create a website

A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels. (2021). Tucki, Karol.
In: Energies.
RePEc:gam:jeners:v:14:y:2021:i:5:p:1400-:d:510044.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 160

References cited by this document

Cocites: 20

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Smoke Formation during Combustion of Biofuel Blends in the Internal Combustion Compression Ignition Engine. (2023). Orynycz, Olga ; Tucki, Karol ; Matijoius, Jonas ; Valeika, Gintaras ; Wi, Antoni ; Rimkus, Alfredas.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:9:p:3682-:d:1132589.

    Full description at Econpapers || Download paper

  2. Novel Mathematical Method to Obtain the Optimum Speed and Fuel Reduction in Heavy Diesel Trucks. (2021). Rodriguez-Abreo, Omar ; Torres-Falcon, Maria ; Rodriguez-Resendiz, Juvenal ; Alvarez-Alvarado, Jose Manuel ; Castillo-Velasquez, Francisco Antonio ; Flores-Rangel, Alejandro.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:23:p:8121-:d:694647.

    Full description at Econpapers || Download paper

  3. Modernization of the Public Transport Bus Fleet in the Context of Low-Carbon Development in Poland. (2021). Miśko, Rafał ; Szufa, Szymon ; Miko, Rafa ; Dziku, Maciej.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3295-:d:568916.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abdelkareem M.A.A.; Xu L.; Guo X.; Ali M.K.A.; Elagouz A.; Hassan M.A.; Essa F.A.; Zou J. Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes. Mech. Syst. Signal Process. 2018, 110, 307-332.
    Paper not yet in RePEc: Add citation now
  2. Akhshik M.; Panthapulakkal S.; Tjong J.; Bilton A.; Singh C.V.; Sain M. Cross-country analysis of life cycle assessment–based greenhouse gas emissions for automotive parts: Evaluation of coefficient of country. Renew. Sustain. Energy Rev. 2021, 138, 110546.

  3. Andersson J.; May J.; Favre C.; Bosteels D.; De Vries S.; Heaney M.; Keenan M.; Mansell J. On-Road and Chassis Dynamometer Evaluations of Emissions from Two Euro 6 Diesel Vehicles. SAE 2014, 7, 919-934. Mobile Air Conditioning (MAC). Test Procedure Development. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning.
    Paper not yet in RePEc: Add citation now
  4. Ang J.G.; Fredriksson P.G. Does an early start help or hurt? Statehood, institutions and modern climate change policies. Energy Econ. 2021, 94, 105075.

  5. Armas O.; García-Contreras R.; Ramos A. Pollutant emissions from New European Driving Cycle with ethanol and butanol diesel blends. Fuel Process. Technol. 2014, 122, 64-71.
    Paper not yet in RePEc: Add citation now
  6. Baczewski K.; Kałdoński T. Paliwa do Silników o Zapłonie Iskrowym; WKŁ Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 2008; pp. 40-191.
    Paper not yet in RePEc: Add citation now
  7. Ballesteros M.; Manzanares P. Liquid Biofuels. The Role of Bioenergy in the Bioeconomy; Lago C.; Caldés N.; Lechón Y. Academic Press: London, UK, 2019; pp. 113-144.
    Paper not yet in RePEc: Add citation now
  8. Beaudet A.; Larouche F.; Amouzegar K.; Bouchard P.; Zaghib K. Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials. Sustainability 2020, 12.

  9. Benajes J.; García A.; Monsalve-Serrano J.; Sari R.L. Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles. Energy 2018, 157, 19-30.

  10. Bielaczyc P.; Klimkiewicz D.; Woodburn J.; Szczotka A. Exhaust emission testing methods—BOSMAL’s legislative and development emission testing laboratories. Combust. Engines 2019, 58, 88-98. Exhaust Emission Test Procedure for SC03 Emissions. Random Cycle Generator.
    Paper not yet in RePEc: Add citation now
  11. Bielaczyc P.; Szczotka A.; Pajdowski P.; Woodburn J. The potential of current European light duty LPG-fuelled vehicles to meet Euro 6 requirements. Combust. Engines 2015, 54, 874-880.
    Paper not yet in RePEc: Add citation now
  12. Björnsson L.H.; Karlsson S. The potential for brake energy regeneration under Swedish conditions. Appl. Energy 2016, 168, 75-84. Global WLTP Roll-Out for More Realistic Results in Fuel Consumption. WLTP Driving Cycle.

  13. Borkowski J.; Szada-Borzyszkowski W. The possibilities and consequences of the use of coal-water slurry as an alternative fuel to power diesel engines. Autobusy Tech. Eksploat. Syst. Transp. 2014, 15, 72-75.
    Paper not yet in RePEc: Add citation now
  14. Borucka A.; Wiśniowski P.; Mazurkiewicz D.; Świderski A. Laboratory measurements of vehicle exhaust emissions in conditions reproducing real traffic. Measurement 2021, 174, 108998.
    Paper not yet in RePEc: Add citation now
  15. Brodny J.; Tutak M. The analysis of similarities between the European Union countries in terms of the level and structure of the emissions of selected gases and air pollutants into the atmosphere. J. Clean. Prod. 2021, 279, 123641.
    Paper not yet in RePEc: Add citation now
  16. Cadillo-Benalcazar J.J.; Bukkens S.G.F.; Ripa M.; Giampietro M. Why does the European Union produce biofuels? Examining consistency and plausibility in prevailing narratives with quantitative storytelling. Energy Res. Soc. Sci. 2021, 71, 101810. CO2 Emissions from Cars: Facts and Figures (Infographics).
    Paper not yet in RePEc: Add citation now
  17. Changizian S.; Ahmadi P.; Raeesi M.; Javani N. Performance optimization of hybrid hydrogen fuel cell-electric vehicles in real driving cycles. Int. J. Hydrogen Energy 2020, 45, 35180-35197.
    Paper not yet in RePEc: Add citation now
  18. Chindamo D.; Gadola M. What is the Most Representative Standard Driving Cycle to Estimate Diesel Emissions of a Light Commercial Vehicle?. IFAC-PapersOnLine 2018, 51, 73-78.
    Paper not yet in RePEc: Add citation now
  19. Chłopek Z.; Biedrzycki J.; Lasocki J.; Wójcik P. Pollutant emissions from combustion engine of motor vehicle tested in driving cycles simulating real-world driving conditions. Zesz. Nauk. Inst. Pojazdów/Politech. Warsz. 2013, 1, 67-76.
    Paper not yet in RePEc: Add citation now
  20. Chłopek Z.; Zakrzewska D. The criteria for the assessment energy carriers as replacement fuels for internal combustion engines. TTS Tech. Transp. Szyn. 2015, 22, 278-283.
    Paper not yet in RePEc: Add citation now
  21. Cho J.; Kim K.; Baek S.; Myung C.L.; Park S. Abatement potential analysis on CO2 and size-resolved particle emissions from a downsized LPG direct injection engine for passenger car. Atmos. Pollut. Res. 2019, 10, 1711-1722. EPA Federal Test Procedure (FTP).
    Paper not yet in RePEc: Add citation now
  22. Choi Y.; Lee J.; Jang J.; Park S. Effects of fuel-injection systems on particle emission characteristics of gasoline vehicles. Atmos. Environ. 2019, 217, 116941.
    Paper not yet in RePEc: Add citation now
  23. Cieśliński J.; Kaczmarczyk T.; Dawidowicz B. Performance of the PEM fuel cell module. Part 2. Effect of excess ratio and stack temperature. J. Power Technol. 2017, 97, 246-251.
    Paper not yet in RePEc: Add citation now
  24. Ciuffo B.; Fontaras G. Models and scientific tools for regulatory purposes: The case of CO2 emissions from light duty vehicles in Europe. Energy Policy 2017, 109, 76-81.

  25. Coelho S.; Rafael S.; Lopes D.; Miranda A.I.; Ferreira J. How changing climate may influence air pollution control strategies for 2030?. Sci. Total Environ. 2021, 758, 143911.
    Paper not yet in RePEc: Add citation now
  26. Coker A.K. Petroleum, Complex-Mixture Fractionation, Gas Processing, Dehydration, Hydrocarbon Absorption and Stripping: Part 2: Fractionation. Ludwig’s Applied Process Design for Chemical and Petrochemical Plants; Coker A.K. Gulf Professional Publishing: Oxford, UK, 2018; pp. 269-344.
    Paper not yet in RePEc: Add citation now
  27. Continental. Worldwide Emission Standards and Related Regulations. Passenger Cars/Light and Medium Duty Vehicles May 2019. Delphi. Worldwide Emission Standards. Passenger Cars and Light Dudy. EPA Emission Standards for Light-Duty Vehicles and Trucks and Motorcycles.
    Paper not yet in RePEc: Add citation now
  28. Davari M.M.; Jerrelind J.; Trigell A.S. Energy efficiency analyses of a vehicle in modal and transient driving cycles including longitudinal and vertical dynamics. Transp. Res. Part D Transp. Environ. 2017, 53, 263-275.
    Paper not yet in RePEc: Add citation now
  29. Daziano R.; Waygood E.O.D.; Patterson Z.; Feinberg M.; Wang B. Reframing greenhouse gas emissions information presentation on the Environmental Protection Agency’s new-vehicle labels to increase willingness to pay. J. Clean. Prod. 2021, 279, 123669.
    Paper not yet in RePEc: Add citation now
  30. Degraeuwe B.; Weiss M. Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe?. Environ. Pollut. 2017, 222, 234-241.
    Paper not yet in RePEc: Add citation now
  31. Demuynck J.; Bosteels D.; Paepe M.D.; Favre C.; May J.; Verhelst S. Recommendations for the new WLTP cycle based on an analysis of vehicle emission measurements on NEDC and CADC. Energy Policy 2012, 49, 234-242. Common Artemis Driving Cycles (CADC).

  32. Dimaratos A.; Tsokolis D.; Fontaras G.; Tsiakmakis S.; Ciuffo B.; Samaras Z. Comparative Evaluation of the Effect of Various Technologies on Light-duty Vehicle CO2 Emissions over NEDC and WLTP. Transp. Res. Procedia 2016, 14, 3169-3178.
    Paper not yet in RePEc: Add citation now
  33. Dobras S.; Więcław-Solny L.; Chwoła T.; Krótki A.; Wilk A.; Tatarczuk A. Renewable methanol as a fuel and feedstock in the chemical industry. Zesz. Nauk. Inst. Gospod. Surowcami Miner. I Energią Pan 2017, 98, 27-37.
    Paper not yet in RePEc: Add citation now
  34. Dooley S.; Won S.H.; Dryer F.L. Surrogate fuels and combustion characteristics of liquid transportation fuels. Computer Aided Chemical Engineering; Faravelli T.; Manenti F.; Ranzi E. Elsevier: Oxford, UK, 2019; pp. 513-602.
    Paper not yet in RePEc: Add citation now
  35. Du B.; Zhang L.; Geng Y.; Zhang Y.; Xu H.; Xiang G. Testing and evaluation of cold-start emissions in a real driving emissions test. Transp. Res. Part D Transp. Environ. 2020, 86, 102447.
    Paper not yet in RePEc: Add citation now
  36. Duarte G.O.; Gonçalves G.A.; Farias T.L. Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements. Transp. Res. Part D Transp. Environ. 2016, 44, 43-54. From NEDC to WLTP: What Will Change?.
    Paper not yet in RePEc: Add citation now
  37. Dzikuć M.; Piwowar A.; Szufa S.; Adamczyk J.; Dzikuć M. Potential and Scenarios of Variants of Thermo-Modernization of Single-Family Houses: An Example of the Lubuskie Voivodeship. Energies 2021, 14.

  38. Eckert J.J.; Santiciolli F.M.; Silva L.C.A.; Dedini F.G. Vehicle drivetrain design multi-objective optimization. Mech. Mach. Theory 2021, 156, 104123.
    Paper not yet in RePEc: Add citation now
  39. Enzmann J.; Ringel M. Reducing Road Transport Emissions in Europe: Investigating A Demand Side Driven Approach †. Sustainability 2020, 12.

  40. European Parliament Approves Post-2020 CO2 Emission Targets for Cars and Vans.
    Paper not yet in RePEc: Add citation now
  41. Fekete H.; Kuramochi T.; Roelfsema M.; Den Elzen M.; Forsell N.; Höhne N.; Luna L.; Hans F.; Sterl S.; Olivier J. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 2021, 137, 110602.

  42. Fontaras G.; Grigoratos T.; Savvidis D.; Anagnostopoulos K.; Luz R.; Rexeis M.; Hausberger S. An experimental evaluation of the methodology proposed for the monitoring and certification of CO2 emissions from heavy-duty vehicles in Europe. Energy 2016, 102, 354-364. CO2MPAS: Vehicle Simulator Predicting NEDC CO2 Emissions from WLTP.

  43. Fontaras G.; Valverde V.; Arcidiacono V.; Tsiakmakis S.; Anagnostopoulos K.; Komnos D.; Pavlovic J.; Ciuffo B. The development and validation of a vehicle simulator for the introduction of Worldwide Harmonized test protocol in the European light duty vehicle CO2 certification process. Appl. Energy 2018, 226, 784-796.

  44. Gao J.; Chen H.; Li Y.; Chen J.; Zhang Y.; Dave K.; Huang Y. Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to eco-driving factors. Energy Convers. Manag. 2019, 196, 605-613.
    Paper not yet in RePEc: Add citation now
  45. García A.; Monsalve-Serrano J.; Villalta D.; Guzmán-Mendoza M. Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-mode dual-fuel combustion. Fuel 2021, 287, 119548. Bechtold R.L.; Goodman M.B.; Timbario T.A. Use of Methanol as a Transportation Fuel.
    Paper not yet in RePEc: Add citation now
  46. García-Contreras R.; Soriano J.A.; Fernández-Yáñez P.; Sánchez-Rodríguez L.; Mata C.; Gómez A.; Armas O.; Cárdenas M.D. Impact of regulated pollutant emissions of Euro 6d-Temp light-duty diesel vehicles under real driving conditions. J. Clean. Prod. 2021, 286, 124927. Expectations for Actual Euro 6 Vehicle Emissions.
    Paper not yet in RePEc: Add citation now
  47. Garrett T.K.; Newton K.; Steeds W. Fuels and their combustion. Motor Vehicle; Garrett T.K.; Newton K.; Steeds W. Elsevier: Oxford, UK, 2019; pp. 590-618.
    Paper not yet in RePEc: Add citation now
  48. Georgios Z.N.; Alessandro T.; Ignacio P.R.; Theodoros G.; Georgios F. A Generalized Component Efficiency and Input-Data Generation Model for Creating Fleet-Representative Vehicle Simulation Cases in VECTO; SAE International: Warrendale, PA, USA, 2019. Analysis of VECTO Data for Heavy-Duty Vehicles (HDV) CO2 Emission Targets.
    Paper not yet in RePEc: Add citation now
  49. Giakoumis E.G. Light-Duty Vehicles. Driving and Engine Cycles; Giakoumis E.G. Springer: Cham, Switzerland, 2017; pp. 65-166.
    Paper not yet in RePEc: Add citation now
  50. Giechaskiel B.; Suarez-Bertoa R.; Lähde T.; Clairotte M.; Carriero M.; Bonnel P.; Maggiore M. Evaluation of NOx emissions of a retrofitted Euro 5 passenger car for the Horizon prize “Engine retrofit”. Environ. Res. 2018, 166, 298-309.
    Paper not yet in RePEc: Add citation now
  51. Gwardiak H.; Rozycki K.; Ruszkarska M.; Tylus J.; Walisiewicz-Niedbalska W. Evaluation of fatty acid methyl esters (FAME) obtained from various feedstock. Rośliny Oleiste-Oilseed Crop. 2011, 32, 137-147.
    Paper not yet in RePEc: Add citation now
  52. Hagino H.; Oyama M.; Sasaki S. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles. Atmos. Environ. 2016, 131, 269-278.
    Paper not yet in RePEc: Add citation now
  53. Hänggi S.; Elbert P.; Bütler T.; Cabalzar U.; Teske S.; Bach C.; Onder C. A review of synthetic fuels for passenger vehicles. Energy Rep. 2019, 5, 555-569.
    Paper not yet in RePEc: Add citation now
  54. Hu Z.; Lu Z.; Song B.; Quan Y. Impact of test cycle on mass, number and particle size distribution of particulates emitted from gasoline direct injection vehicles. Sci. Total Environ. 2021, 762, 143128. Supplemental Federal Test Procedures; Overview.
    Paper not yet in RePEc: Add citation now
  55. Jhang S.R.; Lin Y.C.; Chen K.S.; Lin S.L.; Batterman S. Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen. Energy 2020, 209, 118436.

  56. Jiao J.; Zuo F.; Li L.; Yuan J.; Li J. Estimation of China’s alternative policies of automotive fuels—A perspective of oil dependence. J. Clean. Prod. 2017, 161, 698-707.
    Paper not yet in RePEc: Add citation now
  57. Jing R.; Yuan C.; Rezaei H.; Qian J.; Zhang Z. Assessments on emergy and greenhouse gas emissions of internal combustion engine automobiles and electric automobiles in the USA. J. Environ. Sci. 2020, 90, 297-309.
    Paper not yet in RePEc: Add citation now
  58. Kandasamy S.K.; Selvaraj A.S.; Rajagopal T.K.R. Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics. Renew. Energy 2019, 141, 411-419.

  59. Karagöz Y. Analysis of the impact of gasoline, biogas and biogas + hydrogen fuels on emissions and vehicle performance in the WLTC and NEDC. Int. J. Hydrogen Energy 2019, 44, 31621-31632.
    Paper not yet in RePEc: Add citation now
  60. Khan T.; Frey H.C. Comparison of real-world and certification emission rates for light duty gasoline vehicles. Sci. Total Environ. 2018, 622–623, 790-800.
    Paper not yet in RePEc: Add citation now
  61. Kim J.; Choi K.; Myung C.L.; Lee Y.; Park S. Comparative investigation of regulated emissions and nano-particle characteristics of light duty vehicles using various fuels for the FTP-75 and the NEDC mode. Fuel 2013, 106, 335-343.
    Paper not yet in RePEc: Add citation now
  62. Kim J.; Kim K.; Oh S. An assessment of the ultra-lean combustion direct-injection LPG (liquefied petroleum gas) engine for passenger-car applications under the FTP-75 mode. Fuel Process. Technol. 2016, 154, 219-226.
    Paper not yet in RePEc: Add citation now
  63. Klimov A.V.; Panov S.B.; Serdiuk L.A.; Ashkinazi L.A. Industrial cleaning of fuel by means of porous polymeric materials. Rocz. Ochr. Środowiska (Annu. Set Environ. Prot.) 2007, 9, 55-66.
    Paper not yet in RePEc: Add citation now
  64. Ko J.; Jin D.; Jang W.; Myung C.L.; Kwon S.; Park S. Comparative investigation of NOx emission characteristics from a Euro 6-compliant diesel passenger car over the NEDC and WLTC at various ambient temperatures. Appl. Energy 2017, 187, 652-662.

  65. Kooijman D.G.; Balau A.E.; Wilkins S.; Ligterink N.; Cuelenaere R. WLTP Random Cycle Generator. Proceedings of the 12th IEEE Vehicle Power and Propulsion Conference (VPPC 2015), Montreal, QC, Canada, 19–22 October 2015, . Steven H. WLTP EU Database Short Trip Analysis for Random Cycle Development.
    Paper not yet in RePEc: Add citation now
  66. Koossalapeerom T.; Satiennam T.; Satiennam W.; Leelapatra W.; Seedam A.; Rakpukdee T. Comparative study of real-world driving cycles, energy consumption, and CO2 emissions of electric and gasoline motorcycles driving in a congested urban corridor. Sustain. Cities Soc. 2019, 45, 619-627.
    Paper not yet in RePEc: Add citation now
  67. Krakowski R. Alternative fuels and drives in the context of tightening emission regulations. Autobusy Tech. Eksploat. Syst. Transp. 2017, 18, 1225-1230.
    Paper not yet in RePEc: Add citation now
  68. Kropiwnicki J. A unified approach to the analysis of electric energy and fuel consumption of cars in city traffic. Energy 2019, 182, 1045-1057.

  69. Krysko A.V.; Awrejcewicz J.; Pavlov S.P.; Bodyagina K.S.; Krysko V.A. Topological optimization of thermoelastic composites with maximized stiffness and heat transfer. Compos. Part B Eng. 2019, 158, 319-327.
    Paper not yet in RePEc: Add citation now
  70. Kumar M.S.; Prabhahar M.; Sendilvelan S.; Singh S.; Venkatesh R.; Bhaskar K. Combustion, performance and emission analysis of a diesel engine fueled with methyl esters of Jatropha and fish oil with exhaust gas recirculation. Energy Procedia 2019, 160, 404-411.
    Paper not yet in RePEc: Add citation now
  71. Kurtyka K.; Pielecha J. The evaluation of exhaust emission in RDE tests including dynamic driving conditions. Transp. Res. Procedia 2019, 40, 338-345.
    Paper not yet in RePEc: Add citation now
  72. Lapuerta M.; Rodríguez-Fernández J.; García-Contreras R. Effect of a glycerol-derived advanced biofuel—FAGE (fatty acid formal glycerol ester)—on the emissions of a diesel engine tested under the New European Driving Cycle. Energy 2015, 93, 568-579.
    Paper not yet in RePEc: Add citation now
  73. Lee J.S. Stability Analysis of Deadbeat-Direct Torque and Flux Control for Permanent Magnet Synchronous Motor Drives with Respect to Parameter Variations. Energies 2018, 11.

  74. Lenz M.; Hoehl T.; Zanger L.; Pischinger S. Approach to determine the entropy coefficient of a battery by numerical optimization. J. Power Sources 2020, 480, 228841.
    Paper not yet in RePEc: Add citation now
  75. Li C.; Brewer E.; Pham L.; Jung H. Reducing Mobile Air Conditioner (MAC) Power Consumption Using Active Cabin-Air-Recirculation in A Plug-In Hybrid Electric Vehicle (PHEV). World Electr. Veh. J. 2018, 9.
    Paper not yet in RePEc: Add citation now
  76. Li X.; Yu B. Peaking CO2 emissions for China’s urban passenger transport sector. Energy Policy 2019, 133, 110913.

  77. Liu Y.; Zhou H.; Xu Y.; Qin K.; Yu H. Feasibility Study of Using WLTC for Fuel Consumption Certification of Chinese Light-Duty Vehicles; SAE International: Warrendale, PA, USA, 2018.
    Paper not yet in RePEc: Add citation now
  78. Liu Z.; Jia W.; Liang L.; Duan Z. Analysis of Pressure Pulsation Influence on Compressed Natural Gas (CNG) Compressor Performance for Ideal and Real Gas Models. Appl. Sci. 2019, 9. Time for Methane? Alternative Fuels: CNG and LNG under the Loupe. Biofuels—An Alternative to Growing Prices at Fuel Stations?.
    Paper not yet in RePEc: Add citation now
  79. Lohse-Busch H.; Stutenberg K.; Duoba M.; Liu X.; Elgowainy A.; Wang M.; Wallner T.; Richard B.; Christenson M. Automotive fuel cell stack and system efficiency and fuel consumption based on vehicle testing on a chassis dynamometer at minus 18 °C to positive 35 °C temperatures. Int. J. Hydrogen Energy 2020, 45, 861-872.
    Paper not yet in RePEc: Add citation now
  80. López-Martínez J.M.; Jiménez F.; Páez-Ayuso F.J.; Flores-Holgado M.N.; Arenas A.N.; Arenas-Ramirez B.; Aparicio-Izquierdo F. Modelling the fuel consumption and pollutant emissions of the urban bus fleet of the city of Madrid. Transp. Res. Part D Transp. Environ. 2017, 52, 112-127.
    Paper not yet in RePEc: Add citation now
  81. Mahmood H.A.; Adam N.M.; Sahari B.B.; Masuri S.U. New Design of a CNG-H2-AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study. Energies 2017, 10. LPG as an Ecological Fuel. It’s What the Climate Summit Should Be Discussing. Development of the Methodology and Estimation of Theexternal Costs of Air Pollution Emitted from Roadtransport at National Level. Towards Clean and Smart Mobility.
    Paper not yet in RePEc: Add citation now
  82. Maizak D.; Wilberforce T.; Olabi A.G. DeNOx removal techniques for automotive applications—A review. Environ. Adv. 2020, 2, 100021.
    Paper not yet in RePEc: Add citation now
  83. Martins J.; Brito F.P. Alternative Fuels for Internal Combustion Engines. Energies 2020, 13.

  84. Martyr A.J.; Rogers D.R. Engine Testing; Elsevier: Oxford, UK, 2019; pp. 511-535.
    Paper not yet in RePEc: Add citation now
  85. Massaguer E.; Massaguer A.; Pujol T.; Comamala M.; Montoro L.; Gonzalez J.R. Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system. Energy 2019, 179, 306-314. The Introduction of the WLTP into the European Type-Approval for Light-Duty Vehicles.

  86. May J.; Bosteels D.; Favre C. An Assessment of Emissions from Light-Duty Vehicles using PEMS and Chassis Dynamometer Testing. SAE Int. J. Engines 2014, 7, 1326-1335. Addendum15: Global Technical Regulation No. 15. Worldwide Harmonized Light Vehicles Test Procedure.
    Paper not yet in RePEc: Add citation now
  87. Mogno C.; Fontaras G.; Arcidiacono V.; Komnos D.; Pavlovic J.; Ciuffo B.; Makridis M.; Valverde V. The application of the CO2MPAS model for vehicle CO2 emissions estimation over real traffic conditions. Transp. Policy 2020.
    Paper not yet in RePEc: Add citation now
  88. Monforte R.; Lovuolo F.; Rostagno M.; Seccardini R. New MAC Technologies: Fuel Efficiency Effect in Real Driving of the Air Intake Flap Management; SAE International: Warrendale, PA, USA, 2015.
    Paper not yet in RePEc: Add citation now
  89. Muhssen H.S.; Masuri S.U.; Sahari B.B.; Hairuddin A.A. Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics. Energy 2021, 216, 118957.

  90. Myung C.L.; Choi K.; Kim J.; Lim Y.; Lee J.; Park S. Comparative study of regulated and unregulated toxic emissions characteristics from a spark ignition direct injection light-duty vehicle fueled with gasoline and liquid phase LPG (liquefied petroleum gas). Energy 2012, 44, 189-196.

  91. Myung C.L.; Jang W.; Kwon S.; Ko J.; Jin D.; Park S. Evaluation of the real-time de-NOx performance characteristics of a LNT-equipped Euro-6 diesel passenger car with various vehicle emissions certification cycles. Energy 2017, 132, 356-369.

  92. Nabagło T.; Kowal J.; Jurkiewicz A. High Fidelity Model Construction and Its Verification Based on 2S1 Tracked Vehicle. Innovative Control Systems for Tracked Vehicle Platforms. Studies in Systems, Decision and Control. Part III: Construction and Investigation of the Dynamic Characteristics of Tracked Vehicles; Nawrat M.A. Springer: Cham, Switzerland, 2015; pp. 205-215.
    Paper not yet in RePEc: Add citation now
  93. Nam E.K.; Colvin A.D. An Experimental Procedure for Simulating an SC03 Emissions Test with Air Conditioner On; SAE International: Warrendale, PA, USA, 2004. McDonald J. Progress in the Development of Tier 2 Light-Duty Diesel Vehicles.
    Paper not yet in RePEc: Add citation now
  94. Napolitano P.; Guido C.; Beatrice C.; Pellegrini L. Impact of hydrocracked diesel fuel and Hydrotreated Vegetable Oil blends on the fuel consumption of automotive diesel engines. Fuel 2018, 222, 718-732.
    Paper not yet in RePEc: Add citation now
  95. Nazimek D. Liquid biofuel. Autobusy Tech. Eksploat. Syst. Transp. 2012, 13, 235-240.
    Paper not yet in RePEc: Add citation now
  96. Neupane B.; Rubin J. Implications of U.S. biofuels policy for sustainable transportation energy in Maine and the Northeast. Renew. Sustain. Energy Rev. 2017, 70, 729-735. Fast Facts on Transportation Greenhouse Gas Emissions.
    Paper not yet in RePEc: Add citation now
  97. Nikas A.; Gambhir A.; Trutnevyte E.; Koasidis K.; Lund H.; Thellufsen J.Z.; Mayer D.; Zachmann G.; Miguel L.J.; Ferreras-Alonso N. Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe. Energy 2021, 215, 119153.

  98. Ogunkunle O.; Ahmed N.A. Exhaust emissions and engine performance analysis of a marine diesel engine fuelledwith Parinari polyandra biodiesel–diesel blends. Energy Rep. 2020, 6, 2999-3007.
    Paper not yet in RePEc: Add citation now
  99. Olabi A.G.; Wilberforce T.; Abdelkareem M.A. Fuel cell application in the automotive industry and future perspective. Energy 2021, 214, 118955.

  100. Pałuchowska M.; Jakóbiec J. Effects of ethanol addition and chemical composition of the fuel on its performance parameters. Autobusy Tech. Eksploat. Syst. Transp. 2012, 13, 140-149.
    Paper not yet in RePEc: Add citation now
  101. Pałuchowska M.; Jakóbiec J. The quality specification of E10 engine petrol. Nafta-Gaz 2011, 67, 825-830. Standard Specification for Automotive Spark-Ignition Engine Fuel.
    Paper not yet in RePEc: Add citation now
  102. Panda K.; Ramesh A. Diesel injection strategies for reducing emissions and enhancing the performance of a methanol based dual fuel stationary engine. Fuel 2021, 289, 119809. Vehicle Energy Consumption Calculation Tool—VECTO.
    Paper not yet in RePEc: Add citation now
  103. Park J.; Shin M.; Lee J.; Lee J. Estimating the effectiveness of vehicle emission regulations for reducing NOx from light-duty vehicles in Korea using on-road measurements. Sci. Total Environ. 2021, 767, 144250.
    Paper not yet in RePEc: Add citation now
  104. Pawełko P.; Berczyński S.; Grządziel Z. Modeling roller guides with preload. Arch. Civ. Mech. Eng. 2014, 14, 691-699.
    Paper not yet in RePEc: Add citation now
  105. Piątkowski P.; Bohdal T. Testing of Ecological Properties of Spark Ignition Engine Fed with LPG Mixture. Rocz. Ochr. Środowiska (Annu. Set Environ. Prot.) 2011, 13, 607-618.
    Paper not yet in RePEc: Add citation now
  106. Pichler M.; Krenmayr N.; Schneider E.; Brand U. EU industrial policy: Between modernization and transformation of the automotive industry. Environ. Innov. Soc. Transit. 2021, 38, 140-152.
    Paper not yet in RePEc: Add citation now
  107. Potter A.; Graham S. Supplier involvement in eco-innovation: The co-development of electric, hybrid and fuel cell technologies within the Japanese automotive industry. J. Clean. Prod. 2019, 210, 1216-1228.
    Paper not yet in RePEc: Add citation now
  108. Ramos A.; Muñoz J.; Andrés F.; Armas O. NOx emissions from diesel light duty vehicle tested under NEDC and real-word driving conditions. Transp. Res. Part D Transp. Environ. 2018, 63, 37-48.
    Paper not yet in RePEc: Add citation now
  109. Rashid A.K.; Mansor M.R.A.; Racovitza A.; Chiriac R. Combustion Characteristics of Various Octane Rating Fuels for Automotive Thermal Engines Efficiency Requirements. Energy Procedia 2019, 157, 763-772.
    Paper not yet in RePEc: Add citation now
  110. Rask E.; Bocci D.; Duoba M.; Lohse-Busch H. Model Year 2010 Ford Fusion Level-1 Testing Report.
    Paper not yet in RePEc: Add citation now
  111. Rodríguez-Fernández J.; Ramos Á.; Barba J.; Cárdenas D.; Delgado J. Improving Fuel Economy and Engine Performance through Gasoline Fuel Octane Rating. Energies 2020, 13.

  112. Rosiak E. The Global Market for Vegetable Oils. Sci. J. Wars. Univ. Life Sci. Probl. World Agric. 2017, 17, 173-181.
    Paper not yet in RePEc: Add citation now
  113. Roso V.R.; Santos N.D.S.A.; Valle R.M.; Alvarez C.E.C.; Monsalve-Serrano J.; García A. Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles. Appl. Energy 2019, 254, 113691.

  114. Saggu M.H.; Sheikh N.A.; Muhamad Niazi U.; Irfan M.; Glowacz A.; Legutko S. Improved Analysis on the Fin Reliability of a Plate Fin Heat Exchanger for Usage in LNG Applications. Energies 2020, 13.

  115. Samuel S.; Austin L.; Morrey D. Automotive test drive cycles for emission measurement and real-world emission levels—A review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2002, 216, 555-564. Exhaust Emission Test Procedures for Motor Vehicles. Accounting for the Variation of Driver Aggression in the Simulation of Conventional and Advanced Vehicles.
    Paper not yet in RePEc: Add citation now
  116. Sarkan B.; Stopka O.; Gnap J.; Caban J. Investigation of Exhaust Emissions of Vehicles with the Spark Ignition Engine within Emission Control. Procedia Eng. 2017, 187, 775-782.
    Paper not yet in RePEc: Add citation now
  117. Sastry S.; Saha A.; Ghosh R. Modeling the Dynamics of Carbon Dioxide over an Educational Institute. ICT Analysis and Applications. Lecture Notes in Networks and Systems; Fong S.; Dey N.; Joshi A. Springer: Singapore, 2020. How Much CO2 Comes from Burning a Liter of Gasoline, i.e., Who Drives a Gasoline Engine, Drives an Electrician Parallely.
    Paper not yet in RePEc: Add citation now
  118. Saw L.H.; Poon H.M.; Chong W.T.; Wang C.T.; Yew M.C.; Yew M.K.; Ng T.C. Numerical modeling of hybrid supercapacitor battery energy storage system for electric vehicles. Energy Procedia 2019, 158, 2750-2755.
    Paper not yet in RePEc: Add citation now
  119. Scaradozzi D.; Fanesi M. Advanced Control Strategies to Improve Nonlinear Automotive Dynamical Systems Consumption. Axioms 2019, 8. Measurement of CO2- and Fuel Consumption from Cars in the NEDC and in Real-World-Driving Cycles. Particulate Emissions from Typical Light-Duty Vehicles Taken from the European Fleet, Equipped with a Variety of Emissions Control Technologies. The Mobile Air-Conditioning Systems MACs.
    Paper not yet in RePEc: Add citation now
  120. Schenk C.; Dekraker P. Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine. SAE Technical Paper, 2017-01-1016. 2017. US: Light-Duty: Highway Fuel Economy Cycle (HWFET).
    Paper not yet in RePEc: Add citation now
  121. Sciance F.; Nelson B.; Yassine M.; Patti A.; Rao L. Developing the AC17 Efficiency Test for Mobile Air Conditioners; SAE International: Warrendale, PA, USA, 2013.
    Paper not yet in RePEc: Add citation now
  122. Shahiduzzaman M.; Layton A. Decomposition analysis for assessing the United States 2025 emissions target: How big is the challenge?. Renew. Sustain. Energy Rev. 2017, 67, 372-383. An Overview of Automotive Vehicle and Component Regulations in China.

  123. Shcheklein S.E.; Dubinin A.M. Analysis of nitrogen oxide emissions from modern vehicles using hydrogen or other natural and synthetic fuels in combustion chamber. Int. J. Hydrogen Energy 2020, 45, 1151-1157. Synthetic Fuels—The Next Revolution?.
    Paper not yet in RePEc: Add citation now
  124. Shen K.; Chang I.; Chen H.; Zhang Z.; Wang B.; Wang Y. Experimental study on the effects of exhaust heat recovery system (EHRS) on vehicle fuel economy and emissions under cold start new European driving cycle (NEDC). Energy Convers. Manag. 2019, 197, 111893.
    Paper not yet in RePEc: Add citation now
  125. Shendge S.; Tilekar P.; Dahiya S.; Kapoor S. Reduction of MAC Power Requirement in a Small Car; SAE International: Warrendale, PA, USA, 2010.
    Paper not yet in RePEc: Add citation now
  126. Sileghem L.; Bosteels D.; May J.; Favre C.; Verhelst S. Analysis of vehicle emission measurements on the new WLTC, the NEDC and the CADC. Transp. Res. Part D Transp. Environ. 2014, 32, 70-85.
    Paper not yet in RePEc: Add citation now
  127. Smolarz A. Diagnostyka Procesów Spalania Paliw Gazowych, Pyłu Węglowego Oraz Mieszaniny Pyłu Węglowego i Biomasy z Wykorzystaniem Metod Optycznych; Politechnika Lubelska: Lublin, Poland, 2013; pp. 17-40.
    Paper not yet in RePEc: Add citation now
  128. Speight J.G. The Refinery of the Future; Gulf Professional Publishing: Oxford, UK, 2020; pp. 391-426.
    Paper not yet in RePEc: Add citation now
  129. Speight J.G.; El-Gendy N.S. Refinery Products and By-Products. Introduction to Petroleum Biotechnology; Speight J.G.; El-Gendy N.S. Gulf Professional Publishing: Oxford, UK, 2010; pp. 41-68.
    Paper not yet in RePEc: Add citation now
  130. Suarez-Bertoa R.; Pechout M.; Vojtíšek M.; Astorga C. Regulated and Non-Regulated Emissions from Euro 6 Diesel, Gasoline and CNG Vehicles under Real-World Driving Conditions. Atmosphere 2020, 11.
    Paper not yet in RePEc: Add citation now
  131. Suarez-Bertoa R.; Zardini A.A.; Lilova V.; Meyer D.; Nakatani S.; Hibel F.; Ewers J.; Clairotte M.; Hill L.; Astorga C. Intercomparison of real-time tailpipe ammonia measurements from vehicles tested over the new world-harmonized light-duty vehicle test cycle (WLTC). Environ. Sci. Pollut. Res. 2015, 22, 7450-7460. OPENMODELICA.
    Paper not yet in RePEc: Add citation now
  132. Sweelssen J.; Blokland H.; Rajamäki T.; Boersma A. Capacitive and Infrared Gas Sensors for the Assessment of the Methane Number of LNG Fuels. Sensors 2020, 20.
    Paper not yet in RePEc: Add citation now
  133. Synthetic Fuels Ready for Serial Use in Passenger Cars by 2030—Porsche CEO.
    Paper not yet in RePEc: Add citation now
  134. The 2020 EPA Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology since 1975. Matlab Gearshift Calculation Tool for UN GTR 15. Gearshift Calculation Tool. EPA US06 or Supplemental Federal Test Procedure (SFTP). Staff Report. Public Hearing to Consider Adoption of New Certification Tests and Standards to Control Exhaust Emissions from Aggressive Driving and Air-Conditioner Usage for Passenger Cars, Light-Duty Trucks, and Medium-Duty Vehicles under 8501 Pounds Gross Vehicle Weight Rating.
    Paper not yet in RePEc: Add citation now
  135. Tian Y.; You X.; Huang X. SDAE-BP Based Octane Number Soft Sensor Using Near-infrared Spectroscopy in Gasoline Blending Process. Symmetry 2018, 10.
    Paper not yet in RePEc: Add citation now
  136. Tibaquirá J.E.; Huertas J.I.; Ospina S.; Quirama L.F.; Niño J.E. Wpływ korzystania z etanolu i benzyny mieszanki na mechaniczne, energii i środowiska pojazdów używanych. Energies 2018, 11.
    Paper not yet in RePEc: Add citation now
  137. Triantafyllopoulos G.; Dimaratos A.; Ntziachristos L.; Bernard Y.; Dornoff J.; Samaras Z. A study on the CO2 and NOx emissions performance of Euro 6 diesel vehicles under various chassis dynamometer and on-road conditions including latest regulatory provisions. Sci. Total Environ. 2019, 666, 337-346.
    Paper not yet in RePEc: Add citation now
  138. Trost T.; Sterner M.; Bruckner T. Impact of electric vehicles and synthetic gaseous fuels on final energy consumption and carbon dioxide emissions in Germany based on long-term vehicle fleet modeling. Energy 2017, 141, 1215-1225.

  139. Tsiakmakis S.; Fontaras G.; Anagnostopoulos K.; Ciuffo B.; Pavlovic J.; Marotta A. A simulation based approach for quantifying CO2 emissions of light duty vehicle fleets. A case study on WLTP introduction. Transp. Res. Procedia 2017, 25, 3898-3908.
    Paper not yet in RePEc: Add citation now
  140. Tucki K.; Mruk R.; Orynycz O.; Gola A. The Effects of Pressure and Temperature on the Process of Auto-Ignition and Combustion of Rape Oil and Its Mixtures. Sustainability 2019, 11.

  141. Tucki K.; Mruk R.; Orynycz O.; Wasiak A.; Świć A. Thermodynamic Fundamentals for Fuel Production Management. Sustainability 2019, 11.

  142. Tucki K.; Orynycz O.; Swić A.; Mitoraj-Wojtanek M. The Development of Electromobility in Poland and EU States as a Tool for Management of CO2 Emissions. Energies 2019, 12.

  143. Tucki K.; Orynycz O.; Wasiak A.; Świć A.; Mruk R.; Botwińska K. Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production. Energies 2020, 13.

  144. Tutuianu M.; Bonnel P.; Ciuffo B.; Haniu T.; Ichikawa N.; Marotta A.; Pavlovic J.; Steven H. Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transp. Res. Part D Transp. Environ. 2015, 40, 61-75.
    Paper not yet in RePEc: Add citation now
  145. Varella R.A.; Faria M.V.; Mendoza-Villafuerte P.; Baptista P.C.; Sousa L.; Duarte G.O. Assessing the influence of boundary conditions, driving behavior and data analysis methods on real driving CO2 and NOx emissions. Sci. Total Environ. 2019, 658, 879-894.
    Paper not yet in RePEc: Add citation now
  146. Wang S.; Li Y.; Fu J.; Liu J.; Dong H. Numerical research on the performance, combustion and energy flow characteristics of gasoline-powered vehicle under WLTC. Fuel 2021, 285, 119135.
    Paper not yet in RePEc: Add citation now
  147. Wang Y.; Ge Y.; Wang J.; Wang X.; Yin H.; Hao L.; Tan J. Impact of altitude on the real driving emission (RDE) results calculated in accordance to moving averaging window (MAW) method. Fuel 2020, 277, 117929.
    Paper not yet in RePEc: Add citation now
  148. Wang Y.; Hao C.; Ge Y.; Hao L.; Tan J.; Wang X.; Zhang P.; Wang Y.; Tian W.; Lin Z. Fuel consumption and emission performance from light-duty conventional/hybrid-electric vehicles over different cycles and real driving tests. Fuel 2020, 278, 118340.
    Paper not yet in RePEc: Add citation now
  149. Wasiak A. Modeling Energetic Efficiency of Biofuels Production. Green Energy and Technology; Springer Nature Switzerland: Cham, Switzerland, 2018; pp. 29-47, ISBN 978-3-319-98430-8.
    Paper not yet in RePEc: Add citation now
  150. Wei L.; Li H.; Zhang H.; Sun S. The Analysis of CO2 Emissions and Reduction Potential in China’s Transport Sector. Mathematical Problems in Engineering. 2016. Zheng Y.; Li S.; Xu S. Transport Oil Product Consumption and GHG Emission Reduction Potential in China: An Electric Vehicle-Based Scenario Analysis. Sustainable Transport in China.
    Paper not yet in RePEc: Add citation now
  151. Wihersaari H.; Pirjola L.; Karjalainen P.; Saukko E.; Kuuluvainen H.; Kulmala K.; Keskinen J.; Rönkkö T. Particulate emissions of a modern diesel passenger car under laboratory and real-world transient driving conditions. Environ. Pollut. 2020, 265, 114948.
    Paper not yet in RePEc: Add citation now
  152. Xing J.; Shao L.; Zhang W.; Peng J.; Wang W.; Hou C.; Shuai S.; Hu M.; Zhang D. Morphology and composition of particles emitted from a port fuel injection gasoline vehicle under real-world driving test cycles. J. Environ. Sci. 2019, 76, 339-348.
    Paper not yet in RePEc: Add citation now
  153. Yan X.; Crookes R.J. Energy demand and emissions from road transportation vehicles in China. Prog. Energy Combust. Sci. 2010, 36, 651-676.
    Paper not yet in RePEc: Add citation now
  154. Yang Z.; Ge Y.; Thomas D.; Wang X.; Su S.; Li H.; He H. Real driving particle number (PN) emissions from China-6 compliant PFI and GDI hybrid electrical vehicles. Atmos. Environ. 2019, 199, 70-79.
    Paper not yet in RePEc: Add citation now
  155. Zacharof N.; Özener O.; Özkan M.; Kilicaslan A.; Fontaras G. Simulating City-Bus On-Road Operation with VECTO. Fronties in Mechanical Engineering 2019. All about CO2 Emissions Regulations & VECTO. Rodríguez F.; Delgado O. The Future of VECTO: CO2 Certification of Advanced Heavy-Duty Vehicles in the European Union.
    Paper not yet in RePEc: Add citation now
  156. Zachiotis A.T.; Giakoumis E.G. Non-regulatory parameters effect on consumption and emissions from a diesel-powered van over the WLTC. Transp. Res. Part D Transp. Environ. 2019, 74, 104-123.
    Paper not yet in RePEc: Add citation now
  157. Zhang C.; Miller E.; Kotz A.; Kelly K.; Thornton M.; Geller M.; Brezny R. Characterization of commercial vehicles’ start-up operations from in-use data. Transp. Res. Part D Transp. Environ. 2021, 91, 102694.
    Paper not yet in RePEc: Add citation now
  158. Zhang Q.; Qian X.; Fu L.; Yuan M.; Chen Y. Shock wave evolution and overpressure hazards in partly premixed gas deflagration of DME/LPG blended multi-clean fuel. Fuel 2020, 268, 117368.
    Paper not yet in RePEc: Add citation now
  159. Zhu G.; Liu F.J.; Xu Z.; Guo Q.; Zhao H. Experimental study on combustion and emission characteristics of turbocharged gasoline direct injection (GDI) engine under cold start new European driving cycle (NEDC). Fuel 2015, 215, 272-284.
    Paper not yet in RePEc: Add citation now
  160. Żółty M.; Stępień Z. Ethanol fuels for spark ignition engines. Nafta-Gaz 2016, 72, 761-769. More about: Methanol. Methanol as an Alternative Transportation Fuel in the US: Options for Sustainable and/or Energy-Secure Transportation.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. A review of the knowledge structure and trends in research on the interlinkages between the rule of law and environmental sustainability. (2025). Sharifi, Ayyoob ; Atta, Nausheen.
    In: Sustainable Development.
    RePEc:wly:sustdv:v:33:y:2025:i:2:p:2216-2249.

    Full description at Econpapers || Download paper

  2. A systematic literature review of the relationship between the rule of law and environmental sustainability. (2024). Sharifi, Ayyoob ; Atta, Nausheen.
    In: Sustainable Development.
    RePEc:wly:sustdv:v:32:y:2024:i:6:p:7051-7068.

    Full description at Econpapers || Download paper

  3. Adaptation to Climate Change in 172 Countries: the Importance of Intelligence. (2024). Messono, Omang Ombolo ; Mermoz, Nsoga Nsoga.
    In: Journal of the Knowledge Economy.
    RePEc:spr:jknowl:v:15:y:2024:i:1:d:10.1007_s13132-023-01345-2.

    Full description at Econpapers || Download paper

  4. Impact of climate risk on financial stability: Cross-country evidence. (2024). Liu, Zhonglu ; Men, Wenjiao ; He, Shuguang ; Sun, Haibo.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:92:y:2024:i:c:s1057521924000280.

    Full description at Econpapers || Download paper

  5. Pushing forward the deployment of renewable energy: Do cross-national spillovers of policy instruments matter?. (2024). Wang, Xiaoqing ; Jin, Wenxin ; Umar, Muhammad ; Qin, Meng ; Su, Chi-Wei.
    In: Energy.
    RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014166.

    Full description at Econpapers || Download paper

  6. Does democracy protect the environment? The role of the Arctic Council. (2023). Popova, Olga ; Mavisakalyan, Astghik ; Otrachshenko, Vladimir.
    In: Climatic Change.
    RePEc:spr:climat:v:176:y:2023:i:5:d:10.1007_s10584-023-03511-6.

    Full description at Econpapers || Download paper

  7. Sustainable Low-Carbon Production: From Strategy to Reality. (2023). Popescu, Sorin ; Tofan, Silvia ; Iu, Mihail ; Dragomir, Mihai ; Szabo, Denisa.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:11:p:8516-:d:1154584.

    Full description at Econpapers || Download paper

  8. Are resource-rich countries less responsive to global warming? Oil wealth and climate change policy. (2023). Woldemichael, Andinet ; Tadadjeu, Sosson ; Njangang, Henri.
    In: Energy Policy.
    RePEc:eee:enepol:v:182:y:2023:i:c:s0301421523003592.

    Full description at Econpapers || Download paper

  9. The Impact of Investment, Economic Growth, Renewable Energy, Urbanisation, and Tourism on Carbon Emissions: Global Evidence. (2023). Kayani, Umar Nawaz ; Haider, Syed Arslan ; Sadiq, Misbah ; Nasim, Ismat ; Aysan, Ahmet Faruk.
    In: International Journal of Energy Economics and Policy.
    RePEc:eco:journ2:2023-01-44.

    Full description at Econpapers || Download paper

  10. Did state antiquity matter for the size of the informal economy?. (2022). Mveng, Seabrook Arthur ; Henri, Atangana Ondoa.
    In: Economics of Governance.
    RePEc:spr:ecogov:v:23:y:2022:i:2:d:10.1007_s10101-022-00274-1.

    Full description at Econpapers || Download paper

  11. Green complexity and CO2 emission: Does institutional quality matter?. (2022). Yang, Mian ; Wang, En-Ze.
    In: Energy Economics.
    RePEc:eee:eneeco:v:110:y:2022:i:c:s014098832200192x.

    Full description at Econpapers || Download paper

  12. The dimension of green economy: Culture viewpoint. (2022). Lee, Chien-Chiang ; Ho, Shan-Ju ; Wang, Chih-Wei.
    In: Economic Analysis and Policy.
    RePEc:eee:ecanpo:v:74:y:2022:i:c:p:122-138.

    Full description at Econpapers || Download paper

  13. Life cycle CO₂ footprint reduction comparison of hybrid and electric buses for bus transit networks. (2022). Tripathi, Shashwat ; Sari, Rafael Lago ; Monsalve-Serrano, Javier ; Garcia, Antonio.
    In: Applied Energy.
    RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016007.

    Full description at Econpapers || Download paper

  14. Historical Prevalence of Infectious Diseases and Entrepreneurship: the Role of Institutions in 125 Countries. (2021). Asongu, Simplice ; Messono, Omang.
    In: MPRA Paper.
    RePEc:pra:mprapa:111842.

    Full description at Econpapers || Download paper

  15. A Computer Tool for Modelling CO 2 Emissions in Driving Cycles for Spark Ignition Engines Powered by Biofuels. (2021). Tucki, Karol.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:5:p:1400-:d:510044.

    Full description at Econpapers || Download paper

  16. Historical Prevalence of Infectious Diseases and Entrepreneurship: the Role of Institutions in 125 Countries. (2021). Asongu, Simplice ; Messono, Omang O.
    In: Working Papers.
    RePEc:exs:wpaper:21/096.

    Full description at Econpapers || Download paper

  17. Do genetically fragmented societies respond less to global warming? Diversity and climate change policies. (2021). Vu, Trung.
    In: Energy Economics.
    RePEc:eee:eneeco:v:104:y:2021:i:c:s0140988321005090.

    Full description at Econpapers || Download paper

  18. Religiosity and climate change policies. (2021). Fredriksson, Per ; Ang, James ; Sharma, Swati.
    In: Energy Economics.
    RePEc:eee:eneeco:v:101:y:2021:i:c:s0140988321003108.

    Full description at Econpapers || Download paper

  19. Historical Prevalence of Infectious Diseases and Entrepreneurship: the Role of Institutions in 125 Countries. (2021). Asongu, Simplice ; Messono, Omang O.
    In: Working Papers of the African Governance and Development Institute..
    RePEc:agd:wpaper:21/096.

    Full description at Econpapers || Download paper

  20. Historical Prevalence of Infectious Diseases and Entrepreneurship: the Role of Institutions in 125 Countries. (2021). Asongu, Simplice ; Messono, Omang O.
    In: Research Africa Network Working Papers.
    RePEc:abh:wpaper:21/096.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 20:55:55 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.