- AlShorman O.; Masadeh M.; Alkahtani F.; AlShorman A. A Review of Condition Monitoring and Fault Diagnosis and Detection of Rotating Machinery Based on Image Aspects. Proceedings of the 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), Sakheer, Bahrain, 26–27 October 2020, ; pp. 1-5.
Paper not yet in RePEc: Add citation now
- Artigao E.; Honrubia-Escribano A.; Gomez-Lazaro E. Current Signature Analysis to Monitor DFIG Wind Turbine Generators: A Case Study. Renew. Energy 2018, 116, 5-14.
Paper not yet in RePEc: Add citation now
Bakdi A.; Kouadri A.; Mekhilef S. A Data-Driven Algorithm for Online Detection of Component and System Faults in Modern Wind Turbines at Different Operating Zones. Renew. Sustain. Energy Rev. 2019, 103, 546-555.
- Bangalore P.; Letzgus S.; Karlsson D.; Patriksson M. An Artificial Neural Network-Based Condition Monitoring Method for Wind Turbines, with Application to the Monitoring of the Gearbox: ANN-Based CMS for Wind Turbine Gearbox Monitoring. Wind Energ. 2017, 20, 1421-1438.
Paper not yet in RePEc: Add citation now
Bangalore P.; Patriksson M. Analysis of SCADA Data for Early Fault Detection, with Application to the Maintenance Management of Wind Turbines. Renew. Energy 2018, 115, 521-532.
Benedetti M.; Bonfà F.; Introna V.; Santolamazza A.; Ubertini S. Real Time Energy Performance Control for Industrial Compressed Air Systems: Methodology and Applications. Energies 2019, 12.
Benedetti M.; Cesarotti V.; Introna V.; Serranti J. Energy Consumption Control Automation Using Artificial Neural Networks and Adaptive Algorithms: Proposal of a New Methodology and Case Study. Appl. Energy 2016, 165, 60-71.
Bi R.; Zhou C.; Hepburn D.M. Detection and Classification of Faults in Pitch-Regulated Wind Turbine Generators Using Normal Behaviour Models Based on Performance Curves. Renew. Energy 2017, 105, 674-688.
Blanco M.I. The Economics of Wind Energy. Renew. Sustain. Energy Rev. 2009, 13, 1372-1382.
- Carvalho T.P.; Soares F.A.A.M.N.; Vita R.; Francisco R.D.P.; Basto J.P.; Alcalá S.G.S. A Systematic Literature Review of Machine Learning Methods Applied to Predictive Maintenance. Comput. Ind. Eng. 2019, 137, 106024.
Paper not yet in RePEc: Add citation now
- Caso E.; Fernandez-del-Rincon A.; Garcia P.; Iglesias M.; Viadero F. Monitoring of Misalignment in Low Speed Geared Shafts with Acoustic Emission Sensors. Appl. Acoust. 2020, 159, 107092.
Paper not yet in RePEc: Add citation now
Chang Y.; Chen J.; Qu C.; Pan T. Intelligent Fault Diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels. Renew. Energy 2020, 153, 205-213.
- Chen P.; Li Y.; Wang K.; Zuo M.J.; Heyns P.S.; Baggeröhr S. A Threshold Self-Setting Condition Monitoring Scheme for Wind Turbine Generator Bearings Based on Deep Convolutional Generative Adversarial Networks. Measurement 2021, 167, 108234.
Paper not yet in RePEc: Add citation now
- Chen X.; Xu W.; Liu Y.; Islam M.R. Bearing Corrosion Failure Diagnosis of Doubly Fed Induction Generator in Wind Turbines Based on Stator Current Analysis. IEEE Trans. Ind. Electron. 2020, 67, 3419-3430.
Paper not yet in RePEc: Add citation now
- Dao P.B.; Staszewski W.J.; Barszcz T.; Uhl T. Condition Monitoring and Fault Detection in Wind Turbines Based on Cointegration Analysis of SCADA Data. Renew. Energy 2018, 116, 107-122.
Paper not yet in RePEc: Add citation now
Dong X.; Gao D.; Li J.; Jincao Z.; Zheng K. Blades Icing Identification Model of Wind Turbines Based on SCADA Data. Renew. Energy 2020, 162, 575-586.
- El Bouchikhi E.H.; Choqueuse V.; Benbouzid M. Induction Machine Faults Detection Using Stator Current Parametric Spectral Estimation. Mech. Syst. Signal. Process. 2015, 52–53, 447-464.
Paper not yet in RePEc: Add citation now
Faiz J.; Moosavi S.M.M. Eccentricity Fault Detection—From Induction Machines to DFIG—A Review. Renew. Sustain. Energy Rev. 2016, 55, 169-179.
- Feng Y.; Qiu Y.; Crabtree C.J.; Long H.; Tavner P.J. Monitoring Wind Turbine Gearboxes: Monitoring Wind Turbine Gearboxes. Wind Energ. 2013, 16, 728-740.
Paper not yet in RePEc: Add citation now
- Fu J.; Chu J.; Guo P.; Chen Z. Condition Monitoring of Wind Turbine Gearbox Bearing Based on Deep Learning Model. IEEE Access 2019, 7, 57078-57087.
Paper not yet in RePEc: Add citation now
- Glowacz A. Fault Diagnosis of Electric Impact Drills Using Thermal Imaging. Measurement 2021, 171, 108815.
Paper not yet in RePEc: Add citation now
- Gómez Muñoz C.; García Márquez F. A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines. Energies 2016, 9.
Paper not yet in RePEc: Add citation now
- Gong Y.; Fei J.-L.; Tang J.; Yang Z.-G.; Han Y.-M.; Li X. Failure Analysis on Abnormal Wear of Roller Bearings in Gearbox for Wind Turbine. Eng. Fail. Anal. 2017, 82, 26-38.
Paper not yet in RePEc: Add citation now
- González-González A.; Cortadi A.J.; Galar D.; Ciani L. Condition Monitoring of Wind Turbine Pitch Controller: A Maintenance Approach. Measurement 2018, 123, 80-93.
Paper not yet in RePEc: Add citation now
- Gu X.; Chen C. Adaptive Parameter-Matching Method of SR Algorithm for Fault Diagnosis of Wind Turbine Bearing. J. Mech. Sci. Technol. 2019, 33, 1007-1018.
Paper not yet in RePEc: Add citation now
- Hagan M.T.; Menhaj M.B. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural Netw. 1994, 5, 989-993.
Paper not yet in RePEc: Add citation now
- Hahn B.; Durstewitz M.; Rohrig K. Reliability of Wind Turbines. Wind Energy; Springer: Berlin/Heidelberg, Germany, 2007; pp. 329-333.
Paper not yet in RePEc: Add citation now
- Hamilton A.; Quail F. Detailed State of the Art Review for the Different Online/Inline Oil Analysis Techniques in Context of Wind Turbine Gearboxes. J. Tribol. 2011, 133, 044001.
Paper not yet in RePEc: Add citation now
- Haykin S.S.; Haykin S.S. Neural Networks and Learning Machines; Prentice Hall: New York, NY, USA, 2009; ISBN 978-0-13-147139-9.
Paper not yet in RePEc: Add citation now
Helbing G. Deep Learning for Fault Detection in Wind Turbines. Renew. Sustain. Energy Rev. 2018, 98, 189-198.
- Jiang G.; He H.; Yan J.; Xie P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox. IEEE Trans. Ind. Electron. 2019, 66, 3196-3207.
Paper not yet in RePEc: Add citation now
- Karlsson D. Wind Turbine Performance Monitoring Using Artificial Neural Networks. Master’s Thesis; Chalmers University of Technology: Göteborg, Sweden, 2015.
Paper not yet in RePEc: Add citation now
Kusiak A.; Verma A. Analyzing Bearing Faults in Wind Turbines: A Data-Mining Approach. Renew. Energy 2012, 48, 110-116.
- Kusiak A.; Verma A. Monitoring Wind Farms With Performance Curves. IEEE Trans. Sustain. Energy 2013, 4, 192-199.
Paper not yet in RePEc: Add citation now
Kusiak A.; Zheng H.; Song Z. Models for Monitoring Wind Farm Power. Renew. Energy 2009, 34, 583-590.
- Leahy K.; Hu R.L.; Konstantakopoulos I.C.; Spanos C.J.; Agogino A.M. Diagnosing Wind Turbine Faults Using Machine Learning Techniques Applied to Operational Data. Proceedings of the 2016 IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa, ON, Canada, 20–22 June 2016, ; pp. 1-8.
Paper not yet in RePEc: Add citation now
Lei J.; Liu C.; Jiang D. Fault Diagnosis of Wind Turbine Based on Long Short-Term Memory Networks. Renew. Energy 2019, 133, 422-432.
- Li J.; Li M.; Zhang J.; Jiang G. Frequency-Shift Multiscale Noise Tuning Stochastic Resonance Method for Fault Diagnosis of Generator Bearing in Wind Turbine. Measurement 2019, 133, 421-432.
Paper not yet in RePEc: Add citation now
Li J.; Zhang X.; Zhou X.; Lu L. Reliability Assessment of Wind Turbine Bearing Based on the Degradation-Hidden-Markov Model. Renew. Energy 2019, 132, 1076-1087.
- Ling Y.; Cai X. Rotor Current Dynamics of Doubly Fed Induction Generators during Grid Voltage Dip and Rise. Int. J. Electr. Power Energy Syst. 2013, 44, 17-24.
Paper not yet in RePEc: Add citation now
- Liu W.Y. The Vibration Analysis of Wind Turbine Blade–Cabin–Tower Coupling System. Eng. Struct. 2013, 56, 954-957.
Paper not yet in RePEc: Add citation now
Liu Z.; Xiao C.; Zhang T.; Zhang X. Research on Fault Detection for Three Types of Wind Turbine Subsystems Using Machine Learning. Energies 2020, 13.
- Liu Z.; Zhang L. A Review of Failure Modes, Condition Monitoring and Fault Diagnosis Methods for Large-Scale Wind Turbine Bearings. Measurement 2020, 149, 107002.
Paper not yet in RePEc: Add citation now
Liu Z.; Zhang L.; Carrasco J. Vibration Analysis for Large-Scale Wind Turbine Blade Bearing Fault Detection with an Empirical Wavelet Thresholding Method. Renew. Energy 2020, 146, 99-110.
- Lu B.; Li Y.; Wu X.; Yang Z. A Review of Recent Advances in Wind Turbine Condition Monitoring and Fault Diagnosis. Proceedings of the 2009 IEEE Power Electronics and Machines in Wind Applications, Lincoln, NE, USA, 24–26 June 2009, ; pp. 1-7.
Paper not yet in RePEc: Add citation now
Manobel B.; Sehnke F.; Lazzús J.A.; Salfate I.; Felder M.; Montecinos S. Wind Turbine Power Curve Modeling Based on Gaussian Processes and Artificial Neural Networks. Renew. Energy 2018, 125, 1015-1020.
- Marčiukaitis M.; Žutautaitė I.; Martišauskas L.; Jokšas B.; Gecevičius G.; Sfetsos A. Non-Linear Regression Model for Wind Turbine Power Curve. Renew. Energy 2017, 113, 732-741.
Paper not yet in RePEc: Add citation now
- Merabet H.; Bahi T.; Halem N. Condition Monitoring and Fault Detection in Wind Turbine Based on DFIG by the Fuzzy Logic. Energy Procedia 2015, 74, 518-528.
Paper not yet in RePEc: Add citation now
- Nazir M.; Khan A.Q.; Mustafa G.; Abid M. Robust Fault Detection for Wind Turbines Using Reference Model-Based Approach. J. King Saud Univ.Eng. Sci. 2017, 29, 244-252.
Paper not yet in RePEc: Add citation now
- Nithya M.; Nagarajan S.; Navaseelan P. Fault Detection of Wind Turbine System Using Neural Networks. Proceedings of the 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), Chennai, India, 7–8 April 2017, ; pp. 103-108.
Paper not yet in RePEc: Add citation now
Ouyang T.; Kusiak A.; He Y. Modeling Wind-Turbine Power Curve: A Data Partitioning and Mining Approach. Renew. Energy 2017, 102, 1-8.
- Pozo F.; Vidal Y. Wind Turbine Fault Detection through Principal Component Analysis and Statistical Hypothesis Testing. AST 2016, 101, 45-54.
Paper not yet in RePEc: Add citation now
Pujol-Vazquez G.; Acho L.; Gibergans-Báguena J. Fault Detection Algorithm for Wind Turbines’ Pitch Actuator Systems. Energies 2020, 13.
Qian P.; Zhang D.; Tian X.; Si Y.; Li L. A Novel Wind Turbine Condition Monitoring Method Based on Cloud Computing. Renew. Energy 2019, 135, 390-398.
- Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. Choice Rev. Online 2012, 49, 49-6309.
Paper not yet in RePEc: Add citation now
- Rizk P.; Al Saleh N.; Younes R.; Ilinca A.; Khoder J. Hyperspectral Imaging Applied for the Detection of Wind Turbine Blade Damage and Icing. Remote Sens. Appl. Soc. Environ. 2020, 18, 100291.
Paper not yet in RePEc: Add citation now
- Saari J.; Strömbergsson D.; Lundberg J.; Thomson A. Detection and Identification of Windmill Bearing Faults Using a One-Class Support Vector Machine (SVM). Measurement 2019, 137, 287-301.
Paper not yet in RePEc: Add citation now
- Salameh J.P.; Cauet S.; Etien E.; Sakout A.; Rambault L. Gearbox Condition Monitoring in Wind Turbines: A Review. Mech. Syst. Signal. Process. 2018, 111, 251-264.
Paper not yet in RePEc: Add citation now
- Schlechtingen M.; Ferreira Santos I. Comparative Analysis of Neural Network and Regression Based Condition Monitoring Approaches for Wind Turbine Fault Detection. Mech. Syst. Signal. Process. 2011, 25, 1849-1875.
Paper not yet in RePEc: Add citation now
- Schlechtingen M.; Santos I.F. Wind Turbine Condition Monitoring Based on SCADA Data Using Normal Behavior Models. Part 2: Application Examples. Appl. Soft Comput. 2014, 14, 447-460.
Paper not yet in RePEc: Add citation now
- Schlechtingen M.; Santos I.F.; Achiche S. Using Data-Mining Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study. IEEE Trans. Sustain. Energy 2013, 4, 671-679.
Paper not yet in RePEc: Add citation now
- Simani S.; Castaldi P.; Tilli A. Data—Driven Approach for Wind Turbine Actuator and Sensor Fault Detection and Isolation. IFAC Proc. Vol. 2011, 44, 8301-8306.
Paper not yet in RePEc: Add citation now
Stetco A.; Dinmohammadi F.; Zhao X.; Robu V.; Flynn D.; Barnes M.; Keane J.; Nenadic G. Machine Learning Methods for Wind Turbine Condition Monitoring: A Review. Renew. Energy 2019, 133, 620-635.
Stetco A.; Ramirez J.M.; Mohammed A.; Djurović S.; Nenadic G.; Keane J. An End-to-End, Real-Time Solution for Condition Monitoring of Wind Turbine Generators. Energies 2020, 13.
Sun P.; Li J.; Wang C.; Lei X. A Generalized Model for Wind Turbine Anomaly Identification Based on SCADA Data. Appl. Energy 2016, 168, 550-567.
- Tautz-Weinert J.; Watson S.J. Using SCADA Data for Wind Turbine Condition Monitoring—A Review. IET Renew. Power Gener. 2017, 11, 382-394.
Paper not yet in RePEc: Add citation now
Vidal Y.; Pozo F.; Tutivén C. Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data. Energies 2018, 11.
Wang J.; Song Y.; Liu F.; Hou R. Analysis and Application of Forecasting Models in Wind Power Integration: A Review of Multi-Step-Ahead Wind Speed Forecasting Models. Renew. Sustain. Energy Rev. 2016, 60, 960-981.
- Wang L.; Zhang Z.; Long H.; Xu J.; Liu R. Wind Turbine Gearbox Failure Identification With Deep Neural Networks. IEEE Trans. Ind. Inf. 2017, 13, 1360-1368.
Paper not yet in RePEc: Add citation now
- Wang Y.; Ma X.; Qian P. Wind Turbine Fault Detection and Identification Through PCA-Based Optimal Variable Selection. IEEE Trans. Sustain. Energy 2018, 9, 1627-1635.
Paper not yet in RePEc: Add citation now
- Wang Z.; Liu C. Wind Turbine Condition Monitoring Based on a Novel Multivariate State Estimation Technique. Measurement 2021, 168, 108388.
Paper not yet in RePEc: Add citation now
- Wen L.; Li X.; Gao L.; Zhang Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2018, 65, 5990-5998.
Paper not yet in RePEc: Add citation now
- Wind Europe: Wind Energy in Europe in 2019—Trends and Statistics.
Paper not yet in RePEc: Add citation now
Yang H.-H.; Huang M.-L.; Lai C.-M.; Jin J.-R. An Approach Combining Data Mining and Control Charts-Based Model for Fault Detection in Wind Turbines. Renew. Energy 2018, 115, 808-816.
Yang X.; Zhang Y.; Lv W.; Wang D. Image Recognition of Wind Turbine Blade Damage Based on a Deep Learning Model with Transfer Learning and an Ensemble Learning Classifier. Renew. Energy 2021, 163, 386-397.
- Yu D.; Chen Z.M.; Xiahou K.S.; Li M.S.; Ji T.Y.; Wu Q.H. A Radically Data-Driven Method for Fault Detection and Diagnosis in Wind Turbines. Int. J. Electr. Power Energy Syst. 2018, 99, 577-584.
Paper not yet in RePEc: Add citation now
- Zaher A.; McArthur S.D.J.; Infield D.G.; Patel Y. Online Wind Turbine Fault Detection through Automated SCADA Data Analysis. Wind Energ. 2009, 12, 574-593.
Paper not yet in RePEc: Add citation now
- Zhang L.; Lang Z.-Q. Wavelet Energy Transmissibility Function and Its Application to Wind Turbine Bearing Condition Monitoring. IEEE Trans. Sustain. Energy 2018, 9, 1833-1843.
Paper not yet in RePEc: Add citation now
- Zhang S.; Lang Z.-Q. SCADA-Data-Based Wind Turbine Fault Detection: A Dynamic Model Sensor Method. Control. Eng. Pract. 2020, 102, 104546.
Paper not yet in RePEc: Add citation now
Zhang W.; Ma X. Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines. Energies 2016, 9.
- Zhang Z.-Y.; Wang K.-S. Wind Turbine Fault Detection Based on SCADA Data Analysis Using ANN. Adv. Manuf. 2014, 2, 70-78.
Paper not yet in RePEc: Add citation now
- Zhang Z.; Verma A.; Kusiak A. Fault Analysis and Condition Monitoring of the Wind Turbine Gearbox. IEEE Trans. Energy Convers. 2012, 27, 526-535.
Paper not yet in RePEc: Add citation now
Zhao H. Anomaly Detection and Fault Analysis of Wind Turbine Components Based on Deep Learning Network. Renew. Energy 2018, 127, 825-834.
Zhao Y.; Li D.; Dong A.; Kang D.; Lv Q.; Shang L. Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data. Energies 2017, 10.