Alzubaidi, M.; Hasan, K.N.; Meegahapola, L.; Rahman, M.T. Identification of Efficient Sampling Techniques for Probabilistic Voltage Stability Analysis of Renewable-Rich Power Systems. Energies 2021, 14, 2328. [CrossRef]
Aydin, O.; IglinÌski, B.; Krukowski, K.; SieminÌski, M. Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City GdanÌsk in Poland. Energies 2022, 15, 3159. [CrossRef]
Chang, T.P. Estimation of wind energy potential using different probability density functions. Appl. Energy 2011, 88, 1848â1856. [CrossRef]
- Hall, P.; Marron, J.S.; Park, B.U. Smoothed cross-validation. Probab. Theory Relat. Fields 1992, 92, 1â20. [CrossRef]
Paper not yet in RePEc: Add citation now
Han, Q.; Ma, S.; Wang, T.; Chu, F. Kernel density estimation model for wind speed probability distribution with applicability to wind energy assessment in China. Renew. Sustain. Energy Rev. 2019, 115, 109387. [CrossRef]
Hong, P.; Qin, Z. Distributed Active Power Optimal Dispatching of Wind Farm Cluster Considering Wind Power Uncertainty. Energies 2022, 15, 2706. [CrossRef]
Hong, Y.-Y.; Apolinario, G.F.D. Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications. Energies 2021, 14, 6658. [CrossRef]
- Hu, J.; Li, H.; Liu, Z. A Novel Scenario Generation Framework Based on the Knowledge of Existing Wind Power Plants. IEEE Trans. Sustain. Energy 2021, 12, 1229â1241. [CrossRef]
Paper not yet in RePEc: Add citation now
Kim, G.; Hur, J. Probabilistic modeling of wind energy potential for power grid expansion planning. Energy 2021, 230, 120831. [CrossRef]
Kim, S.; Hur, J. Probabilistic power output model of wind generating resources for network congestion management. Renew. Energy 2021, 179, 1719â1726. [CrossRef]
- Lee, M.; Yoon, M.; Cho, J.; Choi, S. Probabilistic Stability Evaluation Based on Confidence Interval in Distribution Systems with Inverter-Based Distributed Generations. Sustainability 2022, 14, 3806. [CrossRef]
Paper not yet in RePEc: Add citation now
Li, J.; Zhou, J.; Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. Appl. Energy 2020, 280, 115992. [CrossRef]
- Lorca, .; Sun, X.A. Adaptive Robust Optimization With Dynamic Uncertainty Sets for Multi-Period Economic Dispatch Under Significant Wind. IEEE Trans. Power Syst. 2015, 30, 1702â1713. [CrossRef]
Paper not yet in RePEc: Add citation now
- Malekshah, S.; Banihashemi, F.; Daryabad, H.; Yavarishad, N.; Cuzner, R. A zonal optimization solution to reliability security constraint unit commitment with wind uncertainty. Comput. Electron. Eng. 2022, 99, 107750. [CrossRef]
Paper not yet in RePEc: Add citation now
- MarcÌiukaitis, M.; ŽutautaiteÌ, I.; MartiÅ¡auskas, L.; JokÅ¡as, B.; GecevicÌius, G.; Sfetsos, A. Non-linear regression model for wind turbine power curve. Renew. Energy 2017, 113, 732â741. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mohammadi, K.; Alavi, O.; Mostafaeipour, A.; Goudarzi, N.; Jalilvand, M. Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Convers. Manag. 2016, 108, 322â335. [CrossRef]
Paper not yet in RePEc: Add citation now
Park, H. A Unit Commitment Model Considering Feasibility of Operating Reserves under Stochastic Optimization Framework. Energies 2022, 15, 6221. [CrossRef]
- Peng, S.; Lin, X.; Tang, J.; Xie, K.; Ponci, F.; Monti, A.; Li, W. Probabilistic Power Flow of AC/DC Hybrid Grids With Addressing Boundary Issue of Correlated Uncertainty Sources. IEEE Trans. Sustain. Energy 2022, 13, 1607â1619. [CrossRef]
Paper not yet in RePEc: Add citation now
Pham, L.H.; Duong, M.Q.; Phan, V.-D.; Nguyen, T.T.; Nguyen, H.-N. A High-Performance Stochastic Fractal Search Algorithm for Optimal Generation Dispatch Problem. Energies 2019, 12, 1796. [CrossRef]
- Qi, B.; Hasan, K.N.; MilanovicÌ, J.V. Identification of Critical Parameters Affecting Voltage and Angular Stability Considering Load-Renewable Generation Correlations. IEEE Trans. Power Syst. 2019, 34, 2859â2869. [CrossRef]
Paper not yet in RePEc: Add citation now
Rakipour, D.; Barati, H. Probabilistic optimization in operation of energy hub with participation of renewable energy resources and demand response. Energy 2019, 173, 384â399. [CrossRef]
Riaz, M.; Ahmad, S.; Hussain, I.; Naeem, M.; Mihet-Popa, L. Probabilistic Optimization Techniques in Smart Power System. Energies 2022, 15, 825. [CrossRef]
Shaheen, M.A.M.; Ullah, Z.; Qais, M.H.; Hasanien, H.M.; Chua, K.J.; Tostado-Véliz, M.; Turky, R.A.; Jurado, F.; Elkadeem, M.R. Solution of Probabilistic Optimal Power Flow Incorporating Renewable Energy Uncertainty Using a Novel Circle Search Algorithm. Energies 2022, 15, 8303. [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis, 1st ed.; Routledge: New York, NY, USA, 1998.
Paper not yet in RePEc: Add citation now
- Suga, N.; Yano, K.; Webber, J.; Hou, Y.; Higashimori, T.; Suzuki, Y. Estimation of Probability Density Function Using Multibandwidth Kernel Density Estimation for Throughput. In Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19â21 February 2020; p. 19532270.
Paper not yet in RePEc: Add citation now
Teimourian, H.; Abubakar, M.; Yildiz, M.; Teimourian, A. A Comparative Study on Wind Energy Assessment Distribution Models: A Case Study on Weibull Distribution. Energies 2022, 15, 5684. [CrossRef]
Viet, D.T.; Phuong, V.V.; Duong, M.Q.; Tran, Q.T. Models for Short-Term Wind Power Forecasting Based on Improved Artificial Neural Network Using Particle Swarm Optimization and Genetic Algorithms. Energies 2020, 13, 2873. [CrossRef]
- Wahbah, M.; Mohandes, B.; EL-Fouly, T.H.M.; El Moursi, M.S. Unbiased cross-validation kernel density estimation for wind and PV probabilistic modelling. Energy Convers. Manag. 2022, 266, 115811. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wand, M.P.; Jones, M.C. Kernel Smoothing, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 1994.
Paper not yet in RePEc: Add citation now
- Wang, J.; AlShelahi, A.; You, M.; Byon, E.; Saigal, R. Integrative Density Forecast and Uncertainty Quantification of Wind Power Generation. IEEE Trans. Sustain. Energy 2021, 12, 1864â1875. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, J.; Hu, J.; Ma, K. Wind speed probability distribution estimation and wind energy assessment. Renew. Sustain. Energy Rev. 2016, 60, 881â899. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, Y.; Hu, Q.; Li, L.; Foley, A.M.; Srinivasan, D. Approaches to wind power curve modeling: A review and discussion. Renew. Sustain. Energy Rev. 2019, 116, 109422. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, Y.; Hu, Q.; Srinivasan, D.; Wang, Z. Wind Power Curve Modeling and Wind Power Forecasting With Inconsistent Data. IEEE Trans. Sustain. Energy 2019, 10, 16â25. [CrossRef]
Paper not yet in RePEc: Add citation now
Wang, Y.; Xu, H.; Zou, R.; Zhang, L.; Zhang, F. A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting. Renew. Energy 2022, 196, 497â517. [CrossRef]
- Wang, Z.; Wang, W.; Liu, C.; Wang, B.; Feng, S. Short-term probabilistic forecasting for regional wind power using distanceweighted kernel density estimation. IET Renew. Power Gener. 2018, 12, 1725â1732. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wu, H.; Wang, M.; Xu, Z.; Jia, Y. Graph Attention Enabled Convolutional Network for Distribution System Probabilistic Power Flow. IEEE Trans. Ind. Appl. 2022, 58, 7068â7078. [CrossRef] Energies 2022, 15, 9436 17 of 17
Paper not yet in RePEc: Add citation now
- Zhou, N.; Xu, X.; Yan, Z.; Shahidehpour, M. Spatio-Temporal Probabilistic Forecasting of Photovoltaic Power Based on Monotone Broad Learning System and Copula Theory. IEEE Trans. Sustain. Energy 2022, 13, 1874â1885. [CrossRef]
Paper not yet in RePEc: Add citation now
ZÌychaluk, K.; Patil, P.N. A cross-validation method for data with ties in kernel density estimation. Ann. Inst. Stat. Math. 2008, 80, 21â44. [CrossRef]