Abu-Shikhah, N.; Elkarmi, F. Medium-term electric load forecasting using singular value decomposition. Energy 2011, 36, 4259â4271. [CrossRef]
- Ahmed, W.; Ansari, H.; Khan, B.; Ullah, Z.; Ali, S.M.; Mehmood, C.A.A. Machine learning based energy management model for smart grid and renewable energy districts. IEEE Access 2020, 8, 185059â185078. [CrossRef]
Paper not yet in RePEc: Add citation now
Amjady, N.; Keynia, F. A new neural network approach to short term load forecasting of electrical power systems. Energies 2011, 4, 488â503. [CrossRef]
- Arora, S.; Taylor, J.W. Short-term forecasting of anomalous load using rule-based triple seasonal methods. IEEE Trans. Power Syst. 2013, 28, 3235â3242. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bianchi, F.M.; Santis, E.D.; Rizzi, A.; Sadeghian, A. Short-term electric load forecasting using echo state networks and PCA decomposition. IEEE Access 2015, 3, 1931â1943. [CrossRef]
Paper not yet in RePEc: Add citation now
Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]
Buitrago, J.; Asfour, S. Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs. Energies 2017, 10, 40. [CrossRef]
Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902â924. [CrossRef]
- Diversi, R.; Guidorzi, R.; Soverini, U. Identification of ARX and ARARX models in the presence of input. Eur. J. Control. 2010, 16, 242â255. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dodamani, S.; Shetty, V.; Magadum, R. Short term load forecast based on time series analysis: A case study. In Proceedings of the IEEE International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 24â26 June 2015; pp. 299â303.
Paper not yet in RePEc: Add citation now
Dudek, G. Short-term load forecasting using neural networks with pattern similarity-based error weights. Energies 2021, 14, 2334. [CrossRef]
Edigera, V.Ş.; Akarb, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701â1708. [CrossRef]
Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational intelligence approaches for energy load forecasting in smart energy management grids: State of the art, future challenges, and research directions. Energies 2018, 11, 596. [CrossRef]
Fan, G.-F.; Guo, Y.-H.; Zheng, J.-M.; Hong, W.-C. Application of the weighted K-nearest neighbor algorithm for short-term load forecasting. Energies 2019, 12, 916. [CrossRef]
- Fung, E.H.; Wong, Y.; Ho, H.; Mignolet, M.P. Modelling and prediction of machining errors using ARMAX and NARMAX structures. Appl. Math. Model. 2003, 27, 611â627. [CrossRef]
Paper not yet in RePEc: Add citation now
Hussain, I.; Ali, S.M.; Khan, B.; Ullah, Z.; Mehmood, C.A.; Jawad, M.; Farid, U.; Haider, A. Stochastic wind energy management model within smart grid framework: A joint bi-directional Service Level Agreement (SLA) between smart grid and wind energy district prosumers. Renew. Energy 2019, 134, 1017â1033. [CrossRef]
- IEA India Energy Energy Outlook 2021. Available online: https://www.iea.org/reports/india-energy-outlook-2021 (accessed on 25 August 2021).
Paper not yet in RePEc: Add citation now
- IEA South Asia Energy Outlook 2019. Available online: https://www.iea.org/reports/southeast-asia-energy-outlook-2019 (accessed on 25 August 2021).
Paper not yet in RePEc: Add citation now
Jahan, I.S.; Snasel, V.; Misak, S. Intelligent systems for power load forecasting: A study review. Energies 2020, 13, 6105. [CrossRef]
Jallal, M.A.; González-Vidal, A.; Skarmeta, A.F.; Chabaa, A.; Zerouala, A. A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction. Applied Energy 2020, 268, 114977. [CrossRef]
- Jawad, M.; Ali, S.M.; Khan, B.; Mehmood, C.A.; Farid, U.; Ullah, Z.; Usman, S.; Fayyaz, A.; Jadoon, J.; Tareen, N.; et al. Genetic algorithm-based non-linear auto-regressive with exogenous inputs neural network short-term and medium-term uncertainty modelling and prediction for electrical load and wind speed. J. Eng. 2018, 2018, 721â729. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jawad, M.; Qureshi, M.B.; Khan, M.U.S.; Ali, S.M.; Mehmood, A.; Khan, B.; Wang, X.; Khan, S.U. A robust optimization technique for energy cost minimization of cloud data centers. IEEE Trans. Cloud Comput. 2021, 9, 447â460. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jawad, M.; Rafique, A.; Khosa, I.; Ghous, I.; Akhtar, J.; Ali, S.M. Improving disturbance storm time index prediction using linear and nonlinear parametric models: A comprehensive analysis. IEEE Trans. Plasma Sci. 2019, 47, 1429â1444. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jun-long, F.; Yu, X.; Yu, F.; Yang, X.; Guo-liang, L. Rural power system load forecast based on principal component analysis. J. Northeast. 2015, 22, 67â72. [CrossRef]
Paper not yet in RePEc: Add citation now
- Khan, K.S.; Ali, S.M.; Ullah, Z.; Sami, I.; Khan, B.; Mehmood, C.A. Statistical energy information and analysis of Pakistan economic corridor based on strengths, availabilities, and future roadmap. IEEE Access 2020, 8, 169701â169739. [CrossRef]
Paper not yet in RePEc: Add citation now
Kiprijanovska, I.; Stankoski, S.; Ilievski, I.; Jovanovski, S.; Gams, M.; Gjoreski, H. HousEEC: Day-ahead household electrical energy consumption forecasting using deep learning. Energies 2020, 13, 2672. [CrossRef]
- Komorowski, M.; Marshal, D.C.; Salciccioli, l.D.; Crutain, Y. Secondary Analysis of Electronic Health Records; Springer: Berlin/Heidelberg, Germany, 2016; Chapter 15; pp. 185â203.
Paper not yet in RePEc: Add citation now
López, M.; Sans, C.; Valero, S.; Senabre, C. Empirical comparison of neural network and auto-regressive models in short-term load forecasting. Energies 2018, 11, 2080. [CrossRef]
- Li, S.; Wang, P.; Goel, L. A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection. IEEE Trans. Power Syst. 2016, 31, 1788â1798. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, W.; Shi, Q.; Sibtain, M.; Li, D.; Mbanze, D.E. A hybrid forecasting model for short-term power load based on sample entropy, two-phase decomposition and whale algorithm optimized support vector regression. IEEE Access 2020, 8, 166907â166921. [CrossRef]
Paper not yet in RePEc: Add citation now
- Madrid, E.A.; Antonio, N. Short-term electricity load forecasting with machine learning. Information 2021, 12, 50. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mamun, A.A.; Sohel, M.; Mohammad, N.; Sunny, M.S.H.; Dipta, D.R.; Hos, E. A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access 2020, 8, 34911â134939. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mathworks. Available online: https://www.mathworks.com/help/deeplearning/ref/trainlm.html (accessed on 15 April 2021).
Paper not yet in RePEc: Add citation now
- Musbah, H.; El-Hawary, M. SARIMA model forecasting of short-term electrical load data augmented by fast fourier transform seasonality detection. In Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5â8 May 2019; pp. 1â4.
Paper not yet in RePEc: Add citation now
- National Transmission and Despatch Company Limited. Power System Statistics 45th Edition. Available online: https: //ntdc.gov.pk/ntdc/public/uploads/services/planning/power%20system%20statistics/Power%20System%20Statistics%20 45th%20Edition.pdf (accessed on 25 August 2021).
Paper not yet in RePEc: Add citation now
- Oprea, S.-V.; Bâra, A. Machine learning algorithms for short-term load forecast in residential buildings using smart meters, sensors and big data solutions. IEEE Access 2019, 7, 177874â177889. [CrossRef] Energies 2021, 14, 5510 21 of 22
Paper not yet in RePEc: Add citation now
- Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A.J. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 2017, 54, 246â255. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rajbhandari, Y.; Marahatta, A.; Ghimire, B.; Shrestha, A.; Gachhadar, A.; Thapa, A.; Chapagain, K.; Korba, P. Impact study of temperature on the time series electricity demand of urban nepal for short-term load forecasting. Appl. Syst. Innov. 2021, 4, 43. [CrossRef]
Paper not yet in RePEc: Add citation now
- Román-Portabales, A.; López-Nores, M.; Pazos-Arias, J.J. Systematic review of electricity demand forecast using ANN-based machine learning algorithms. Sensors 2021, 21, 4544. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- rp5.ru. Available online: www.rp5.ru/Weather_in_the_world (accessed on 1 April 2020).
Paper not yet in RePEc: Add citation now
- Saeed, M.S.; Mustafa, M.W.; Sheikh, U.U.; Jumani, T.A.; Mirjat, N.H. Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan. Electronics 2019, 8, 860. [CrossRef]
Paper not yet in RePEc: Add citation now
- Schnyer, D.A.M. Machine Learning; Methods and Applications to Brain Disorders; Academic Press: Cambridge, MA, USA, 2020; Chapter 6; pp. 101â121.
Paper not yet in RePEc: Add citation now
- Shabbir, N.; Kütt, L.; Jawad, M.; Amadiahanger, R.; Iqbal, M.N.; Rosin, A. Wind energy forecasting using recurrent neural networks. In Proceedings of the Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 21â22 November 2019; pp. 1â5.
Paper not yet in RePEc: Add citation now
- Shabbir, N.; Kutt, L.; Jawad, M.; Iqbal, M.N.; Ghahfarokhi, P.S. Forecasting of energy consumption and production using recurrent neural networks. Adv. Electr. Electron. Eng. 2020, 18, 190â197. [CrossRef]
Paper not yet in RePEc: Add citation now
Shah, I.; Iftikhar, H.; Ali, S.; Wang, D. Short-term electricity demand forecasting using components estimation technique. Energies 2019, 12, 2532. [CrossRef]
- Shi, H.; Xu, M.; Li, R. Deep learning for household load forecastingâA novel pooling deep RNN. IEEE Trans. Smart Grid 2018, 9, 5271â5280. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shirzadi, N.; Nizami, A.; Khazen, M.; Nik-Bakht, M. Medium-term regional electricity load forecasting through machine learning and deep learning. Designs 2021, 5, 27. [CrossRef]
Paper not yet in RePEc: Add citation now
Sun, W.; Zhang, C. A Hybrid BA-ELM model based on factor analysis and similar-day approach for short-term load forecasting. Energies 2018, 11, 1282. [CrossRef]
- Tarkhaneh, O.; Shen, H. Training of feedforward neural networks for data classification using hybrid particle swarm optimization, mantegna lévy flight and neighborhood search. Heliyon 2019, 5, e01275. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
Tayaba, U.B.; Zia, A.; Yanga, F.; Lu, J.; Kashif, M. Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform. Energy 2020, 203, 117857. [CrossRef]
Tudose, A.M.; Picioroaga, I.I.; Sidea, D.O.; Bulac, C.; Boicea, V.A. Short-term load forecasting using convolutional neural networks in COVID-19 context: The romanian case study. Energies 2021, 14, 4046. [CrossRef]
Turhan, C.; Simani, S.; Zajic, I.; Akkurt, G.G. Performance analysis of data-driven and model-based control strategies applied to a thermal unit model. Energies 2017, 10, 67. [CrossRef]
- Uzair, M.; Jamil, N. Effects of hidden layers on the efficiency of neural networks. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5â7 November 2020; pp. 1â6.
Paper not yet in RePEc: Add citation now
- Velasco, L.C.P.; Estoperez, N.R.; Jayson, R.J.R.; Sabijon, C.J.T.; Sayles, V.C. Day-ahead base, intermediate, and peak load forecasting using k-means and artificial neural networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 62â67.
Paper not yet in RePEc: Add citation now
- Winters-Miner, L.A.; Bolding, P. Practical Predictive Analytics and Decisioning Systems for Medicine; Informatics Accuracy and CostEffectiveness for Healthcare Administration and Delivery Including Medical Research; Academic Press: Cambridge, MA, USA, 2015; Chapter 15; pp. 239â259. Energies 2021, 14, 5510 22 of 22
Paper not yet in RePEc: Add citation now
- Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Chapter 12; pp. 566â569.
Paper not yet in RePEc: Add citation now
Yildiz, B.; Bilbao, J.; Sproul, A. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sustain. Energy Rev. 2017, 73, 1104â1122. [CrossRef]
- Zhang, Y.-F.; Chiang, H.-D. Enhanced ELITE-load: A novel CMPSOATT methodology constructing short-term load forecasting model for industrial applications. IEEE Trans. Ind. Inform. 2020, 16, 2325â2334. [CrossRef]
Paper not yet in RePEc: Add citation now