- Abd Elaziz, M.; Ewees, A.A.; Alameer, Z. Improving adaptive neuro-fuzzy inference system based on a modified salp swarm algorithm using genetic algorithm to forecast crude oil price. Nat. Resour. Res. 2020, 29, 2671â2686. [CrossRef]
Paper not yet in RePEc: Add citation now
Alizadeh, A.H.; Huang, C.Y.; Marsh, I.W. Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach. Energy Econ. 2021, 93, 104434. [CrossRef]
Asai, M.; Gupta, R.; McAleer, M. The impact of jumps and leverage in forecasting the co-volatility of oil and gold futures. Energies 2019, 12, 3379. [CrossRef]
Chai, J.; Lu, Q.; Hu, Y.; Yang, S.Y.; Lai, K.K.; Liu, H.T. Analysis and Bayes statistical probability inference of crude oil price change point. Technol. Forecast. Soc. Chang. 2018, 126, 271â283. [CrossRef]
Chai, J.; Xing, L.M.; Zhou, X.Y.; Zhang, Z.G.; Li, J.X. Forecasting the WTI crude oil price by a hybrid-refined method. Energy Econ. 2018, 71, 114â127. [CrossRef]
- Chaturvedi, D.K.; Satsangi, P.S.; Kalra, P.K. Effect of different mappings and normalization of neural network models. Natl. Power Syst. Conf. 1996, 1, 377â386.
Paper not yet in RePEc: Add citation now
Cheng, F.Z.; Fan, T.J.; Fan, D.D.; Li, S.L. The prediction of oil price turning points with log-periodic power law and multipopulation genetic algorithm. Energy Econ. 2018, 72, 341â355. [CrossRef]
Cheng, F.Z.; Li, T.; Wei, Y.M.; Fan, T.J. The VEC-NAR model for short-term forecasting of oil prices. Energy Econ. 2019, 78, 656â667. [CrossRef]
Chiroma, H.; Abdulkareem, S.; Herawan, T. Evolutionary Neural Network Model for West Texas Intermediate Crude Oil Price Prediction. Appl. Energy 2015, 15, 266â273. [CrossRef]
Cuaresma, J.C.; Jumah, A.; Karbuz, S. Modelling and Forecasting Oil Prices: The Role of Asymmetric Cycles. Econ. Stat. 2007, 22. [CrossRef]
- Elkhan, R.S.Z.; Wilhelm, L. Drivers of CO2-Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses. Energies 2020, 13, 3956. [CrossRef]
Paper not yet in RePEc: Add citation now
Elliott, G.; Gargano, A.; Timmermann, A. Complete subset regressions. J. Econom. 2013, 177, 357â373. [CrossRef]
Faria, G.; Verona, F. Forecasting stock market returns by suming the frequency-decomposed parts. J. Empir. Financ. 2018, 45, 228â242. [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 8, 1735â1780. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hornik, K.; Stinchocombe, M.; White, H. Multilayer feedforword networks are universal approximators. Neural Netw. 1989, 5, 359â366. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hu, J.D. Crude oil price prediction using CEEMDAN and LSTM-attention with news sentiment index. Oil Gas Sci. Technol.-Rev. IFP Energ. Nouv. 2021, 76, 28. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jiao, X.R.; Song, Y.P.; Kong, Y.; Tang, X.L. Volatility forecasting for crude oil based on text information and deep learning PSO-LSTM model. J. Forecast. 2021, 12. [CrossRef]
Paper not yet in RePEc: Add citation now
Li, J.; Tsiakas, I. Equity premium prediction: The role of economic and statistical constraints. J. Financ. Mark. 2017, 36, 56â75. [CrossRef]
Li, J.; Tsiakas, I.; Wang, W. Predicting exchange rates out of sample: Can economic fundamentals beat the random walk? J. Financ. Econom. 2015, 13, 293â341. [CrossRef]
Li, T.; Zhou, M.; Guo, C.; Luo, M.; Wu, J.; Pan, F.; Tao, Q.; He, T. Forecasting crude oil price using EEMD and RVM with adaptive PSO-based kernels. Energies 2016, 9, 1014. [CrossRef]
Makridakis, S. Accuracy measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527â529. [CrossRef]
- Miao, H.; Ramchander, S.; Wang, T.; Yang, J. The impact of crude oil inventory announcements on prices: Evidence from derivatives markets. J. Futures Mark. 2017, 52, 18â32. [CrossRef]
Paper not yet in RePEc: Add citation now
Miao, H.; Sanjay, R.C.; Wang, T.Y.; Yang, D.X. Influential factors in crude oil price forecasting. Energy Econ. 2017, 68, 77â88. [CrossRef]
- Rangan, G.; Christian, P. Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers. Energies 2021, 14, 4173.
Paper not yet in RePEc: Add citation now
- Rennan, K.D.M.; Cassio, D.N.B.; Diego, P.D.J.; Vinicius, P.D.A. Forecasting oil prices: New approaches. Energy 2022, 238, 121968. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shin, H.; Hou, T.; Park, K.; Park, C.; Choi, S. Prediction of Movement Direction in Crude Oil Prices Based on Semi-Supervised Learning. Decis. Support Syst. 2013, 1, 348â358. [CrossRef]
Paper not yet in RePEc: Add citation now
Su, R.C.; Du, J.G.; Shahzad, F.; Long, X.L. Unveiling the Eect of Mean and Volatility Spillover between the United States Economic Policy Uncertainty and WTI Crude Oil Price. Sustainability 2020, 12, 6662. [CrossRef]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8â13 December 2014.
Paper not yet in RePEc: Add citation now
Tang, L.; Yu, L.; Wang, S.; Li, J.P.; Wang, S.Y. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Appl. Energy 2012, 93, 432â443. [CrossRef] Energies 2022, 15, 1955 21 of 21
Tian, L.; Chen, H.; Zhen, Z. Research on the forward-looking behavior judgment of heating oil price evolution based on complex networks. PLoS ONE 2018, 9, e0202209. [CrossRef] [PubMed]
- Wang, B.; Wang, J. Deep multi-hybrid forecasting system with random EWT extraction and variational learning rate algorithm for crude oil futures. Expert Syst. Appl. 2020, 161, 113686. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, B.; Wang, J. Energy futures prices forecasting by novel DPFWR neural network and DS-CID evaluation. Neurocomputing 2019, 21, 1â15. [CrossRef]
Paper not yet in RePEc: Add citation now
Wang, J.; Wang, J. Forecasting Energy Market Indices with Recurrent Neural Networks: Case Study of Crude Oil Price Fluctuations. Energy 2016, 102, 365â374. [CrossRef]
Wang, M.G.; Tian, L.X.; Zhou, P. A novel approach for oil price forecasting based on data fluctuation network. Energy Econ. 2018, 71, 201â212. [CrossRef]
Wang, Q.F.; Sun, X. Crude oil price: Demand, supply, economic activity, economic policy uncertainty and wars-From the perspective of structural equation modelling (SEM). Energy 2017, 133, 483â490. [CrossRef]
Wang, Y.D.; Wu, C.F. Energy prices and exchange rates of the US dollar: Further evidence from linear and nonlinear causality analysis. Econ. Model. 2012, 6, 2289â2297. [CrossRef]
- White, H. Connectionist nonparametric regression: Multilayer feedforword networks can learn arbitrary mappings. Neural Netw. 1990, 5, 535â549. [CrossRef]
Paper not yet in RePEc: Add citation now
- Witold, O. Nonlinear Causality between Crude Oil Prices and Exchange Rates: Evidence and Forecasting. Energies 2021, 14, 6043.
Paper not yet in RePEc: Add citation now
- Wu, F.J.; Qu, L.S. An improved method for restraining the end effect in empirical mode decompositon and its applications to the fault diagnosis of large rotating machinery. J. Sound Vib. 2009, 314, 586â602. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wu, X.P.; Li, Z.M. Risk measures for WTI spot market based on GARCH model. J. Hefei Univ. Technol. 2013, 9, 1127â1131.
Paper not yet in RePEc: Add citation now
Wu, Y.X.; Wu, Q.B.; Zhu, J.Q. Improved EEMD-Based Crude Oil Price Forecasting Using LSTM Networks. Phys. A Stat. Mech. Its Appl. 2019, 516, 114â124. [CrossRef]
- Xie, W.; Yu, L.; Xu, S. A New Method for Crude Oil Price Forecasting B ased on Support Vector Machines. In Proceedings of the International Conference on Computational Science, Reading, UK, 28â31 May 2006; Springer: Berlin/Heidelberg, Germany, 2006.
Paper not yet in RePEc: Add citation now
Xiong, T.; Bao, Y.K.; Hu, Z.Y. Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices. Energy Econ. 2013, 40, 405â415. [CrossRef]
Yao, C.Z.; Kuang, P.C. A study of leadâlag structure between international crude oil price and several financial markets. Physica A 2019, 513, 121755. [CrossRef]
Yu, L.A.; Wang, S.Y.; Lai, K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ. 2008, 30, 2623â2635. [CrossRef]
Zhang, Y.J.; Ma, F.; Wang, Y.D. Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? J. Empir. Financ. 2019, 54, 97â117. [CrossRef]
- Zhu, J.; Liu, J.; Wu, P. A novel decomposition-ensemble approach to crude oil price forecasting with evolution clustering and combined model. Int. J. Mach. Learn. Cybern. 2019, 10, 3349â3362. [CrossRef]
Paper not yet in RePEc: Add citation now