- Abadi M.; Agarwal A.; Barham P.; Brevdo E.; Chen Z.; Citro C.; Corrado G.S.; Davis A.; Dean J.; Devin M. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016.
Paper not yet in RePEc: Add citation now
- Afram A.; Janabi-Sharifi F.; Fung A.S.; Raahemifar K. Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system. Energy Build. 2017, 141, 96-113.
Paper not yet in RePEc: Add citation now
Ahmadi-Karvigh S.; Ghahramani A.; Becerik-Gerber B.; Soibelman L. Real-time activity recognition for energy efficiency in buildings. Appl. Energy 2018, 211, 146-160.
Aravena C.; Riquelme A.; Denny E. Money, Comfort or Environment? Priorities and Determinants of Energy Efficiency Investments in Irish Households. J. Consum. Policy 2016, 39, 159-186.
- Azimi R.; Ghayekhloo M.; Ghofrani M. A hybrid method based on a new clustering technique and multilayer perceptron neural networks for hourly solar radiation forecasting. Energy Convers. Manag. 2016, 118, 331-344.
Paper not yet in RePEc: Add citation now
- Barnell M.; Raymond C.; Capraro C.; Isereau D.; Cicotta C.; Stokes N. High-Performance Computing (HPC) and Machine Learning Demonstrated in Flight Using Agile Condor®. Proceedings of the 2018 IEEE High Performance extreme Computing Conference (HPEC), Waltham, MA, USA, 25–27 September 2018, ; pp. 1-4.
Paper not yet in RePEc: Add citation now
Beccali M.; Ciulla G.; Lo Brano V.; Galatioto A.; Bonomolo M. Artificial neural network decision support tool for assessment of the energy performance and the refurbishment actions for the non-residential building stock in Southern Italy. Energy 2017, 137, 1201-1218.
- Behera L.; Bhaduri P. An energy-efficient time-triggered scheduling algorithm for mixed-criticality systems. Design Automat. Embed. Syst. 2020, 24, 79-109.
Paper not yet in RePEc: Add citation now
- Benedetti M.; Cesarotti V.; Introna V. From energy targets setting to energy-aware operations control and back: An advanced methodology for energy efficient manufacturing. J. Clean. Prod. 2017, 167, 1518-1533.
Paper not yet in RePEc: Add citation now
Castro W.; Oblitas J.; Santa-Cruz R.; Avila-George H. Multilayer perceptron architecture optimization using parallel computing techniques. PLoS ONE 2017, 12.
- Chetlur S.; Woolley C.; Vandermersch P.; Cohen J.; Tran J.; Catanzaro B.; Shelhamer E. cuDNN: Efficient Primitives for Deep Learning. arXiv 2014.
Paper not yet in RePEc: Add citation now
- Chorowski J.K.; Bahdanau D.; Serdyuk D.; Cho K.; Bengio Y. Attention-Based Models for Speech Recognition. Advances in Neural Information Processing Systems; Cortes C.; Lawrence N.; Lee D.; Sugiyama M.; Garnett R. Curran Associates, Inc.: Red Hook, NY, USA, 2015.
Paper not yet in RePEc: Add citation now
- Codella N.; Cai J.; Abedini M.; Garnavi R.; Halpern A.; Smith J.R. Deep Learning, Sparse Coding, and SVM for Melanoma Recognition in Dermoscopy Images. Machine Learning in Medical Imaging; Zhou L.; Wang L.; Wang Q.; Shi Y. Springer International Publishing: Cham, Switzerland, 2015; pp. 118-126.
Paper not yet in RePEc: Add citation now
- Collobert R.; Kavukcuoglu K.; Farabet C. Torch7: A Matlab-like Environment for Machine Learning. Proceedings of the Big Learn NIPS Workshop 2011, Sierra Nevada, Spain, 16–17 December 2011, . Understanding Natural Language with Deep Neural Networks Using Torch.
Paper not yet in RePEc: Add citation now
- Czarnul P.; Proficz J.; Krzywaniak A. Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques, and Environments. Sci. Program. 2019, 2019, e8348791.
Paper not yet in RePEc: Add citation now
- Desai V.; Flanders A.E.; Lakhani P. Application of Deep Learning in Neuroradiology: Automated Detection of Basal Ganglia Hemorrhage using 2D-Convolutional Neural Networks. arXiv 2017.
Paper not yet in RePEc: Add citation now
Dudek G. Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting. Int. J. Forecast. 2016, 32, 1057-1060.
Duque-Pintor F.J.; Fernández-Gómez M.J.; Troncoso A.; Martínez-Álvarez F. A New Methodology Based on Imbalanced Classification for Predicting Outliers in Electricity Demand Time Series. Energies 2016, 9.
- Fahad A.; Alshatri N.; Tari Z.; Alamri A.; Khalil I.; Zomaya A.Y.; Foufou S.; Bouras A. A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267-279.
Paper not yet in RePEc: Add citation now
- Funahashi K.I. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2, 183-192.
Paper not yet in RePEc: Add citation now
- Galicia A.; Torres J.F.; Martínez-Álvarez F.; Troncoso A. Scalable Forecasting Techniques Applied to Big Electricity Time Series. Advances in Computational Intelligence; Rojas I.; Joya G.; Catala A. Springer International Publishing: Cham, Switzerland, 2017; pp. 165-175.
Paper not yet in RePEc: Add citation now
- Galicia de Castro A.; Torres J.; Martínez-Álvarez F.; Troncoso A. A novel Spark-based multi-step forecasting algorithm for big data time series. Inf. Sci. 2018, 467.
Paper not yet in RePEc: Add citation now
- Goodfellow I.J.; Vinyals O.; Saxe A.M. Qualitatively characterizing neural network optimization problems. arXiv 2015.
Paper not yet in RePEc: Add citation now
- Guerriero M.; Tajfar S.; Tamburri D.A.; Di Nitto E. Towards a Model-Driven Design Tool for Big Data Architectures. Proceedings of the 2nd International Workshop on BIG Data Software Engineering, Austin, TX, USA, 14–22 May 2016, 2016; pp. 37-43.
Paper not yet in RePEc: Add citation now
- Hofesmann E.; Ganesh M.R.; Corso J.J. M-PACT: An Open Source Platform for Repeatable Activity Classification Research. arXiv 2018.
Paper not yet in RePEc: Add citation now
- Hossen T.; Plathottam S.J.; Angamuthu R.K.; Ranganathan P.; Salehfar H. Short-term load forecasting using deep neural networks (DNN). Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 17–19 September 2017, ; pp. 1-6.
Paper not yet in RePEc: Add citation now
- Huqqani A.A.; Schikuta E.; Ye S.; Chen P. Multicore and GPU Parallelization of Neural Networks for Face Recognition. Procedia Comput. Sci. 2013, 18, 349-358.
Paper not yet in RePEc: Add citation now
- Iandola F.N.; Ashraf K.; Moskewicz M.W.; Keutzer K. FireCaffe: Near-linear acceleration of deep neural network training on compute clusters. arXiv 2016.
Paper not yet in RePEc: Add citation now
- Jia C.; Liu J.; Jin X.; Lin H.; An H.; Han W.; Wu Z.; Chi M. Improving the Performance of Distributed TensorFlow with RDMA. Int. J. Parallel Program. 2018, 46, 674-685.
Paper not yet in RePEc: Add citation now
- Jia Y.; Shelhamer E.; Donahue J.; Karayev S.; Long J.; Girshick R.; Guadarrama S.; Darrell T. Caffe: Convolutional Architecture for Fast Feature Embedding. Proceedings of the 22nd ACM International Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014, 2014; pp. 675-678.
Paper not yet in RePEc: Add citation now
- Jo H.; Yoon Y.I. Intelligent smart home energy efficiency model using artificial TensorFlow engine. Hum. Centric Comput. Inf. Sci. 2018, 8, 9.
Paper not yet in RePEc: Add citation now
- Karahoda S.; Erenay O.T.; Kaya K.; Türker U.C.; Yenigün H. Multicore and manycore parallelization of cheap synchronizing sequence heuristics. J. Parallel Distrib. Comput. 2020, 140, 13-24.
Paper not yet in RePEc: Add citation now
- Lee V.T.; Alaghi A.; Hayes J.P.; Sathe V.; Ceze L. Energy-Efficient Hybrid Stochastic-Binary Neural Networks for near-Sensor Computing. Proceedings of the Conference on Design, Automation and Test in Europe, Lausanne, Switzerland, 27–31 March 2017, 2017; pp. 13-18.
Paper not yet in RePEc: Add citation now
- Li L. Machine Learning Prediction System Based on Tensor-Flow Deep Neural Network and Its Application to Advertising in Mobile Gaming; Technical Disclosure Commons. 27 April 2018.
Paper not yet in RePEc: Add citation now
- Li L.; Bagheri S.; Goote H.; Hasan A.; Hazard G. Risk adjustment of patient expenditures: A big data analytics approach. Proceedings of the 2013 IEEE International Conference on Big Data, Silicon Valley, CA, USA, 6–9 October 2013, ; pp. 12-14.
Paper not yet in RePEc: Add citation now
- Lin B.; Tan R. Estimating energy conservation potential in China’s energy intensive industries with rebound effect. J. Clean. Prod. 2017, 156, 899-910.
Paper not yet in RePEc: Add citation now
- Liu G.; Yang J.; Hao Y.; Zhang Y. Big data-informed energy efficiency assessment of China industry sectors based on K-means clustering. J. Clean. Prod. 2018, 183, 304-314.
Paper not yet in RePEc: Add citation now
- Liu T.Y.; Chen W.; Wang T. Distributed Machine Learning: Foundations, Trends, and Practices. Proceedings of the 26th International Conference on World Wide Web Companion, WWW ’17 Companion, Perth, Australia, 3–7 April 2017, ; pp. 913-915.
Paper not yet in RePEc: Add citation now
- Loukas G.; Yoon Y.; Sakellari G.; Vuong T.; Heartfield R. Computation offloading of a vehicle’s continuous intrusion detection workload for energy efficiency and performance. Simul. Modell. Pract. Theory 2017, 73, 83-94.
Paper not yet in RePEc: Add citation now
- Macarulla M.; Casals M.; Forcada N.; Gangolells M. Implementation of predictive control in a commercial building energy management system using neural networks. Energy Build. 2017, 151, 511-519.
Paper not yet in RePEc: Add citation now
- Mardookhy M.; Sawhney R.; Ji S.; Zhu X.; Zhou W. A study of energy efficiency in residential buildings in Knoxville, Tennessee. J. Clean. Prod. 2014, 85, 241-249.
Paper not yet in RePEc: Add citation now
- Maren A.J.; Harston C.T.; Pap R.M. Handbook of Neural Computing Applications; Academic Press: Cambridge, MA, USA, 2014.
Paper not yet in RePEc: Add citation now
Marinakis V. Big Data for Energy Management and Energy-Efficient Buildings. Energies 2020, 13.
- Martínez Fernández P.; Villalba Sanchís I.; Yepes V.; Insa Franco R. A review of modelling and optimisation methods applied to railways energy consumption. J. Clean. Prod. 2019, 222, 153-162.
Paper not yet in RePEc: Add citation now
- Merity S.; Keskar N.; Bradbury J.; Socher R. Scalable Language Modeling: WikiText-103 on a Single GPU in 12 hours. Proceedings of the SYSML’18, Palo Alto, CA, USA, 15–16 February 2018, .
Paper not yet in RePEc: Add citation now
- Mukkamala S.; Janoski G.; Sung A. Intrusion detection using neural networks and support vector machines. Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA, 12–17 May 2002, ; pp. 1702-1707.
Paper not yet in RePEc: Add citation now
Nejat P.; Jomehzadeh F.; Taheri M.M.; Gohari M.; Abd Majid M.Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843-862.
Paone A.; Bacher J.P. The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art. Energies 2018, 11.
Pérez-Chacón R.; Luna-Romera J.M.; Troncoso A.; Martínez-Álvarez F.; Riquelme J.C. Big Data Analytics for Discovering Electricity Consumption Patterns in Smart Cities. Energies 2018, 11.
- Raghesh Krishnan K.; Midhila M.; Sudhakar R. Tensor Flow Based Analysis and Classification of Liver Disorders from Ultrasonography Images. Computational Vision and Bio Inspired Computing; Hemanth D.J.; Smys S. Springer International Publishing: Cham, Switzerland, 2018; pp. 734-743.
Paper not yet in RePEc: Add citation now
- Ramchoun H.; Amine M.; Janati Idrissi M.A.; Ghanou Y.; Ettaouil M. Multilayer Perceptron: Architecture Optimization and Training. Int. J. Interact. Multimedia Artif. Intel. 2016, 4, 26-30.
Paper not yet in RePEc: Add citation now
- Renno C.; Petito F.; Gatto A. ANN model for predicting the direct normal irradiance and the global radiation for a solar application to a residential building. J. Clean. Prod. 2016, 135, 1298-1316.
Paper not yet in RePEc: Add citation now
- Ruiz L.; Rueda R.; Cuéllar M.; Pegalajar M. Energy consumption forecasting based on Elman neural networks with evolutive optimization. Expert Syst. Appl. 2018, 92, 380-389.
Paper not yet in RePEc: Add citation now
Ruiz L.G.B.; Cuéllar M.P.; Calvo-Flores M.D.; Jiménez M.D.C.P. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings. Energies 2016, 9.
- Ryu S.; Noh J.; Kim H. Deep Neural Network Based Demand Side Short Term Load Forecasting. Energies 2017, 10.
Paper not yet in RePEc: Add citation now
- Steinkraus D.; Buck I.; Simard P.Y. Using GPUs for machine learning algorithms. Proceedings of the Eighth International Conference on Document Analysis and Recognition (ICDAR’05), Seoul, Korea, 31 August–1 September 2005, ; pp. 1115-1120.
Paper not yet in RePEc: Add citation now
- Torres J.F.; Fernández A.M.; Troncoso A.; Martínez-Álvarez F. Deep Learning-Based Approach for Time Series Forecasting with Application to Electricity Load. Biomedical Applications Based on Natural and Artificial Computing; Ferrández Vicente J.M.; Álvarez-Sánchez J.R.; de la Paz López F.; Toledo Moreo J.; Adeli H. Springer International Publishing: Cham, Switzerland, 2017; pp. 203-212.
Paper not yet in RePEc: Add citation now
- Torres J.F.; Troncoso A.; Koprinska I.; Wang Z.; Martínez-Álvarez F. Deep Learning for Big Data Time Series Forecasting Applied to Solar Power. Proceedings of the International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, San Sebastián, Spain, 6–8 June 2018, 2019; pp. 123-133.
Paper not yet in RePEc: Add citation now
- Tosér Z.; Jeni L.A.; Lorincz A.; Cohn J.F. Deep Learning for Facial Action Unit Detection Under Large Head Poses. Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 October 2016, 2016; pp. 359-371.
Paper not yet in RePEc: Add citation now
- Yu L.; Nazir B.; Wang Y. Intelligent power monitoring of building equipment based on Internet of Things technology. Comput. Commun. 2020, 157, 76-84.
Paper not yet in RePEc: Add citation now
- Zhang F.; Deb C.; Lee S.E.; Yang J.; Shah K.W. Time series forecasting for building energy consumption using weighted Support Vector Regression with differential evolution optimization technique. Energy Build. 2016, 126, 94-103.
Paper not yet in RePEc: Add citation now
- Zhou L.; Li J.; Li F.; Meng Q.; Li J.; Xu X. Energy consumption model and energy efficiency of machine tools: A comprehensive literature review. J. Clean. Prod. 2016, 112, 3721-3734.
Paper not yet in RePEc: Add citation now