create a website

A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks. (2021). Introna, Vito ; Dadi, Daniele ; Santolamazza, Annalisa.
In: Energies.
RePEc:gam:jeners:v:14:y:2021:i:7:p:1845-:d:524712.

Full description at Econpapers || Download paper

Cited: 8

Citations received by this document

Cites: 84

References cited by this document

Cocites: 20

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research. (2023). Fan, Yisa ; Li, Songyin ; Shangguan, Linjian ; Peng, Han ; Zhang, Hai.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:10:p:8333-:d:1151548.

    Full description at Econpapers || Download paper

  2. Moving towards Preventive Maintenance in Wind Turbine Structural Control and Health Monitoring. (2023). Leon-Medina, Jersson X ; Pozo, Francesc.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:6:p:2730-:d:1097697.

    Full description at Econpapers || Download paper

  3. An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm. (2023). Liu, Yongqian ; Ren, Xiaoying ; Yan, Junshuai.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:10:p:4123-:d:1148241.

    Full description at Econpapers || Download paper

  4. A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters. (2022). Zhu, Weidong ; Li, Gang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:23:p:9236-:d:994803.

    Full description at Econpapers || Download paper

  5. A Novel Condition Monitoring Method of Wind Turbines Based on GMDH Neural Network. (2022). Ying, You ; Jiang, Yongjian ; Tian, Xiange ; Qian, Peng ; Wang, Hua ; Zhang, Dahai ; Liu, Cong ; Liang, Chen.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6717-:d:914622.

    Full description at Econpapers || Download paper

  6. Progress and Outlook in Wind Energy Research. (2022). Bangga, Galih.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6527-:d:908850.

    Full description at Econpapers || Download paper

  7. Design of a Database of Case Studies and Technologies to Increase the Diffusion of Low-Temperature Waste Heat Recovery in the Industrial Sector. (2021). Introna, Vito ; Lapenna, Pasquale Eduardo ; Benedetti, Miriam ; Giordano, Lorena ; Dadi, Daniele ; Santolamazza, Annalisa.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:9:p:5223-:d:550070.

    Full description at Econpapers || Download paper

  8. Prediction of Methanol Production in a Carbon Dioxide Hydrogenation Plant Using Neural Networks. (2021). Lo-Iacono, Vanesa ; Chuquin-Vasco, Nelson ; Parra, Francis.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:13:p:3965-:d:587151.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. AlShorman O.; Masadeh M.; Alkahtani F.; AlShorman A. A Review of Condition Monitoring and Fault Diagnosis and Detection of Rotating Machinery Based on Image Aspects. Proceedings of the 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), Sakheer, Bahrain, 26–27 October 2020, ; pp. 1-5.
    Paper not yet in RePEc: Add citation now
  2. Artigao E.; Honrubia-Escribano A.; Gomez-Lazaro E. Current Signature Analysis to Monitor DFIG Wind Turbine Generators: A Case Study. Renew. Energy 2018, 116, 5-14.
    Paper not yet in RePEc: Add citation now
  3. Bakdi A.; Kouadri A.; Mekhilef S. A Data-Driven Algorithm for Online Detection of Component and System Faults in Modern Wind Turbines at Different Operating Zones. Renew. Sustain. Energy Rev. 2019, 103, 546-555.

  4. Bangalore P.; Letzgus S.; Karlsson D.; Patriksson M. An Artificial Neural Network-Based Condition Monitoring Method for Wind Turbines, with Application to the Monitoring of the Gearbox: ANN-Based CMS for Wind Turbine Gearbox Monitoring. Wind Energ. 2017, 20, 1421-1438.
    Paper not yet in RePEc: Add citation now
  5. Bangalore P.; Patriksson M. Analysis of SCADA Data for Early Fault Detection, with Application to the Maintenance Management of Wind Turbines. Renew. Energy 2018, 115, 521-532.

  6. Benedetti M.; Bonfà F.; Introna V.; Santolamazza A.; Ubertini S. Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications. Energies 2019, 12.

  7. Benedetti M.; Cesarotti V.; Introna V.; Serranti J. Energy Consumption Control Automation Using Artificial Neural Networks and Adaptive Algorithms: Proposal of a New Methodology and Case Study. Appl. Energy 2016, 165, 60-71.

  8. Bi R.; Zhou C.; Hepburn D.M. Detection and Classification of Faults in Pitch-Regulated Wind Turbine Generators Using Normal Behaviour Models Based on Performance Curves. Renew. Energy 2017, 105, 674-688.

  9. Blanco M.I. The Economics of Wind Energy. Renew. Sustain. Energy Rev. 2009, 13, 1372-1382.

  10. Carvalho T.P.; Soares F.A.A.M.N.; Vita R.; Francisco R.D.P.; Basto J.P.; Alcalá S.G.S. A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance. Comput. Ind. Eng. 2019, 137, 106024.
    Paper not yet in RePEc: Add citation now
  11. Caso E.; Fernandez-del-Rincon A.; Garcia P.; Iglesias M.; Viadero F. Monitoring of Misalignment in Low Speed Geared Shafts with Acoustic Emission Sensors. Appl. Acoust. 2020, 159, 107092.
    Paper not yet in RePEc: Add citation now
  12. Chang Y.; Chen J.; Qu C.; Pan T. Intelligent Fault Diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels. Renew. Energy 2020, 153, 205-213.

  13. Chen P.; Li Y.; Wang K.; Zuo M.J.; Heyns P.S.; Baggeröhr S. A Threshold Self-Setting Condition Monitoring Scheme for Wind Turbine Generator Bearings Based on Deep Convolutional Generative Adversarial Networks. Measurement 2021, 167, 108234.
    Paper not yet in RePEc: Add citation now
  14. Chen X.; Xu W.; Liu Y.; Islam M.R. Bearing Corrosion Failure Diagnosis of Doubly Fed Induction Generator in Wind Turbines Based on Stator Current Analysis. IEEE Trans. Ind. Electron. 2020, 67, 3419-3430.
    Paper not yet in RePEc: Add citation now
  15. Dao P.B.; Staszewski W.J.; Barszcz T.; Uhl T. Condition Monitoring and Fault Detection in Wind Turbines Based on Cointegration Analysis of SCADA Data. Renew. Energy 2018, 116, 107-122.
    Paper not yet in RePEc: Add citation now
  16. Dong X.; Gao D.; Li J.; Jincao Z.; Zheng K. Blades Icing Identification Model of Wind Turbines Based on SCADA Data. Renew. Energy 2020, 162, 575-586.

  17. El Bouchikhi E.H.; Choqueuse V.; Benbouzid M. Induction Machine Faults Detection Using Stator Current Parametric Spectral Estimation. Mech. Syst. Signal. Process. 2015, 52–53, 447-464.
    Paper not yet in RePEc: Add citation now
  18. Faiz J.; Moosavi S.M.M. Eccentricity Fault Detection—From Induction Machines to DFIG—A Review. Renew. Sustain. Energy Rev. 2016, 55, 169-179.

  19. Feng Y.; Qiu Y.; Crabtree C.J.; Long H.; Tavner P.J. Monitoring Wind Turbine Gearboxes: Monitoring Wind Turbine Gearboxes. Wind Energ. 2013, 16, 728-740.
    Paper not yet in RePEc: Add citation now
  20. Fu J.; Chu J.; Guo P.; Chen Z. Condition Monitoring of Wind Turbine Gearbox Bearing Based on Deep Learning Model. IEEE Access 2019, 7, 57078-57087.
    Paper not yet in RePEc: Add citation now
  21. Glowacz A. Fault Diagnosis of Electric Impact Drills Using Thermal Imaging. Measurement 2021, 171, 108815.
    Paper not yet in RePEc: Add citation now
  22. Gómez Muñoz C.; García Márquez F. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines. Energies 2016, 9.
    Paper not yet in RePEc: Add citation now
  23. Gong Y.; Fei J.-L.; Tang J.; Yang Z.-G.; Han Y.-M.; Li X. Failure Analysis on Abnormal Wear of Roller Bearings in Gearbox for Wind Turbine. Eng. Fail. Anal. 2017, 82, 26-38.
    Paper not yet in RePEc: Add citation now
  24. González-González A.; Cortadi A.J.; Galar D.; Ciani L. Condition Monitoring of Wind Turbine Pitch Controller: A Maintenance Approach. Measurement 2018, 123, 80-93.
    Paper not yet in RePEc: Add citation now
  25. Gu X.; Chen C. Adaptive Parameter-Matching Method of SR Algorithm for Fault Diagnosis of Wind Turbine Bearing. J. Mech. Sci. Technol. 2019, 33, 1007-1018.
    Paper not yet in RePEc: Add citation now
  26. Hagan M.T.; Menhaj M.B. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural Netw. 1994, 5, 989-993.
    Paper not yet in RePEc: Add citation now
  27. Hahn B.; Durstewitz M.; Rohrig K. Reliability of Wind Turbines. Wind Energy; Springer: Berlin/Heidelberg, Germany, 2007; pp. 329-333.
    Paper not yet in RePEc: Add citation now
  28. Hamilton A.; Quail F. Detailed State of the Art Review for the Different Online/Inline Oil Analysis Techniques in Context of Wind Turbine Gearboxes. J. Tribol. 2011, 133, 044001.
    Paper not yet in RePEc: Add citation now
  29. Haykin S.S.; Haykin S.S. Neural Networks and Learning Machines; Prentice Hall: New York, NY, USA, 2009; ISBN 978-0-13-147139-9.
    Paper not yet in RePEc: Add citation now
  30. Helbing G. Deep Learning for Fault Detection in Wind Turbines. Renew. Sustain. Energy Rev. 2018, 98, 189-198.

  31. Jiang G.; He H.; Yan J.; Xie P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox. IEEE Trans. Ind. Electron. 2019, 66, 3196-3207.
    Paper not yet in RePEc: Add citation now
  32. Karlsson D. Wind Turbine Performance Monitoring Using Artificial Neural Networks. Master’s Thesis; Chalmers University of Technology: Göteborg, Sweden, 2015.
    Paper not yet in RePEc: Add citation now
  33. Kusiak A.; Verma A. Analyzing Bearing Faults in Wind Turbines: A Data-Mining Approach. Renew. Energy 2012, 48, 110-116.

  34. Kusiak A.; Verma A. Monitoring Wind Farms With Performance Curves. IEEE Trans. Sustain. Energy 2013, 4, 192-199.
    Paper not yet in RePEc: Add citation now
  35. Kusiak A.; Zheng H.; Song Z. Models for Monitoring Wind Farm Power. Renew. Energy 2009, 34, 583-590.

  36. Leahy K.; Hu R.L.; Konstantakopoulos I.C.; Spanos C.J.; Agogino A.M. Diagnosing Wind Turbine Faults Using Machine Learning Techniques Applied to Operational Data. Proceedings of the 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa, ON, Canada, 20–22 June 2016, ; pp. 1-8.
    Paper not yet in RePEc: Add citation now
  37. Lei J.; Liu C.; Jiang D. Fault Diagnosis of Wind Turbine Based on Long Short-Term Memory Networks. Renew. Energy 2019, 133, 422-432.

  38. Li J.; Li M.; Zhang J.; Jiang G. Frequency-Shift Multiscale Noise Tuning Stochastic Resonance Method for Fault Diagnosis of Generator Bearing in Wind Turbine. Measurement 2019, 133, 421-432.
    Paper not yet in RePEc: Add citation now
  39. Li J.; Zhang X.; Zhou X.; Lu L. Reliability Assessment of Wind Turbine Bearing Based on the Degradation-Hidden-Markov Model. Renew. Energy 2019, 132, 1076-1087.

  40. Ling Y.; Cai X. Rotor Current Dynamics of Doubly Fed Induction Generators during Grid Voltage Dip and Rise. Int. J. Electr. Power Energy Syst. 2013, 44, 17-24.
    Paper not yet in RePEc: Add citation now
  41. Liu W.Y. The Vibration Analysis of Wind Turbine Blade–Cabin–Tower Coupling System. Eng. Struct. 2013, 56, 954-957.
    Paper not yet in RePEc: Add citation now
  42. Liu Z.; Xiao C.; Zhang T.; Zhang X. Research on Fault Detection for Three Types of Wind Turbine Subsystems Using Machine Learning. Energies 2020, 13.

  43. Liu Z.; Zhang L. A Review of Failure Modes, Condition Monitoring and Fault Diagnosis Methods for Large-Scale Wind Turbine Bearings. Measurement 2020, 149, 107002.
    Paper not yet in RePEc: Add citation now
  44. Liu Z.; Zhang L.; Carrasco J. Vibration Analysis for Large-Scale Wind Turbine Blade Bearing Fault Detection with an Empirical Wavelet Thresholding Method. Renew. Energy 2020, 146, 99-110.

  45. Lu B.; Li Y.; Wu X.; Yang Z. A Review of Recent Advances in Wind Turbine Condition Monitoring and Fault Diagnosis. Proceedings of the 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA, 24–26 June 2009, ; pp. 1-7.
    Paper not yet in RePEc: Add citation now
  46. Manobel B.; Sehnke F.; Lazzús J.A.; Salfate I.; Felder M.; Montecinos S. Wind Turbine Power Curve Modeling Based on Gaussian Processes and Artificial Neural Networks. Renew. Energy 2018, 125, 1015-1020.

  47. Marčiukaitis M.; Žutautaitė I.; Martišauskas L.; Jokšas B.; Gecevičius G.; Sfetsos A. Non-Linear Regression Model for Wind Turbine Power Curve. Renew. Energy 2017, 113, 732-741.
    Paper not yet in RePEc: Add citation now
  48. Merabet H.; Bahi T.; Halem N. Condition Monitoring and Fault Detection in Wind Turbine Based on DFIG by the Fuzzy Logic. Energy Procedia 2015, 74, 518-528.
    Paper not yet in RePEc: Add citation now
  49. Nazir M.; Khan A.Q.; Mustafa G.; Abid M. Robust Fault Detection for Wind Turbines Using Reference Model-Based Approach. J. King Saud Univ.Eng. Sci. 2017, 29, 244-252.
    Paper not yet in RePEc: Add citation now
  50. Nithya M.; Nagarajan S.; Navaseelan P. Fault Detection of Wind Turbine System Using Neural Networks. Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 7–8 April 2017, ; pp. 103-108.
    Paper not yet in RePEc: Add citation now
  51. Ouyang T.; Kusiak A.; He Y. Modeling Wind-Turbine Power Curve: A Data Partitioning and Mining Approach. Renew. Energy 2017, 102, 1-8.

  52. Pozo F.; Vidal Y. Wind Turbine Fault Detection through Principal Component Analysis and Statistical Hypothesis Testing. AST 2016, 101, 45-54.
    Paper not yet in RePEc: Add citation now
  53. Pujol-Vazquez G.; Acho L.; Gibergans-Báguena J. Fault Detection Algorithm for Wind Turbines’ Pitch Actuator Systems. Energies 2020, 13.

  54. Qian P.; Zhang D.; Tian X.; Si Y.; Li L. A Novel Wind Turbine Condition Monitoring Method Based on Cloud Computing. Renew. Energy 2019, 135, 390-398.

  55. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. Choice Rev. Online 2012, 49, 49-6309.
    Paper not yet in RePEc: Add citation now
  56. Rizk P.; Al Saleh N.; Younes R.; Ilinca A.; Khoder J. Hyperspectral Imaging Applied for the Detection of Wind Turbine Blade Damage and Icing. Remote Sens. Appl. Soc. Environ. 2020, 18, 100291.
    Paper not yet in RePEc: Add citation now
  57. Saari J.; Strömbergsson D.; Lundberg J.; Thomson A. Detection and Identification of Windmill Bearing Faults Using a One-Class Support Vector Machine (SVM). Measurement 2019, 137, 287-301.
    Paper not yet in RePEc: Add citation now
  58. Salameh J.P.; Cauet S.; Etien E.; Sakout A.; Rambault L. Gearbox Condition Monitoring in Wind Turbines: A Review. Mech. Syst. Signal. Process. 2018, 111, 251-264.
    Paper not yet in RePEc: Add citation now
  59. Schlechtingen M.; Ferreira Santos I. Comparative Analysis of Neural Network and Regression Based Condition Monitoring Approaches for Wind Turbine Fault Detection. Mech. Syst. Signal. Process. 2011, 25, 1849-1875.
    Paper not yet in RePEc: Add citation now
  60. Schlechtingen M.; Santos I.F. Wind Turbine Condition Monitoring Based on SCADA Data Using Normal Behavior Models. Part 2: Application Examples. Appl. Soft Comput. 2014, 14, 447-460.
    Paper not yet in RePEc: Add citation now
  61. Schlechtingen M.; Santos I.F.; Achiche S. Using Data-Mining Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study. IEEE Trans. Sustain. Energy 2013, 4, 671-679.
    Paper not yet in RePEc: Add citation now
  62. Simani S.; Castaldi P.; Tilli A. Data—Driven Approach for Wind Turbine Actuator and Sensor Fault Detection and Isolation. IFAC Proc. Vol. 2011, 44, 8301-8306.
    Paper not yet in RePEc: Add citation now
  63. Stetco A.; Dinmohammadi F.; Zhao X.; Robu V.; Flynn D.; Barnes M.; Keane J.; Nenadic G. Machine Learning Methods for Wind Turbine Condition Monitoring: A Review. Renew. Energy 2019, 133, 620-635.

  64. Stetco A.; Ramirez J.M.; Mohammed A.; Djurović S.; Nenadic G.; Keane J. An End-to-End, Real-Time Solution for Condition Monitoring of Wind Turbine Generators. Energies 2020, 13.

  65. Sun P.; Li J.; Wang C.; Lei X. A Generalized Model for Wind Turbine Anomaly Identification Based on SCADA Data. Appl. Energy 2016, 168, 550-567.

  66. Tautz-Weinert J.; Watson S.J. Using SCADA Data for Wind Turbine Condition Monitoring—A Review. IET Renew. Power Gener. 2017, 11, 382-394.
    Paper not yet in RePEc: Add citation now
  67. Vidal Y.; Pozo F.; Tutivén C. Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data. Energies 2018, 11.

  68. Wang J.; Song Y.; Liu F.; Hou R. Analysis and Application of Forecasting Models in Wind Power Integration: A Review of Multi-Step-Ahead Wind Speed Forecasting Models. Renew. Sustain. Energy Rev. 2016, 60, 960-981.

  69. Wang L.; Zhang Z.; Long H.; Xu J.; Liu R. Wind Turbine Gearbox Failure Identification With Deep Neural Networks. IEEE Trans. Ind. Inf. 2017, 13, 1360-1368.
    Paper not yet in RePEc: Add citation now
  70. Wang Y.; Ma X.; Qian P. Wind Turbine Fault Detection and Identification Through PCA-Based Optimal Variable Selection. IEEE Trans. Sustain. Energy 2018, 9, 1627-1635.
    Paper not yet in RePEc: Add citation now
  71. Wang Z.; Liu C. Wind Turbine Condition Monitoring Based on a Novel Multivariate State Estimation Technique. Measurement 2021, 168, 108388.
    Paper not yet in RePEc: Add citation now
  72. Wen L.; Li X.; Gao L.; Zhang Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2018, 65, 5990-5998.
    Paper not yet in RePEc: Add citation now
  73. Wind Europe: Wind Energy in Europe in 2019—Trends and Statistics.
    Paper not yet in RePEc: Add citation now
  74. Yang H.-H.; Huang M.-L.; Lai C.-M.; Jin J.-R. An Approach Combining Data Mining and Control Charts-Based Model for Fault Detection in Wind Turbines. Renew. Energy 2018, 115, 808-816.

  75. Yang X.; Zhang Y.; Lv W.; Wang D. Image Recognition of Wind Turbine Blade Damage Based on a Deep Learning Model with Transfer Learning and an Ensemble Learning Classifier. Renew. Energy 2021, 163, 386-397.

  76. Yu D.; Chen Z.M.; Xiahou K.S.; Li M.S.; Ji T.Y.; Wu Q.H. A Radically Data-Driven Method for Fault Detection and Diagnosis in Wind Turbines. Int. J. Electr. Power Energy Syst. 2018, 99, 577-584.
    Paper not yet in RePEc: Add citation now
  77. Zaher A.; McArthur S.D.J.; Infield D.G.; Patel Y. Online Wind Turbine Fault Detection through Automated SCADA Data Analysis. Wind Energ. 2009, 12, 574-593.
    Paper not yet in RePEc: Add citation now
  78. Zhang L.; Lang Z.-Q. Wavelet Energy Transmissibility Function and Its Application to Wind Turbine Bearing Condition Monitoring. IEEE Trans. Sustain. Energy 2018, 9, 1833-1843.
    Paper not yet in RePEc: Add citation now
  79. Zhang S.; Lang Z.-Q. SCADA-Data-Based Wind Turbine Fault Detection: A Dynamic Model Sensor Method. Control. Eng. Pract. 2020, 102, 104546.
    Paper not yet in RePEc: Add citation now
  80. Zhang W.; Ma X. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines. Energies 2016, 9.

  81. Zhang Z.-Y.; Wang K.-S. Wind Turbine Fault Detection Based on SCADA Data Analysis Using ANN. Adv. Manuf. 2014, 2, 70-78.
    Paper not yet in RePEc: Add citation now
  82. Zhang Z.; Verma A.; Kusiak A. Fault Analysis and Condition Monitoring of the Wind Turbine Gearbox. IEEE Trans. Energy Convers. 2012, 27, 526-535.
    Paper not yet in RePEc: Add citation now
  83. Zhao H. Anomaly Detection and Fault Analysis of Wind Turbine Components Based on Deep Learning Network. Renew. Energy 2018, 127, 825-834.

  84. Zhao Y.; Li D.; Dong A.; Kang D.; Lv Q.; Shang L. Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data. Energies 2017, 10.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model. (2025). Vatn, Jrn ; Zhang, Wanwan ; Rasheed, Adil.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924022128.

    Full description at Econpapers || Download paper

  2. Optimal Preventive Maintenance Scheduling for Wind Turbines under Condition Monitoring. (2024). Sagitov, Serik ; Fogelstrom, Sara ; Yu, Quanjiang ; Bangalore, Pramod.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:2:p:280-:d:1313782.

    Full description at Econpapers || Download paper

  3. Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review. (2023). Farrar, Nathan Oaks ; Ali, Mohd Hasan ; Dasgupta, Dipankar.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:3:p:1530-:d:1057155.

    Full description at Econpapers || Download paper

  4. A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters. (2022). Zhu, Weidong ; Li, Gang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:23:p:9236-:d:994803.

    Full description at Econpapers || Download paper

  5. A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines. (2022). Wu, Yueqi ; Ma, Xiandong.
    In: Renewable Energy.
    RePEc:eee:renene:v:181:y:2022:i:c:p:554-566.

    Full description at Econpapers || Download paper

  6. Real-time detection of wind power abnormal data based on semi-supervised learning Robust Random Cut Forest. (2022). Joo, Young Hoon ; Sun, Mingren ; Dong, MI ; Huang, Liansheng ; Yang, Jian ; Song, Dongran.
    In: Energy.
    RePEc:eee:energy:v:257:y:2022:i:c:s0360544222016644.

    Full description at Econpapers || Download paper

  7. A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks. (2021). Introna, Vito ; Dadi, Daniele ; Santolamazza, Annalisa.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:7:p:1845-:d:524712.

    Full description at Econpapers || Download paper

  8. Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data. (2021). Vidal, Yolanda ; Pozo, Francesc ; Velandia-Cardenas, Cristian.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:6:p:1728-:d:520909.

    Full description at Econpapers || Download paper

  9. Optimized Extreme Learning Machine-Based Main Bearing Temperature Monitoring Considering Ambient Conditions’ Effects. (2021). Hou, Zhengnan ; Lv, Xiaoxiao ; Zhuang, Shengxian.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:22:p:7529-:d:676763.

    Full description at Econpapers || Download paper

  10. A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine. (2021). Abdelmalek, Samir ; Bettayeb, Maamar ; Bakdi, Azzeddine ; Dali, Ali.
    In: Renewable Energy.
    RePEc:eee:renene:v:172:y:2021:i:c:p:1021-1034.

    Full description at Econpapers || Download paper

  11. Fault diagnosis of the 10MW Floating Offshore Wind Turbine Benchmark: A mixed model and signal-based approach. (2021). Liu, Yichao ; Jiang, Xiaoli ; Ferrari, Riccardo ; Wu, Ping ; van Wingerden, Jan-Willem.
    In: Renewable Energy.
    RePEc:eee:renene:v:164:y:2021:i:c:p:391-406.

    Full description at Econpapers || Download paper

  12. Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review. (2020). Martin-Martinez, Sergio ; Maldonado-Correa, Jorge ; Artigao, Estefania ; Gomez-Lazaro, Emilio.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:12:p:3132-:d:372597.

    Full description at Econpapers || Download paper

  13. Fault detection of wind turbines via multivariate process monitoring based on vine copulas. (2020). Fan, Zhenhua ; Jia, Weiyin ; Xu, Qifa ; Jiang, Cuixia.
    In: Renewable Energy.
    RePEc:eee:renene:v:161:y:2020:i:c:p:939-955.

    Full description at Econpapers || Download paper

  14. Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters. (2020). Abdelmalek, Samir ; Bettayeb, Maamar ; Bakdi, Azzeddine ; Dali, Ali.
    In: Energy.
    RePEc:eee:energy:v:213:y:2020:i:c:s036054422031923x.

    Full description at Econpapers || Download paper

  15. Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development. (2019). Zhao, Yue ; Dong, Xiaofeng ; Jiang, QI ; Cai, OU ; Lian, Jijian.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:2:p:494-:d:198826.

    Full description at Econpapers || Download paper

  16. On Fault Prediction for Wind Turbine Pitch System Using Radar Chart and Support Vector Machine Approach. (2019). Liu, Zuojun ; Zhang, Tieling ; Xiao, Cheng.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:14:p:2693-:d:248209.

    Full description at Econpapers || Download paper

  17. Analysis of the efficiency of wind turbine gearboxes using the temperature variable. (2019). Galego, P ; Gorbea, E ; Sequeira, C ; Pacheco, A.
    In: Renewable Energy.
    RePEc:eee:renene:v:135:y:2019:i:c:p:465-472.

    Full description at Econpapers || Download paper

  18. Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model. (2019). Zeng, Yuyun ; Liu, Jingquan ; Xie, Guangyao ; Yang, Chunzhen.
    In: Renewable Energy.
    RePEc:eee:renene:v:133:y:2019:i:c:p:433-441.

    Full description at Econpapers || Download paper

  19. Nonparametric Kullback-divergence-PCA for intelligent mismatch detection and power quality monitoring in grid-connected rooftop PV. (2019). Bounoua, Wahiba ; Mekhilef, Saad ; Halabi, Laith M ; Bakdi, Azzeddine.
    In: Energy.
    RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320614.

    Full description at Econpapers || Download paper

  20. An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring. (2018). Yang, Wenguang ; Jiang, Dongxiang ; Liu, Chao.
    In: Renewable Energy.
    RePEc:eee:renene:v:127:y:2018:i:c:p:230-241.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 07:01:24 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.