Akhmat, G.; Zaman, K.; Shukui, T.; Sajjad, F. Does energy consumption contribute to climate change? Evidence from major regions of the world. Renew. Sustain. Energy Rev. 2014, 36, 123â134. [CrossRef]
Austin, D. Addressing Market Barriers to Energy Efficiency in Buildings; Working Papers 43476; Congressional Budget Office: Washington, DC, USA, 2012. Available online: https://ideas.repec.org/p/cbo/wpaper/43476.html (accessed on 15 October 2021).
- Australia, S. Energy Audits Commercial Buildings AS/NZS 3598.1:2014; Standards Australia: Sydney, Australia, 2014.
Paper not yet in RePEc: Add citation now
- Avina, J.M.; Rottmayer, S.P. Virtual Audits: The Promise and The Reality. Energy Eng. 2016, 113, 34â52. [CrossRef]
Paper not yet in RePEc: Add citation now
- Azadeh, A.; Ghaderi, S.F.; Sohrabkhani, S. Forecasting electrical consumption by integration of Neural Network, time series and ANOVA. Appl. Math. Comput. 2007, 186, 1753â1761. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bhattacharyya, B.; Jacquelin, E.; Brizard, D. A Kriging-NARX Model for Uncertainty Quantification of Nonlinear Stochastic Dynamical Systems in Time Domain. J. Eng. Mech. 2020, 146, 04020070. [CrossRef]
Paper not yet in RePEc: Add citation now
Boussaada, Z.; Curea, O.; Remaci, A.; Camblong, H.; Meabet Bellaaj, N. A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation. Energies 2018, 11, 620. [CrossRef]
- Castro-Alvarez, F.; Vaidyanathan, S.; Bastian, H.; King, J. The 2018 International Energy Efficiency Scorecard; American Council for an Energy-Efficient Economy: Washington, DC, USA, 2018.
Paper not yet in RePEc: Add citation now
- Cowan, J.; Pearson, R.; Sud, I. Procedures for Commercial Building Energy Audits; American Society of Heating; Ashrae: New York, NY, USA, 2004; ISBN 9781936504091. Available online: https://www.techstreet.com/standards/procedures-for-commercialbuilding -energy-audits-2nd-edition?product_id=1809206#product (accessed on 15 October 2021).
Paper not yet in RePEc: Add citation now
Cronin, J.; Anandarajah, G.; Dessens, O. Climate change impacts on the energy system: A review of trends and gaps. Clim. Chang. 2018, 151, 79â93. [CrossRef] [PubMed]
- Deb, C.; Lee, S.E.; Santamouris, M. Using artificial neural networks to assess HVAC related energy saving in retrofitted office buildings. Sol. Energy 2018, 163, 32â44. [CrossRef]
Paper not yet in RePEc: Add citation now
Deb, C.; Schlueter, A. Review of data-driven energy modelling techniques for building retrofit. Renew. Sustain. Energy Rev. 2021, 144, 110990. [CrossRef]
Glick, M.B.; Peppard, E.; Meguro, W. Analysis of Methodology for Scaling up Building Retrofits: Is There a Role for Virtual Energy Audits?âA First Step in Hawaiâi, USA. Energies 2021, 14, 5914. [CrossRef]
Hayter, A.J. Simultaneous Confidence Intervals for Several Quantiles of an Unknown Distribution. Am. Stat. 2014, 68, 56â62. [CrossRef]
- Hoşgör, E.; Fischbeck, P.S. Virtual home energy auditing at scale: Predicting residential energy efficiency using publicly available data. Energy Build. 2015, 92, 67â80. [CrossRef]
Paper not yet in RePEc: Add citation now
- IEA. Net Zero by 2050; IEA: Paris, France, 2021. Available online: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539 -9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf (accessed on 15 October 2021).
Paper not yet in RePEc: Add citation now
- Joshi, A.; Mundada, A.; Suryavanshi, Y.; Kurulekar, M.; Ranade, M.; Jadhav, S.; Patil, K.; Despande, Y. Performance Assessment of Building by Virtual Energy Audit. In Proceedings of the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 24â26 October 2018.
Paper not yet in RePEc: Add citation now
- Kluczek, A.; Olszewski, P. Energy audits in industrial processes. J. Clean. Prod. 2017, 142, 3437â3453. [CrossRef]
Paper not yet in RePEc: Add citation now
- Koseleva, N.; Ropaite, G. Big Data in Building Energy Efficiency: Understanding of Big Data and Main Challenges. Procedia Eng. 2017, 172, 544â549. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kreider, J.F.; Claridge, D.E.; Curtiss, P.; Dodier, R.; Haberl, J.S.; Krarti, M. Building Energy Use Prediction and System Identification Using Recurrent Neural Networks. J. Sol. Energy Eng. 1995, 117, 161â166. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kumar, R.; Aggarwal, R.K.; Sharma, J.D. Energy analysis of a building using artificial neural network: A review. Energy Build. 2013, 65, 352â358. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, A.; Xiao, F.; Fan, C.; Hu, M. Development of an ANN-based building energy model for information-poor buildings using transfer learning. Build. Simul. 2021, 14, 89â101. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, S.; Foliente, G.; Seo, S.; Rismanchi, B.; Aye, L. Multi-scale life cycle energy analysis of residential buildings in Victoria, AustraliaâA typology perspective. Build. Environ. 2021, 195, 107723. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mikayilov, F.; Johnson, C.; Van Genuchten, M. Estimating Uncertain Flow and Transport Parameters Using A Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340â1352.
Paper not yet in RePEc: Add citation now
- Park, S.K.; Moon, H.J.; Min, K.C.; Hwang, C.; Kim, S. Application of a multiple linear regression and an artificial neural network model for the heating performance analysis and hourly prediction of a large-scale ground source heat pump system. Energy Build. 2018, 165, 206â215. [CrossRef]
Paper not yet in RePEc: Add citation now
- Roessler, F.; Teich, T.; Franke, S. Neural Networks for Smart Homes and Energy Efficiency. In DAAAM International Scientific Book; DAAAM International Publishing: Vienna, Austria, 2012; Chapter 26; pp. 305â314. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [CrossRef]
Paper not yet in RePEc: Add citation now
- Talebizadeh, M.; Moridnejad, A. Uncertainty analysis for the forecast of lake level fluctuations using ensembles of ANN and ANFIS models. Expert Syst. Appl. 2011, 38, 4126â4135. [CrossRef]
Paper not yet in RePEc: Add citation now
Tian, W. A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 2013, 20, 411â419. [CrossRef] Energies 2021, 14, 8330 18 of 18
- Victoria, T.P.O. Climate Change Act 2017; Legislation Victoria, 2017. Available online: https://www.climatechange.vic.gov.au/ legislation/climate-change-act-2017 (accessed on 15 October 2021).
Paper not yet in RePEc: Add citation now
- Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.S.; Ahrentzen, S. Random Forest based hourly building energy prediction. Energy Build. 2018, 171, 11â25. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhu, Y. Applying computer-based simulation to energy auditing: A case study. Energy Build. 2006, 38, 421â428. [CrossRef]
Paper not yet in RePEc: Add citation now