- Chen Y.Y.; Wang H.Y. Fabrication and characterization of polyelectrolyte microcarriers for microorganism cultivation through a microfluidic droplet system. Biomicrofluidics 2016, 10.
Paper not yet in RePEc: Add citation now
- Chignell J.F.; De Long S.K.; Reardon K.F. Meta-proteomic analysis of protein expression distinctive to electricity-generating biofilm communities in air-cathode microbial fuel cells. Biotechnol. Biofuels 2018, 11, 121.
Paper not yet in RePEc: Add citation now
- Cornejo J.A.; Lopez C.; Babanova S.; Santoro C.; Artyushkova K.; Ista L.; Schuler A.J.; Atanassov P. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes. J. Electrochem. Soc. 2015, 162, H597-H603.
Paper not yet in RePEc: Add citation now
- Cui H.F.; Du L.; Guo P.B.; Zhu B.; Luong J.H. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J. Power Sources 2015, 283, 46-53.
Paper not yet in RePEc: Add citation now
- Cui Y.; Chen X.; Pan Z.; Wang Y.; Xu Q.; Bai J.; Jia H.; Zhou J.; Yong X.; Wu X. Biosynthesized iron sulfide nanoparticles by mixed consortia for enhanced extracellular electron transfer in a microbial fuel cell. Bioresour. Technol. 2020, 318.
Paper not yet in RePEc: Add citation now
- Deng X.; Dohmae N.; Kaksonen A.H.; Okamoto A. Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate-reducing bacteria. Angew. Chemie 2020, 132, 6051-6055.
Paper not yet in RePEc: Add citation now
- Du Q.; An J.; Li J.; Zhou L.; Li N.; Wang X. Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. J. Power Sources 2017, 343, 477-482.
Paper not yet in RePEc: Add citation now
- Engel C.; Schattenberg F.; Dohnt K.; Schröder U.; Müller S.; Krull R. Long-term behavior of defined mixed cultures of Geobacter sulfurreducens and Shewanella oneidensis in bioelectrochemical systems. Front. Bioeng. Biotechnol. 2019, 7.
Paper not yet in RePEc: Add citation now
- Esfandyari M.; Fanaei M.A.; Gheshlaghi R.; Akhavan Mahdavi M. Dynamic modeling of a continuous two-chamber microbial fuel cell with pure culture of Shewanella. Int. J. Hydrogen Energy 2017, 42, 21198-21202.
Paper not yet in RePEc: Add citation now
- Eyiuche N.J.; Asakawa S.; Yamashita T.; Ikeguchi A.; Kitamura Y.; Yokoyama H. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. BMC Microbiol. 2017, 17.
Paper not yet in RePEc: Add citation now
- Fan M.; Zhang W.; Sun J.; Chen L.; Li P.; Chen Y.; Zhu S.; Shen S. Different modified multi-walled carbon nanotube–based anodes to improve the performance of microbial fuel cells. Int. J. Hydrogen Energy 2017, 42, 22786-22795.
Paper not yet in RePEc: Add citation now
- Feng Y.; Yang Q.; Wang X.; Liu Y.; Lee H.; Ren N. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell. Bioresour. Technol. 2011, 102, 411-415.
Paper not yet in RePEc: Add citation now
- Feng Y.; Yang Q.; Wang X.; Logan B.E. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. J. Power Sources 2010, 195, 1841-1844.
Paper not yet in RePEc: Add citation now
- Fu L.; Wang H.; Huang Q.; Song Shun T.; Xie J. Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell. Bioprocess Biosyst. Eng. 2020, 43, 373-381.
Paper not yet in RePEc: Add citation now
Gajda I.; Greenman J.; Ieropoulos I. Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Appl. Energy 2020, 262.
- Ghasemi M.; Wan Daud W.R.; Hassan S.H.A.; Jafary T.; Rahimnejad M.; Ahmad A.; Yazdi M.H. Carbon nanotube/polypyrrole nanocomposite as a novel cathode catalyst and proper alternative for Pt in microbial fuel cell. Int. J. Hydrogen Energy 2016, 41, 4872-4878.
Paper not yet in RePEc: Add citation now
- Guo K.; Freguia S.; Dennis P.G.; Chen X.; Donose B.C.; Keller J.; Gooding J.J.; Rabaey K. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 2013, 47, 7563-7570.
Paper not yet in RePEc: Add citation now
- Harshiny M.; Samsudeen N.; Kameswara R.J.; Matheswaran M. Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell. Int. J. Hydrog. Energy 2017, 42, 26488-26495.
Paper not yet in RePEc: Add citation now
- Hassan S.H.A.; Kim Y.S.; Oh S.E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzyme Microb. Technol. 2012, 51, 269-273.
Paper not yet in RePEc: Add citation now
Hindatu Y.; Annuar M.S.M.; Gumel A.M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236-248.
- Hou J.; Liu Z.; Yang S.; Zhou Y. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J. Power Sources 2014, 258, 204-209.
Paper not yet in RePEc: Add citation now
- Huo Y.C.; Li W.W.; Chen C.B.; Li C.X.; Zeng R.; Lau T.C.; Huang T.Y. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Enzyme Microb. Technol. 2016, 95, 236-241.
Paper not yet in RePEc: Add citation now
- Jachimowicz P.; Cydzik-Kwiatkowska A.; Szklarz P. Effect of aeration mode on microbial structure and efficiency of treatment of TSS-rich wastewater from meat processing. Appl. Sci. 2020, 10.
Paper not yet in RePEc: Add citation now
Jadhav D.A.; Ghangrekar M.M. Optimising the proportion of pure and mixed culture in inoculum to enhance the performance of microbial fuel cells. Int. J. Environ. Technol. Manag. 2020, 23.
- Jia Y.; Ma D.; Wang X. Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech 2020, 10.
Paper not yet in RePEc: Add citation now
- Jia Y.H.; Qi Z.L.; You H. Power production enhancement with polyaniline composite anode in benthic microbial fuel cells. J. Cent. South Univ. 2018, 25, 499-505.
Paper not yet in RePEc: Add citation now
- Kang Y.L.; Pichiah S.; Ibrahim S. Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. Int. J. Hydrog. Energy 2017, 42, 1661-1671.
Paper not yet in RePEc: Add citation now
- Kargi F.; Eker S. Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. J. Chem. Technol. Biotechnol. 2007, 82, 658-662.
Paper not yet in RePEc: Add citation now
- Karthikeyan R.; Krishnaraj N.; Selvam A.; Wong J.W.C.; Lee P.K.H.; Leung M.K.H.; Berchmans S. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour. Technol. 2016, 217, 113-120.
Paper not yet in RePEc: Add citation now
- Khan M.E.; Khan M.M.; Min B.K.; Cho M.H. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 2018, 8, 1723.
Paper not yet in RePEc: Add citation now
- Khan M.M.; Ansari A.J.; Lee J.H.; Lee J.; Cho M.C. Mixed culture electrochemically active biofilms and their microscopic and spectroelectrochemical studies. ACS Sustain. Chem. Eng. 2014, 2, 423-432.
Paper not yet in RePEc: Add citation now
- Khan M.T.; Browne W.R.; Van Dijl J.M.; Harmsen H.J.M. How can faecalibacterium prausnitzii employ riboflavin for extracellular electron transfer?. Antioxidants Redox. Signal. 2012, 17, 1433-1440.
Paper not yet in RePEc: Add citation now
- Kiely P.D.; Regan J.M.; Logan B.E. The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Curr. Opin. Biotechnol. 2011, 22, 378-385.
Paper not yet in RePEc: Add citation now
- Kim B.H.; Park H.S.; Kim H.J.; Kim G.T.; Chang I.S.; Lee J.; Phung N.T. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 2004, 63, 672-681.
Paper not yet in RePEc: Add citation now
- Kim H.; Kim B.; Yu J. Effect of HRT and external resistances on power generation of sidestream microbial fuel cell with CNT-coated SSM anode treating actual fermentation filtrate of municipal sludge. Sci. Total Environ. 2019, 675, 390-396.
Paper not yet in RePEc: Add citation now
- Kirubaharan C.J.; Kumar G.G.; Sha C.; Zhou D.; Yang H.; Nahm K.S.; Raj B.S.; Zhang Y.; Yong Y.C. Facile fabrication of Au/polyaniline core-shell nanocomposite as efficient anodic catalyst for microbial fuel cells. Electrochim. Acta 2019, 328.
Paper not yet in RePEc: Add citation now
- Kooti M.; Saiahi S.; Motamedi H. Fabrication of silver-coated cobalt ferrite nanocomposite and the study of its antibacterial activity. J. Magn. Magn. Mater 2013, 333, 138-143.
Paper not yet in RePEc: Add citation now
- Kou T.; Yang Y.; Yao B.; Li Y. Interpenetrated bacteria-carbon nanotubes film for microbial fuel cells. Small Methods 2018, 2.
Paper not yet in RePEc: Add citation now
- Kumar R.; Singh L.; Wahid Z.A.; Din M.F.M. Exoelectrogens in microbial fuel cells toward bioelectricity generation: A review. Int. J. Energy Res. 2015, 39, 1048-1067.
Paper not yet in RePEc: Add citation now
Kumar R.; Singh L.; Zularisam A.W. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sustain. Energy Rev. 2016, 56, 1322-1336.
- Lai B.; Tang X.; Li H.; Du Z.; Liu X.; Zhang Q. Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens. Bioelectron. 2011, 28, 373-377.
Paper not yet in RePEc: Add citation now
- Lan L.; Li J.; Feng Q.; Zhang L.; Fu Q.; Zhu X.; Liao Q. Enhanced current production of the anode modified by microalgae derived nitrogen-rich biocarbon for microbial fuel cells. Int. J. Hydrogen Energy 2020, 45, 3833-3839.
Paper not yet in RePEc: Add citation now
- Lanas V.; Ahn Y.; Logan B.E. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode. J. Power Sources 2014, 247, 228-234.
Paper not yet in RePEc: Add citation now
- Lee C.; Wei X.; Kysar J.W.; Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
Paper not yet in RePEc: Add citation now
- Lekawa-Raus A.; Patmore J.; Kurzepa L.; Bulmer J.; Koziol K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 2014, 24, 3661-3682.
Paper not yet in RePEc: Add citation now
- Leng Y.; Ming P.; Yang D.; Zhang C. Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes. J. Power Sources 2020, 451.
Paper not yet in RePEc: Add citation now
- Li C.; Zhou K.; He H.; Cao J.; Zhou S. Adding zero-valent iron to enhance electricity generation during MFC start-up. Int. J. Environ. Res. Public Health 2020, 17.
Paper not yet in RePEc: Add citation now
- Li F.; Wang D.; Liu Q.; Wang B.; Zhong W.; Li M.; Liu K.; Lu Z.; Jiang H.; Zhao Q. The construction of rod-like polypyrrole network on hard magnetic porous textile anodes for microbial fuel cells with ultra-high output power density. J. Power Sources 2019, 412, 514-519.
Paper not yet in RePEc: Add citation now
- Li S.; Cheng C.; Thomas A. Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts. Adv. Mater. 2017, 29.
Paper not yet in RePEc: Add citation now
- Li X.; Hu M.; Zeng L.; Xiong J.; Tang B.; Hu Z.; Xing L.; Huang Q.; Li W. Co-modified MoO2 nanoparticles highly dispersed on N-doped carbon nanorods as anode electrocatalyst of microbial fuel cells. Biosens. Bioelectron. 2019, 145.
Paper not yet in RePEc: Add citation now
- Li Y.; Liu J.; Chen X.; Yuan X.; Li N.; He W.; Feng Y. Enhanced electricity generation and extracellular electron transfer by polydopamine–reduced graphene oxide (PDA–rGO) modification for high-performance anode in microbial fuel cell. Chem. Eng. J. 2020, 387.
Paper not yet in RePEc: Add citation now
- Li Y.; Xu D.; Chen C.; Li X.; Jia R.; Zhang D.; Sand W.; Wang F.; Gu T. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. J. Mater. Sci. Technol. 2018, 34, 1713-1718.
Paper not yet in RePEc: Add citation now
- Li Z.L.; Yang S.K.; Song Y.; Xu H.Y.; Wang Z.Z.; Wang W.K.; Zhao Y.Q. Performance evaluation of treating oil-containing restaurant wastewater in microbial fuel cell using in situ graphene/polyaniline modified titanium oxide anode. Environ. Technol. 2020, 41, 420-429.
Paper not yet in RePEc: Add citation now
- Liang Y.; Zhai H.; Liu B.; Ji M.; Li J. Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Sci. Total Environ. 2020, 713.
Paper not yet in RePEc: Add citation now
- Lin X.Q.; Li Z.L.; Liang B.; Nan J.; Wang A.J. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere 2019, 219, 358-364.
Paper not yet in RePEc: Add citation now
- Liu H.; Zhang Z.; Xu Y.; Tan X.; Yue Z.; Ma K.; Wang Y. Reduced graphene oxide@ polydopamine decorated carbon cloth as an anode for a high-performance microbial fuel cell in Congo red/saline wastewater removal. Bioelectrochemistry 2020, 137.
Paper not yet in RePEc: Add citation now
- Liu J.; Liu J.; He W.; Qu Y.; Ren N.; Feng Y. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode. J. Power Sources 2014, 265, 391-396.
Paper not yet in RePEc: Add citation now
Liu S.H.; Lai Y.C.; Lin C.W. Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions. Appl. Energy 2019, 233–234, 922-929.
- Liu X.; Zhao X.; Yu Y.Y.; Wang Y.Z.; Shi Y.T.; Cheng Q.W.; Fang Z.; Yong Y.C. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting. Electrochim. Acta 2017, 255, 41-47.
Paper not yet in RePEc: Add citation now
- Liu Y.; Zhang X.; Zhang Q.; Li C. Microbial fuel cells: Nanomaterials based on anode and their application. Energy Technol. 2020, 8.
Paper not yet in RePEc: Add citation now
- Logan B.E. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375-381.
Paper not yet in RePEc: Add citation now
- Logan B.E.; Hamelers B.; Rozendal R.; Schröder U.; Keller J.; Freguia S.; Aelterman P.; Verstraete W.; Rabaey K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181-5192.
Paper not yet in RePEc: Add citation now
- Logan B.E.; Rossi R.; Ragab A.; Saikaly P.E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 2019, 17, 307-319.
Paper not yet in RePEc: Add citation now
- Lovley D.R.; Phillips E.J.P. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 1986, 51, 683-689.
Paper not yet in RePEc: Add citation now
- Malvankar N.S.; Lau J.; Nevin K.P.; Franks A.E.; Tuominen M.T.; Lovley D.R. Electrical conductivity in a mixed-species biofilm. Appl. Environ. Microbiol. 2012, 78, 5967-5971.
Paper not yet in RePEc: Add citation now
- Manickam S.S.; Karra U.; Huang L.; Bui N.N.; Li B.; McCutcheon J.R. Activated carbon nanofiber anodes for microbial fuel cells. Carbon N. Y. 2013, 53, 19-28.
Paper not yet in RePEc: Add citation now
- Mashkour M.; Rahimnejad M.; Mashkour M.; Soavi F. Electro-polymerized polyaniline modified conductive bacterial cellulose anode for supercapacitive microbial fuel cells and studying the role of anodic biofilm in the capacitive behavior. J. Power Sources 2020, 478.
Paper not yet in RePEc: Add citation now
- McAnulty M.J.; Wood T.K. YeeO from Escherichia coli exports flavins. Bioengineered 2014, 5, 386-392.
Paper not yet in RePEc: Add citation now
- McDonough J.R.; Choi J.W.; Yang Y.; La Mantia F.; Zhang Y.; Cui Y. Carbon nanofiber supercapacitors with large areal capacitances. Appl. Phys. Lett. 2009, 95.
Paper not yet in RePEc: Add citation now
- Miran W.; Jang J.; Nawaz M.; Shahzad A.; Lee D.S. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells. J. Hazard. Mater. 2018, 352, 70-79.
Paper not yet in RePEc: Add citation now
- Mitra P.; Hill G.A. Continuous microbial fuel cell using a photoautotrophic cathode and a fermentative anode. Can. J. Chem. Eng. 2012, 90, 1006-1010.
Paper not yet in RePEc: Add citation now
- Mukherjee P.; Saravanan P. Graphite nanopowder functionalized 3-D acrylamide polymeric anode for enhanced performance of microbial fuel cell. Int. J. Hydrog. Energy 2020, 45, 23411-23421.
Paper not yet in RePEc: Add citation now
- Murugan M.; Miran W.; Masuda T.; Lee D.S.; Okamoto A. Biosynthesized iron sulfide nanocluster enhanced anodic current generation by sulfate reducing bacteria in microbial fuel cells. Chem. Electro. Chem. 2018, 5, 4015-4020.
Paper not yet in RePEc: Add citation now
- Myung J.; Yang W.; Saikaly P.E.; Logan B.E. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. 2018, 4, 513-519.
Paper not yet in RePEc: Add citation now
- Narayanasamy S.; Jayaprakash J. Application of carbon-polymer based composite electrodes for Microbial fuel cells. Rev. Environ. Sci. Biotechnol. 2020, 19, 595-620.
Paper not yet in RePEc: Add citation now
Nosek D.; Cydzik-Kwiatkowska A. Microbial structure and energy generation in microbial fuel cells powered with waste anaerobic digestate. Energies 2020, 13.
- Paul D.; Noori M.T.; Rajesh P.P.; Ghangrekar M.M.; Mitra A. Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustain. Energy Technol. Assessments 2018, 26, 77-82.
Paper not yet in RePEc: Add citation now
- Penteado E.D.; Fernandez-Marchante C.M.; Zaiat M.; Gonzalez E.R.; Rodrigo M.A. Influence of carbon electrode material on energy recovery from winery wastewater using a dual-chamber microbial fuel cell. Environ. Technol. 2017, 38, 1333-1341.
Paper not yet in RePEc: Add citation now
- Perreault F.; De Faria A.F.; Nejati S.; Elimelech M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226-7236.
Paper not yet in RePEc: Add citation now
- Pocaznoi D.; Erable B.; Etcheverry L.; Delia M.L.; Bergel A. Towards an engineering-oriented strategy for building microbial anodes for microbial fuel cells. Phys. Chem. Chem. Phys. 2012, 14, 13332-13343.
Paper not yet in RePEc: Add citation now
- Poland C.; Hankin S.; de Brouwere K.; Holderberke V.M. Carbon Nanotubes Criteria Document for the Scientific Committee on Occupational Exposure Limits (SCOEL); European Commission Joint Research Centre: Ispra, Italy, 2012.
Paper not yet in RePEc: Add citation now
- Pu K.B.; Ma Q.; Cai W.F.; Chen Q.Y.; Wang Y.H.; Li F.J. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem. Eng. J. 2018, 132, 255-261.
Paper not yet in RePEc: Add citation now
- Qian G.; Ye L.; Li L.; Hu X.; Jiang B.; Zhao X. Influence of electric field and iron on the denitrification process from nitrogen-rich wastewater in a periodic reversal bio-electrocoagulation system. Bioresour. Technol. 2018, 258, 177-186.
Paper not yet in RePEc: Add citation now
- Ra E.J.; Raymundo-Piñero E.; Lee Y.H.; Béguin F. High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon N. Y. 2009, 47, 2984-2992.
Paper not yet in RePEc: Add citation now
- Rajesh P.P.; Noori M.T.; Ghangrekar M.M. Improving performance of microbial fuel cell by using polyaniline-coated carbon–felt anode. J. Hazard. Toxic Radioact. Waste 2020, 24.
Paper not yet in RePEc: Add citation now
- Rodrigues I.C.B.; Leão V.A. Producing electrical energy in microbial fuel cells based on sulphate reduction: A review. Environ. Sci. Pollut. Res. 2020, 27, 36075-36084.
Paper not yet in RePEc: Add citation now
Sanchez D.; Jacobs D.; Gregory K.; Huang J.; Hu Y.; Vidic R.; Yun M. Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1. Energies 2015, 8, 1817-1829.
- Santoro C.; Guilizzoni M.; Baena J.C.; Pasaogullari U.; Casalegno A.; Li B.; Babanova S.; Artyushova K.; Atanassov P. The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 2014, 67, 128-139.
Paper not yet in RePEc: Add citation now
Sayed E.T.; Alawadhi H.; Elsaid K.; Olabi A.G.; Adel Almakrani M.; Bin Tamim S.T.; Alafranji G.H.M.; Abdelkareem M.A.A. Carbon-cloth anode electroplated with iron nanostructure for microbial fuel cell operated with real wastewater. Sustainability 2020, 12.
- Scott K.; Rimbu G.A.; Katuri K.P.; Prasad K.K.; Head I.M. Application of modified carbon anodes in microbial fuel cells. Process Saf. Environ. Prot. 2007, 85, 481-488.
Paper not yet in RePEc: Add citation now
- Shen H.B.; Yong X.Y.; Chen Y.L.; Liao Z.H.; Si R.W.; Zhou J.; Zheng T. Enhanced bioelectricity generation by improving pyocyanin production and membrane permeability through sophorolipid addition in Pseudomonas aeruginosa-inoculated microbial fuel cells. Bioresour. Technol. 2014, 167, 490-494.
Paper not yet in RePEc: Add citation now
- Silva T.A.; Moraes F.C.; Janegitz B.C.; Fatibello-Filho O.; Ganta D. Electrochemical biosensors based on nanostructured carbon black: A review. J. Nanomater. 2017.
Paper not yet in RePEc: Add citation now
Slate A.J.; Whitehead K.A.; Brownson D.A.; Banks C.E. Microbial fuel cells: An overview of current technology. Renew. Sustain. Energy Rev. 2019, 101, 60-81.
- Sonawane J.M.; Patil S.A.; Ghosh P.C.; Adeloju S.B. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J. Power Sources 2018, 379, 103-114.
Paper not yet in RePEc: Add citation now
- Song R.B.; Zhao C.E.; Jiang L.P.; Abdel-Halim E.S.; Zhang J.R.; Zhu J.J. Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3O4 foams for high-performance microbial fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 16170-16177.
Paper not yet in RePEc: Add citation now
- Sumisha A.; Haribabu K. Modification of graphite felt using nano polypyrrole and polythiophene for microbial fuel cell applications a comparative study. Int. J. Hydrogen Energy 2018, 43, 3308-3316.
Paper not yet in RePEc: Add citation now
- Sun Z.; Cao R.; Huang M.; Chen D.; Zheng W.; Lin L. Effect of light irradiation on the photoelectricity performance of microbial fuel cell with a copper oxide nanowire photocathode. J. Photochem. Photobiol. A Chem. 2015, 300, 38-43.
Paper not yet in RePEc: Add citation now
- Sustainable and Optimum Use of Biomass for Energy in the EU beyond 2020. 2017.
Paper not yet in RePEc: Add citation now
- Tang X.; Guo K.; Li H.; Du Z.; Tian J. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol. 2011, 102, 3558-3560.
Paper not yet in RePEc: Add citation now
- Thepsuparungsikul N.; Ng T.C.; Lefebvre O.; Ng H.Y. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Water Sci. Technol. 2014, 69, 1900-1910.
Paper not yet in RePEc: Add citation now
- Veeramani V.; Rajangam K.; Nagendran J. Performance of cobalt oxide/carbon cloth composite electrode in energy generation from dairy wastewater using microbial fuel cells. Sustain. Environ. Res. 2020, 30, 1-8.
Paper not yet in RePEc: Add citation now
- Von Canstein H.; Ogawa J.; Shimizu S.; Lloyd J.R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 2008, 74, 615-623.
Paper not yet in RePEc: Add citation now
- Wang G.; Feng C. Electrochemical polymerization of hydroquinone on graphite felt as a pseudocapacitive material for application in a microbial fuel cell. Polymers 2017, 9.
Paper not yet in RePEc: Add citation now
Wang Y.; Chen Y.; Wen Q.; Zheng H.; Xu H.; Qi L. Electricity generation, energy storage, and microbial-community analysis in microbial fuel cells with multilayer capacitive anodes. Energy 2019, 189.
- Wang Y.; Pan X.; Chen Y.; Wen Q.; Lin C.; Zheng J.; Li W.; Xu H.; Qi L. A 3D porous nitrogen-doped carbon nanotube sponge anode modified with polypyrrole and carboxymethyl cellulose for high-performance microbial fuel cells. J. Appl. Electrochem. 2020, 50, 1281-1290.
Paper not yet in RePEc: Add citation now
Wang Y.; Wen Q.; Chen Y.; Li W. Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells. Energy 2020, 204.
Wang Y.; Zhu L.; An L. Electricity generation and storage in microbial fuel cells with porous polypyrrole-base composite modified carbon brush anodes. Renew. Energy 2020, 162, 2220-2226.
- Wang Y.H.; Xi H.; Lin F.J.; Wang B.S.; Chen Q.Y. The effect of substrates and anodes on microbial fuel cell performance. Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011, ; pp. 1841-1843.
Paper not yet in RePEc: Add citation now
- Wei J.; Liang P.; Cao X.; Huang X. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ. Sci. Technol. 2010, 44, 3187-3191.
Paper not yet in RePEc: Add citation now
- Wu G.; Bao H.; Xia Z.; Yang B.; Lei L.; Li Z.; Liu C. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells. J. Power Sources 2018, 384, 86-92.
Paper not yet in RePEc: Add citation now
- Wu L.; Zhang H.; Ju X. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Anal. Chem. 2006, 79, 453-458.
Paper not yet in RePEc: Add citation now
- Wu Y.; Wang L.; Jin M.; Kong F.; Qi H.; Nan J. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell. Bioresour. Technol. 2019, 283, 129-137.
Paper not yet in RePEc: Add citation now
- Xing X.; Liu Z.; Chen W.; Lou X.; Li Y.; Liao Q. Self-nitrogen-doped carbon nanosheets modification of anodes for improving microbial fuel cells’ performance. Catalysts 2020, 10.
Paper not yet in RePEc: Add citation now
- Xiong J.; Hu M.; Li X.; Li H.; Li X.; Liu X.; Cao G.; Li W. Porous graphite: A facile synthesis from ferrous gluconate and excellent performance as anode electrocatalyst of microbial fuel cell. Biosens. Bioelectron. 2018, 109, 116-122.
Paper not yet in RePEc: Add citation now
- Xu H.; Quan X.; Xiao Z.; Chen L. Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem. Eng. J. 2018, 335, 539-547.
Paper not yet in RePEc: Add citation now
- Yang J.; Cheng S.; Sun Y.; Li C. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns. Biotechnol. Lett. 2017, 39, 1515-1520.
Paper not yet in RePEc: Add citation now
- Yang X.; Ma X.; Wang K.; Wu D.; Lei Z.; Feng C. Eighteen-month assessment of 3D graphene oxide aerogel-modified 3D graphite fiber brush electrode as a high-performance microbial fuel cell anode. Electrochim. Acta 2016, 210, 846-853.
Paper not yet in RePEc: Add citation now
- Yaqoob A.A.; Ibrahim M.N.M.; Rodríguez-Couto S. Development and modification of materials to build cost-effective anodes for microbial fuel cells (MFCs): An overview. Biochem. Eng. J. 2020, 164.
Paper not yet in RePEc: Add citation now
- Yin T.; Zhang H.; Yang G.; Wang L. Polyaniline composite TiO2 nanosheets modified carbon paper electrode as a high performance bioanode for microbial fuel cells. Synth. Met. 2019, 252, 8-14.
Paper not yet in RePEc: Add citation now
- Yu B.; Feng L.; He Y.; Yang L.; Xun Y. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J. Hazard. Mater. 2021, 401.
Paper not yet in RePEc: Add citation now
- Yu B.; Li Y.; Feng L. Enhancing the performance of soil microbial fuel cells by using a bentonite-Fe and Fe3O4 modified anode. J. Hazard. Mater. 2019, 377, 70-77.
Paper not yet in RePEc: Add citation now
- Zeng L.; Chen X.; Li H.; Xiong J.; Hu M.; Li X.; Li W. Highly dispersed polydopamine-modified Mo2C/MoO2 nanoparticles as anode electrocatalyst for microbial fuel cells. Electrochim. Acta 2018, 283, 528-537.
Paper not yet in RePEc: Add citation now
- Zhang E.; Cai Y.; Luo Y.; Piao Z. Riboflavin-shuttled extracellular electron transfer from Enterococcus faecalis to electrodes in microbial fuel cells. Can. J. Microbiol. 2014, 60, 753-759.
Paper not yet in RePEc: Add citation now
- Zhang K.; Ma Z.; Song H.; Zhang M.; Xu H.; Zhao N. Macroporous carbon foam with high conductivity as an efficient anode for microbial fuel cells. Int. J. Hydrog. Energy 2020, 45, 12121-12129.
Paper not yet in RePEc: Add citation now
- Zhang W.; Xie B.; Yang L.; Liang D.; Zhu Y.; Liu H. Brush-like polyaniline nanoarray modified anode for improvement of power output in microbial fuel cell. Bioresour. Technol. 2017, 233, 291-295.
Paper not yet in RePEc: Add citation now
- Zhang Y.; Chen X.; Yuan Y.; Lu X.; Yang Z.; Wang Y.; Sun J. Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells. Int. J. Hydrogen Energy 2018, 43, 16240-16247.
Paper not yet in RePEc: Add citation now
- Zhao N.; Ma Z.; Song H.; Wang D.; Xie Y. Polyaniline/reduced graphene oxide-modified carbon fiber brush anode for high-performance microbial fuel cells. Int. J. Hydrogen Energy 2018, 43, 17867-17872.
Paper not yet in RePEc: Add citation now
- Zhao X.; Deng W.; Tan Y.; Xie Q. Promoting electricity generation of Shewanella putrefaciens in a microbial fuel cell by modification of porous poly(3-aminophenylboronic acid) film on carbon anode. Electrochim. Acta 2020, 354.
Paper not yet in RePEc: Add citation now
- Zhao Y.; Ma Y.; Li T.; Dong Z.; Wang Y. Modification of carbon felt anodes using double-oxidant HNO3/H2O2 for application in microbial fuel cells. RSC Adv. 2018, 8, 2059-2064.
Paper not yet in RePEc: Add citation now
- Zheng J.; Cheng C.; Zhang J.; Wu X. Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells. Int. J. Hydrogen Energy 2016, 41, 23156-23163.
Paper not yet in RePEc: Add citation now
- Zheng S.; Yang F.; Chen S.; Liu L.; Xiong Q.; Yu T.; Zhao F.; Schröder U.; Hou H. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. J. Power Sources 2015, 284, 252-257.
Paper not yet in RePEc: Add citation now
- Zhong D.; Liao X.; Liu Y.; Zhong N.; Xu Y. Quick start-up and performance of microbial fuel cell enhanced with a polydiallyldimethylammonium chloride modified carbon felt anode. Biosens. Bioelectron. 2018, 119, 70-78.
Paper not yet in RePEc: Add citation now
- Zhou L.; Liu J.; Dong F. Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 544-548.
Paper not yet in RePEc: Add citation now
- Zhou M.; Chi M.; Luo J.; He H.; Jin T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427-4435.
Paper not yet in RePEc: Add citation now
- Zhou M.; Chi M.; Wang H.; Jin T. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells. Biochem. Eng. J. 2012, 60, 151-155.
Paper not yet in RePEc: Add citation now
- Zou X.; Zhang L.; Wang Z.; Luo Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064-2077.
Paper not yet in RePEc: Add citation now