create a website

Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis. (2021). Javed, Umar ; Husev, Oleksandr ; Shabbir, Noman ; Jawad, Muhammad ; Kutt, Lauri ; Ijaz, Khalid ; Ansari, Ejaz A.
In: Energies.
RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657.

Full description at Econpapers || Download paper

Cited: 7

Citations received by this document

Cites: 58

References cited by this document

Cocites: 21

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market. (2024). Tsoukalas, Lefteri H ; Bargiotas, Dimitrios ; Tsampasis, Eleftherios ; Paraschoudis, Paschalis ; Vontzos, Georgios ; Laitsos, Vasileios.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:22:p:5797-:d:1525257.

    Full description at Econpapers || Download paper

  2. Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database. (2023). Campisi, Tiziana ; Mdziel, Maksymilian.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:3:p:1437-:d:1053825.

    Full description at Econpapers || Download paper

  3. The Investigation of Monthly/Seasonal Data Clustering Impact on Short-Term Electricity Price Forecasting Accuracy: Ontario Province Case Study. (2022). Pourhaji, Nazila ; Asadpour, Mohammad ; Elkamel, Ali ; Ahmadian, Ali.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:5:p:3063-:d:765213.

    Full description at Econpapers || Download paper

  4. Design of Aquila Optimization Heuristic for Identification of Control Autoregressive Systems. (2022). Khan, Zeshan Aslam ; Chaudhary, Naveed Ishtiaq ; Zahoor, Muhammad Asif ; Mehmood, Khizer ; Cheema, Khalid Mehmood ; Milyani, Ahmad H.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:10:p:1749-:d:820045.

    Full description at Econpapers || Download paper

  5. Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models. (2022). Pannakkong, Warut ; Harncharnchai, Thanyaporn ; Buddhakulsomsiri, Jirachai.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:9:p:3105-:d:800972.

    Full description at Econpapers || Download paper

  6. Power Load Forecasting Considering Climate Factors Based on IPSO-Elman Method in China. (2022). Yin, YU ; Liu, Jicheng.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:3:p:1236-:d:744482.

    Full description at Econpapers || Download paper

  7. A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China. (2022). Zhang, Zhiwei ; Zhou, Wenhao ; Li, Hailin.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:200:y:2022:i:c:p:128-147.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abu-Shikhah, N.; Elkarmi, F. Medium-term electric load forecasting using singular value decomposition. Energy 2011, 36, 4259–4271. [CrossRef]

  2. Ahmed, W.; Ansari, H.; Khan, B.; Ullah, Z.; Ali, S.M.; Mehmood, C.A.A. Machine learning based energy management model for smart grid and renewable energy districts. IEEE Access 2020, 8, 185059–185078. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Amjady, N.; Keynia, F. A new neural network approach to short term load forecasting of electrical power systems. Energies 2011, 4, 488–503. [CrossRef]

  4. Arora, S.; Taylor, J.W. Short-term forecasting of anomalous load using rule-based triple seasonal methods. IEEE Trans. Power Syst. 2013, 28, 3235–3242. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Bianchi, F.M.; Santis, E.D.; Rizzi, A.; Sadeghian, A. Short-term electric load forecasting using echo state networks and PCA decomposition. IEEE Access 2015, 3, 1931–1943. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]

  7. Buitrago, J.; Asfour, S. Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs. Energies 2017, 10, 40. [CrossRef]

  8. Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A review on time series forecasting techniques for building energy consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [CrossRef]

  9. Diversi, R.; Guidorzi, R.; Soverini, U. Identification of ARX and ARARX models in the presence of input. Eur. J. Control. 2010, 16, 242–255. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Dodamani, S.; Shetty, V.; Magadum, R. Short term load forecast based on time series analysis: A case study. In Proceedings of the IEEE International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 24–26 June 2015; pp. 299–303.
    Paper not yet in RePEc: Add citation now
  11. Dudek, G. Short-term load forecasting using neural networks with pattern similarity-based error weights. Energies 2021, 14, 2334. [CrossRef]

  12. Edigera, V.Ş.; Akarb, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [CrossRef]

  13. Fallah, S.N.; Deo, R.C.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational intelligence approaches for energy load forecasting in smart energy management grids: State of the art, future challenges, and research directions. Energies 2018, 11, 596. [CrossRef]

  14. Fan, G.-F.; Guo, Y.-H.; Zheng, J.-M.; Hong, W.-C. Application of the weighted K-nearest neighbor algorithm for short-term load forecasting. Energies 2019, 12, 916. [CrossRef]

  15. Fung, E.H.; Wong, Y.; Ho, H.; Mignolet, M.P. Modelling and prediction of machining errors using ARMAX and NARMAX structures. Appl. Math. Model. 2003, 27, 611–627. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Hussain, I.; Ali, S.M.; Khan, B.; Ullah, Z.; Mehmood, C.A.; Jawad, M.; Farid, U.; Haider, A. Stochastic wind energy management model within smart grid framework: A joint bi-directional Service Level Agreement (SLA) between smart grid and wind energy district prosumers. Renew. Energy 2019, 134, 1017–1033. [CrossRef]

  17. IEA India Energy Energy Outlook 2021. Available online: https://www.iea.org/reports/india-energy-outlook-2021 (accessed on 25 August 2021).
    Paper not yet in RePEc: Add citation now
  18. IEA South Asia Energy Outlook 2019. Available online: https://www.iea.org/reports/southeast-asia-energy-outlook-2019 (accessed on 25 August 2021).
    Paper not yet in RePEc: Add citation now
  19. Jahan, I.S.; Snasel, V.; Misak, S. Intelligent systems for power load forecasting: A study review. Energies 2020, 13, 6105. [CrossRef]

  20. Jallal, M.A.; González-Vidal, A.; Skarmeta, A.F.; Chabaa, A.; Zerouala, A. A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction. Applied Energy 2020, 268, 114977. [CrossRef]

  21. Jawad, M.; Ali, S.M.; Khan, B.; Mehmood, C.A.; Farid, U.; Ullah, Z.; Usman, S.; Fayyaz, A.; Jadoon, J.; Tareen, N.; et al. Genetic algorithm-based non-linear auto-regressive with exogenous inputs neural network short-term and medium-term uncertainty modelling and prediction for electrical load and wind speed. J. Eng. 2018, 2018, 721–729. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Jawad, M.; Qureshi, M.B.; Khan, M.U.S.; Ali, S.M.; Mehmood, A.; Khan, B.; Wang, X.; Khan, S.U. A robust optimization technique for energy cost minimization of cloud data centers. IEEE Trans. Cloud Comput. 2021, 9, 447–460. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Jawad, M.; Rafique, A.; Khosa, I.; Ghous, I.; Akhtar, J.; Ali, S.M. Improving disturbance storm time index prediction using linear and nonlinear parametric models: A comprehensive analysis. IEEE Trans. Plasma Sci. 2019, 47, 1429–1444. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Jun-long, F.; Yu, X.; Yu, F.; Yang, X.; Guo-liang, L. Rural power system load forecast based on principal component analysis. J. Northeast. 2015, 22, 67–72. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Khan, K.S.; Ali, S.M.; Ullah, Z.; Sami, I.; Khan, B.; Mehmood, C.A. Statistical energy information and analysis of Pakistan economic corridor based on strengths, availabilities, and future roadmap. IEEE Access 2020, 8, 169701–169739. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Kiprijanovska, I.; Stankoski, S.; Ilievski, I.; Jovanovski, S.; Gams, M.; Gjoreski, H. HousEEC: Day-ahead household electrical energy consumption forecasting using deep learning. Energies 2020, 13, 2672. [CrossRef]

  27. Komorowski, M.; Marshal, D.C.; Salciccioli, l.D.; Crutain, Y. Secondary Analysis of Electronic Health Records; Springer: Berlin/Heidelberg, Germany, 2016; Chapter 15; pp. 185–203.
    Paper not yet in RePEc: Add citation now
  28. López, M.; Sans, C.; Valero, S.; Senabre, C. Empirical comparison of neural network and auto-regressive models in short-term load forecasting. Energies 2018, 11, 2080. [CrossRef]

  29. Li, S.; Wang, P.; Goel, L. A novel wavelet-based ensemble method for short-term load forecasting with hybrid neural networks and feature selection. IEEE Trans. Power Syst. 2016, 31, 1788–1798. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Li, W.; Shi, Q.; Sibtain, M.; Li, D.; Mbanze, D.E. A hybrid forecasting model for short-term power load based on sample entropy, two-phase decomposition and whale algorithm optimized support vector regression. IEEE Access 2020, 8, 166907–166921. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Madrid, E.A.; Antonio, N. Short-term electricity load forecasting with machine learning. Information 2021, 12, 50. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Mamun, A.A.; Sohel, M.; Mohammad, N.; Sunny, M.S.H.; Dipta, D.R.; Hos, E. A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access 2020, 8, 34911–134939. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Mathworks. Available online: https://www.mathworks.com/help/deeplearning/ref/trainlm.html (accessed on 15 April 2021).
    Paper not yet in RePEc: Add citation now
  34. Musbah, H.; El-Hawary, M. SARIMA model forecasting of short-term electrical load data augmented by fast fourier transform seasonality detection. In Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4.
    Paper not yet in RePEc: Add citation now
  35. National Transmission and Despatch Company Limited. Power System Statistics 45th Edition. Available online: https: //ntdc.gov.pk/ntdc/public/uploads/services/planning/power%20system%20statistics/Power%20System%20Statistics%20 45th%20Edition.pdf (accessed on 25 August 2021).
    Paper not yet in RePEc: Add citation now
  36. Oprea, S.-V.; Bâra, A. Machine learning algorithms for short-term load forecast in residential buildings using smart meters, sensors and big data solutions. IEEE Access 2019, 7, 177874–177889. [CrossRef] Energies 2021, 14, 5510 21 of 22
    Paper not yet in RePEc: Add citation now
  37. Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A.J. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 2017, 54, 246–255. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Rajbhandari, Y.; Marahatta, A.; Ghimire, B.; Shrestha, A.; Gachhadar, A.; Thapa, A.; Chapagain, K.; Korba, P. Impact study of temperature on the time series electricity demand of urban nepal for short-term load forecasting. Appl. Syst. Innov. 2021, 4, 43. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Román-Portabales, A.; López-Nores, M.; Pazos-Arias, J.J. Systematic review of electricity demand forecast using ANN-based machine learning algorithms. Sensors 2021, 21, 4544. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  40. rp5.ru. Available online: www.rp5.ru/Weather_in_the_world (accessed on 1 April 2020).
    Paper not yet in RePEc: Add citation now
  41. Saeed, M.S.; Mustafa, M.W.; Sheikh, U.U.; Jumani, T.A.; Mirjat, N.H. Ensemble bagged tree based classification for reducing non-technical losses in multan electric power company of Pakistan. Electronics 2019, 8, 860. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Schnyer, D.A.M. Machine Learning; Methods and Applications to Brain Disorders; Academic Press: Cambridge, MA, USA, 2020; Chapter 6; pp. 101–121.
    Paper not yet in RePEc: Add citation now
  43. Shabbir, N.; Kütt, L.; Jawad, M.; Amadiahanger, R.; Iqbal, M.N.; Rosin, A. Wind energy forecasting using recurrent neural networks. In Proceedings of the Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 21–22 November 2019; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  44. Shabbir, N.; Kutt, L.; Jawad, M.; Iqbal, M.N.; Ghahfarokhi, P.S. Forecasting of energy consumption and production using recurrent neural networks. Adv. Electr. Electron. Eng. 2020, 18, 190–197. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Shah, I.; Iftikhar, H.; Ali, S.; Wang, D. Short-term electricity demand forecasting using components estimation technique. Energies 2019, 12, 2532. [CrossRef]

  46. Shi, H.; Xu, M.; Li, R. Deep learning for household load forecasting—A novel pooling deep RNN. IEEE Trans. Smart Grid 2018, 9, 5271–5280. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Shirzadi, N.; Nizami, A.; Khazen, M.; Nik-Bakht, M. Medium-term regional electricity load forecasting through machine learning and deep learning. Designs 2021, 5, 27. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Sun, W.; Zhang, C. A Hybrid BA-ELM model based on factor analysis and similar-day approach for short-term load forecasting. Energies 2018, 11, 1282. [CrossRef]

  49. Tarkhaneh, O.; Shen, H. Training of feedforward neural networks for data classification using hybrid particle swarm optimization, mantegna lévy flight and neighborhood search. Heliyon 2019, 5, e01275. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  50. Tayaba, U.B.; Zia, A.; Yanga, F.; Lu, J.; Kashif, M. Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform. Energy 2020, 203, 117857. [CrossRef]

  51. Tudose, A.M.; Picioroaga, I.I.; Sidea, D.O.; Bulac, C.; Boicea, V.A. Short-term load forecasting using convolutional neural networks in COVID-19 context: The romanian case study. Energies 2021, 14, 4046. [CrossRef]

  52. Turhan, C.; Simani, S.; Zajic, I.; Akkurt, G.G. Performance analysis of data-driven and model-based control strategies applied to a thermal unit model. Energies 2017, 10, 67. [CrossRef]

  53. Uzair, M.; Jamil, N. Effects of hidden layers on the efficiency of neural networks. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  54. Velasco, L.C.P.; Estoperez, N.R.; Jayson, R.J.R.; Sabijon, C.J.T.; Sayles, V.C. Day-ahead base, intermediate, and peak load forecasting using k-means and artificial neural networks. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 62–67.
    Paper not yet in RePEc: Add citation now
  55. Winters-Miner, L.A.; Bolding, P. Practical Predictive Analytics and Decisioning Systems for Medicine; Informatics Accuracy and CostEffectiveness for Healthcare Administration and Delivery Including Medical Research; Academic Press: Cambridge, MA, USA, 2015; Chapter 15; pp. 239–259. Energies 2021, 14, 5510 22 of 22
    Paper not yet in RePEc: Add citation now
  56. Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Chapter 12; pp. 566–569.
    Paper not yet in RePEc: Add citation now
  57. Yildiz, B.; Bilbao, J.; Sproul, A. A review and analysis of regression and machine learning models on commercial building electricity load forecasting. Renew. Sustain. Energy Rev. 2017, 73, 1104–1122. [CrossRef]

  58. Zhang, Y.-F.; Chiang, H.-D. Enhanced ELITE-load: A novel CMPSOATT methodology constructing short-term load forecasting model for industrial applications. IEEE Trans. Ind. Inform. 2020, 16, 2325–2334. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Optimizing Building Short-Term Load Forecasting: A Comparative Analysis of Machine Learning Models. (2024). Koukaras, Paraskevas ; Tjortjis, Christos ; Mystakidis, Aristeidis ; Mustapha, Akeem.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:6:p:1450-:d:1358799.

    Full description at Econpapers || Download paper

  2. Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden. (2024). Netzell, Pontus ; Kyprianidis, Konstantinos ; Kazmi, Hussain.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:10:p:2246-:d:1389738.

    Full description at Econpapers || Download paper

  3. Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review. (2023). Biswal, Monalisa ; Dewangan, Fanidhar ; Abdelaziz, Almoataz Y.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:3:p:1404-:d:1052682.

    Full description at Econpapers || Download paper

  4. Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks. (2023). Behmiri, Niaz Bashiri ; Ravazzolo, Francesco ; Fezzi, Carlo.
    In: Energy.
    RePEc:eee:energy:v:278:y:2023:i:c:s0360544223012252.

    Full description at Econpapers || Download paper

  5. Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing. (2023). Lopez-Lorente, Javier ; Tziolis, Georgios ; Makrides, George ; Georghiou, George E ; Spanias, Chrysovalantis ; Livera, Andreas ; Theocharides, Spyros ; Theodoride, Maria.
    In: Energy.
    RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004127.

    Full description at Econpapers || Download paper

  6. Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis. (2021). Javed, Umar ; Husev, Oleksandr ; Shabbir, Noman ; Jawad, Muhammad ; Kutt, Lauri ; Ijaz, Khalid ; Ansari, Ejaz A.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657.

    Full description at Econpapers || Download paper

  7. Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience. (2021). Moncecchi, Matteo ; Merlo, Marco ; Morotti, Andrea ; Bosisio, Alessandro.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:14:p:4133-:d:591057.

    Full description at Econpapers || Download paper

  8. A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back‐propagation neural network for mid‐short‐term load forecasting. (2020). Guo, Yanhui ; Hong, Weichiang ; Zheng, Jiamei ; Fan, Guofeng.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:39:y:2020:i:5:p:737-756.

    Full description at Econpapers || Download paper

  9. Methods and Models for Electric Load Forecasting: A Comprehensive Review. (2020). Bojan, Rosi ; Borut, Jereb ; Mahmoud, Hammad ; Dejan, Dragan.
    In: Logistics, Supply Chain, Sustainability and Global Challenges.
    RePEc:vrs:losutr:v:11:y:2020:i:1:p:51-76:n:4.

    Full description at Econpapers || Download paper

  10. Asymmetric Loss Functions for Contract Capacity Optimization. (2020). Zhang, Yiqing ; Zhu, Kunhuang ; Lin, Jun-Lin ; Chen, Binbin.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:12:p:3123-:d:372390.

    Full description at Econpapers || Download paper

  11. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. (2020). Amraee, Turaj ; Kazemzadeh, Mohammad-Rasool ; Amjadian, Ali.
    In: Energy.
    RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310550.

    Full description at Econpapers || Download paper

  12. Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach. (2020). Mansour, Noura ; Talaat, M ; Farahat, M A ; Hatata, A Y.
    In: Energy.
    RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301948.

    Full description at Econpapers || Download paper

  13. Carbon Price Forecasting Based on Multi-Resolution Singular Value Decomposition and Extreme Learning Machine Optimized by the Moth–Flame Optimization Algorithm Considering Energy and Economic Factors. (2019). Wei, Zhuoqun ; Zhang, Xing.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:22:p:4283-:d:285679.

    Full description at Econpapers || Download paper

  14. Short-Term Forecasting of Electricity Supply and Demand by Using the Wavelet-PSO-NNs-SO Technique for Searching in Big Data of Iran’s Electricity Market. (2018). Ghazizadeh, Mohammad Sadegh ; Salami, Mesbaholdin ; Sobhani, Farzad Movahedi.
    In: Data.
    RePEc:gam:jdataj:v:3:y:2018:i:4:p:43-:d:177702.

    Full description at Econpapers || Download paper

  15. Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed. (2018). Rezaee, Mustafa Jahangoshai ; Dadkhah, Mojtaba ; Chavoshi, Ahmad Zare.
    In: Energy.
    RePEc:eee:energy:v:148:y:2018:i:c:p:775-788.

    Full description at Econpapers || Download paper

  16. Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm. (2018). Sun, Wei ; Zhang, Chongchong.
    In: Applied Energy.
    RePEc:eee:appene:v:231:y:2018:i:c:p:1354-1371.

    Full description at Econpapers || Download paper

  17. A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting. (2017). Shao, Zhen ; Yang, Shan-Lin ; Zhou, Kai-Le ; Chao, FU.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:75:y:2017:i:c:p:123-136.

    Full description at Econpapers || Download paper

  18. Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection. (2015). Hu, Zhongyi ; Bao, Yukun ; Xiong, Tao ; Chiong, Raymond.
    In: Energy.
    RePEc:eee:energy:v:84:y:2015:i:c:p:419-431.

    Full description at Econpapers || Download paper

  19. Data Mining Smart Energy Time Series. (2015). Popeanga, Janina .
    In: Database Systems Journal.
    RePEc:aes:dbjour:v:6:y:2015:i:1:p:14-22.

    Full description at Econpapers || Download paper

  20. The influence of meteorological variability on the mid-term evolution of the electricity load. (2014). OrtizBevia, M. J. ; Alvarez-Garcia, F. J. ; RuizdeElvira, A..
    In: Energy.
    RePEc:eee:energy:v:76:y:2014:i:c:p:850-856.

    Full description at Econpapers || Download paper

  21. Artificial neural networks for short-term load forecasting in microgrids environment. (2014). Hernandez, Luis ; Aguiar, Javier M. ; Lloret, Jaime ; Baladron, Carlos ; Carro, Belen ; Sanchez-Esguevillas, Antonio .
    In: Energy.
    RePEc:eee:energy:v:75:y:2014:i:c:p:252-264.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 05:02:57 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.