create a website

Forecasting Crude Oil Prices with a WT-FNN Model. (2022). Fang, Tianhui ; Wang, Donghua.
In: Energies.
RePEc:gam:jeners:v:15:y:2022:i:6:p:1955-:d:766308.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 47

References cited by this document

Cocites: 41

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Forecasting the crude oil prices with an EMD-ISBM-FNN model. (2023). Fang, Tianhui ; Wang, Donghua ; Zheng, Chunling.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222022897.

    Full description at Econpapers || Download paper

  2. Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression. (2022). Drachal, Krzysztof.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2022:i:1:p:4-:d:1008576.

    Full description at Econpapers || Download paper

  3. Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network. (2022). Manowska, Anna ; Bluszcz, Anna.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:13:p:4885-:d:854838.

    Full description at Econpapers || Download paper

  4. International Natural Gas Price Trends Prediction with Historical Prices and Related News. (2022). Liang, Yanchun ; Han, Xiaosong ; Guan, Renchu ; Fu, Jiasheng ; Wang, Aoqing.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:10:p:3573-:d:814831.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abd Elaziz, M.; Ewees, A.A.; Alameer, Z. Improving adaptive neuro-fuzzy inference system based on a modified salp swarm algorithm using genetic algorithm to forecast crude oil price. Nat. Resour. Res. 2020, 29, 2671–2686. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Alizadeh, A.H.; Huang, C.Y.; Marsh, I.W. Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach. Energy Econ. 2021, 93, 104434. [CrossRef]

  3. Asai, M.; Gupta, R.; McAleer, M. The impact of jumps and leverage in forecasting the co-volatility of oil and gold futures. Energies 2019, 12, 3379. [CrossRef]

  4. Chai, J.; Lu, Q.; Hu, Y.; Yang, S.Y.; Lai, K.K.; Liu, H.T. Analysis and Bayes statistical probability inference of crude oil price change point. Technol. Forecast. Soc. Chang. 2018, 126, 271–283. [CrossRef]

  5. Chai, J.; Xing, L.M.; Zhou, X.Y.; Zhang, Z.G.; Li, J.X. Forecasting the WTI crude oil price by a hybrid-refined method. Energy Econ. 2018, 71, 114–127. [CrossRef]

  6. Chaturvedi, D.K.; Satsangi, P.S.; Kalra, P.K. Effect of different mappings and normalization of neural network models. Natl. Power Syst. Conf. 1996, 1, 377–386.
    Paper not yet in RePEc: Add citation now
  7. Cheng, F.Z.; Fan, T.J.; Fan, D.D.; Li, S.L. The prediction of oil price turning points with log-periodic power law and multipopulation genetic algorithm. Energy Econ. 2018, 72, 341–355. [CrossRef]

  8. Cheng, F.Z.; Li, T.; Wei, Y.M.; Fan, T.J. The VEC-NAR model for short-term forecasting of oil prices. Energy Econ. 2019, 78, 656–667. [CrossRef]

  9. Chiroma, H.; Abdulkareem, S.; Herawan, T. Evolutionary Neural Network Model for West Texas Intermediate Crude Oil Price Prediction. Appl. Energy 2015, 15, 266–273. [CrossRef]

  10. Cuaresma, J.C.; Jumah, A.; Karbuz, S. Modelling and Forecasting Oil Prices: The Role of Asymmetric Cycles. Econ. Stat. 2007, 22. [CrossRef]

  11. Elkhan, R.S.Z.; Wilhelm, L. Drivers of CO2-Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses. Energies 2020, 13, 3956. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Elliott, G.; Gargano, A.; Timmermann, A. Complete subset regressions. J. Econom. 2013, 177, 357–373. [CrossRef]

  13. Faria, G.; Verona, F. Forecasting stock market returns by suming the frequency-decomposed parts. J. Empir. Financ. 2018, 45, 228–242. [CrossRef]

  14. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 8, 1735–1780. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Hornik, K.; Stinchocombe, M.; White, H. Multilayer feedforword networks are universal approximators. Neural Netw. 1989, 5, 359–366. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Hu, J.D. Crude oil price prediction using CEEMDAN and LSTM-attention with news sentiment index. Oil Gas Sci. Technol.-Rev. IFP Energ. Nouv. 2021, 76, 28. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Jiao, X.R.; Song, Y.P.; Kong, Y.; Tang, X.L. Volatility forecasting for crude oil based on text information and deep learning PSO-LSTM model. J. Forecast. 2021, 12. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Li, J.; Tsiakas, I. Equity premium prediction: The role of economic and statistical constraints. J. Financ. Mark. 2017, 36, 56–75. [CrossRef]

  19. Li, J.; Tsiakas, I.; Wang, W. Predicting exchange rates out of sample: Can economic fundamentals beat the random walk? J. Financ. Econom. 2015, 13, 293–341. [CrossRef]

  20. Li, T.; Zhou, M.; Guo, C.; Luo, M.; Wu, J.; Pan, F.; Tao, Q.; He, T. Forecasting crude oil price using EEMD and RVM with adaptive PSO-based kernels. Energies 2016, 9, 1014. [CrossRef]

  21. Makridakis, S. Accuracy measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527–529. [CrossRef]

  22. Miao, H.; Ramchander, S.; Wang, T.; Yang, J. The impact of crude oil inventory announcements on prices: Evidence from derivatives markets. J. Futures Mark. 2017, 52, 18–32. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Miao, H.; Sanjay, R.C.; Wang, T.Y.; Yang, D.X. Influential factors in crude oil price forecasting. Energy Econ. 2017, 68, 77–88. [CrossRef]

  24. Rangan, G.; Christian, P. Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers. Energies 2021, 14, 4173.
    Paper not yet in RePEc: Add citation now
  25. Rennan, K.D.M.; Cassio, D.N.B.; Diego, P.D.J.; Vinicius, P.D.A. Forecasting oil prices: New approaches. Energy 2022, 238, 121968. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Shin, H.; Hou, T.; Park, K.; Park, C.; Choi, S. Prediction of Movement Direction in Crude Oil Prices Based on Semi-Supervised Learning. Decis. Support Syst. 2013, 1, 348–358. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Su, R.C.; Du, J.G.; Shahzad, F.; Long, X.L. Unveiling the Eect of Mean and Volatility Spillover between the United States Economic Policy Uncertainty and WTI Crude Oil Price. Sustainability 2020, 12, 6662. [CrossRef]

  28. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014.
    Paper not yet in RePEc: Add citation now
  29. Tang, L.; Yu, L.; Wang, S.; Li, J.P.; Wang, S.Y. A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting. Appl. Energy 2012, 93, 432–443. [CrossRef] Energies 2022, 15, 1955 21 of 21

  30. Tian, L.; Chen, H.; Zhen, Z. Research on the forward-looking behavior judgment of heating oil price evolution based on complex networks. PLoS ONE 2018, 9, e0202209. [CrossRef] [PubMed]

  31. Wang, B.; Wang, J. Deep multi-hybrid forecasting system with random EWT extraction and variational learning rate algorithm for crude oil futures. Expert Syst. Appl. 2020, 161, 113686. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Wang, B.; Wang, J. Energy futures prices forecasting by novel DPFWR neural network and DS-CID evaluation. Neurocomputing 2019, 21, 1–15. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Wang, J.; Wang, J. Forecasting Energy Market Indices with Recurrent Neural Networks: Case Study of Crude Oil Price Fluctuations. Energy 2016, 102, 365–374. [CrossRef]

  34. Wang, M.G.; Tian, L.X.; Zhou, P. A novel approach for oil price forecasting based on data fluctuation network. Energy Econ. 2018, 71, 201–212. [CrossRef]

  35. Wang, Q.F.; Sun, X. Crude oil price: Demand, supply, economic activity, economic policy uncertainty and wars-From the perspective of structural equation modelling (SEM). Energy 2017, 133, 483–490. [CrossRef]

  36. Wang, Y.D.; Wu, C.F. Energy prices and exchange rates of the US dollar: Further evidence from linear and nonlinear causality analysis. Econ. Model. 2012, 6, 2289–2297. [CrossRef]

  37. White, H. Connectionist nonparametric regression: Multilayer feedforword networks can learn arbitrary mappings. Neural Netw. 1990, 5, 535–549. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Witold, O. Nonlinear Causality between Crude Oil Prices and Exchange Rates: Evidence and Forecasting. Energies 2021, 14, 6043.
    Paper not yet in RePEc: Add citation now
  39. Wu, F.J.; Qu, L.S. An improved method for restraining the end effect in empirical mode decompositon and its applications to the fault diagnosis of large rotating machinery. J. Sound Vib. 2009, 314, 586–602. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Wu, X.P.; Li, Z.M. Risk measures for WTI spot market based on GARCH model. J. Hefei Univ. Technol. 2013, 9, 1127–1131.
    Paper not yet in RePEc: Add citation now
  41. Wu, Y.X.; Wu, Q.B.; Zhu, J.Q. Improved EEMD-Based Crude Oil Price Forecasting Using LSTM Networks. Phys. A Stat. Mech. Its Appl. 2019, 516, 114–124. [CrossRef]

  42. Xie, W.; Yu, L.; Xu, S. A New Method for Crude Oil Price Forecasting B ased on Support Vector Machines. In Proceedings of the International Conference on Computational Science, Reading, UK, 28–31 May 2006; Springer: Berlin/Heidelberg, Germany, 2006.
    Paper not yet in RePEc: Add citation now
  43. Xiong, T.; Bao, Y.K.; Hu, Z.Y. Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices. Energy Econ. 2013, 40, 405–415. [CrossRef]

  44. Yao, C.Z.; Kuang, P.C. A study of lead–lag structure between international crude oil price and several financial markets. Physica A 2019, 513, 121755. [CrossRef]

  45. Yu, L.A.; Wang, S.Y.; Lai, K.K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Econ. 2008, 30, 2623–2635. [CrossRef]

  46. Zhang, Y.J.; Ma, F.; Wang, Y.D. Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors? J. Empir. Financ. 2019, 54, 97–117. [CrossRef]

  47. Zhu, J.; Liu, J.; Wu, P. A novel decomposition-ensemble approach to crude oil price forecasting with evolution clustering and combined model. Int. J. Mach. Learn. Cybern. 2019, 10, 3349–3362. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Can climate factors improve the forecasting of electricity price volatility? Evidence from Australia. (2025). Cao, Shanwei ; Zhai, Xiangyang ; Ji, Qiang ; Guo, Kun ; Liu, YU.
    In: Energy.
    RePEc:eee:energy:v:315:y:2025:i:c:s0360544224041100.

    Full description at Econpapers || Download paper

  2. Forecasting the volatility of crude oil futures: A time‐dependent weighted least squares with regularization constraint. (2024). Wang, Yudong ; Hao, Xianfeng ; Geng, Qianjie.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:43:y:2024:i:2:p:309-325.

    Full description at Econpapers || Download paper

  3. Forecasting the Asian stock market volatility: Evidence from WTI and INE oil futures. (2024). Ghani, Maria ; Ma, Feng ; Huang, Dengshi.
    In: International Journal of Finance & Economics.
    RePEc:wly:ijfiec:v:29:y:2024:i:2:p:1496-1512.

    Full description at Econpapers || Download paper

  4. Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices. (2024). Pierdzioch, Christian ; GUPTA, RANGAN.
    In: Working Papers.
    RePEc:pre:wpaper:202423.

    Full description at Econpapers || Download paper

  5. Multi-Task Forecasting of the Realized Volatilities of Agricultural Commodity Prices. (2024). Pierdzioch, Christian ; GUPTA, RANGAN.
    In: Mathematics.
    RePEc:gam:jmathe:v:12:y:2024:i:18:p:2952-:d:1483479.

    Full description at Econpapers || Download paper

  6. Forecasting the Chinese crude oil futures volatility using jump intensity and Markov-regime switching model. (2024). Xu, Zijian ; Li, Pan ; Cao, Jiawei ; Wu, Hanlin.
    In: Energy Economics.
    RePEc:eee:eneeco:v:134:y:2024:i:c:s0140988324002962.

    Full description at Econpapers || Download paper

  7. Stock market bubbles and the realized volatility of oil price returns. (2024). Pierdzioch, Christian ; GUPTA, RANGAN ; Nielsen, Joshua.
    In: Energy Economics.
    RePEc:eee:eneeco:v:132:y:2024:i:c:s0140988324001403.

    Full description at Econpapers || Download paper

  8. Heterogeneity effect of positive and negative jumps on the realized volatility: Evidence from China. (2024). Song, Yuping ; Xu, Yang ; Zhang, Qichao ; Huang, Jiefei.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:136:y:2024:i:c:s0264999324001019.

    Full description at Econpapers || Download paper

  9. Do U.S. economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach. (2023). Pierdzioch, Christian ; GUPTA, RANGAN.
    In: Financial Innovation.
    RePEc:spr:fininn:v:9:y:2023:i:1:d:10.1186_s40854-022-00435-5.

    Full description at Econpapers || Download paper

  10. Forecasting the Conditional Distribution of Realized Volatility of Oil Price Returns: The Role of Skewness over 1859 to 2023. (2023). Plakandaras, Vasilios ; Pierdzioch, Christian ; GUPTA, RANGAN ; Ji, Qiang.
    In: Working Papers.
    RePEc:pre:wpaper:202318.

    Full description at Econpapers || Download paper

  11. The impacts of oil price volatility on financial stress: Is the COVID-19 period different?. (2023). GUPTA, RANGAN ; Sheng, Xin ; Kim, Won Joong ; Ji, Qiang.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:85:y:2023:i:c:p:520-532.

    Full description at Econpapers || Download paper

  12. Dependence and risk management of portfolios of metals and agricultural commodity futures. (2023). Arreola Hernandez, Jose ; Vo, Xuan Vinh ; Hanif, Waqas ; Mensi, Walid ; Kang, Sang Hoon ; Bensaida, Ahmed.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:82:y:2023:i:c:s0301420723002787.

    Full description at Econpapers || Download paper

  13. Forecasting the conditional distribution of realized volatility of oil price returns: The role of skewness over 1859 to 2023. (2023). Plakandaras, Vasilios ; Pierdzioch, Christian ; GUPTA, RANGAN ; Ji, Qiang.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:58:y:2023:i:pc:s1544612323008735.

    Full description at Econpapers || Download paper

  14. Financial stress and commodity price volatility. (2023). Verousis, Thanos ; Zhou, Zhiping ; Chen, Louisa ; Wang, Kai.
    In: Energy Economics.
    RePEc:eee:eneeco:v:125:y:2023:i:c:s0140988323003729.

    Full description at Econpapers || Download paper

  15. Forecasting Crude Oil Prices with a WT-FNN Model. (2022). Fang, Tianhui ; Wang, Donghua.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:1955-:d:766308.

    Full description at Econpapers || Download paper

  16. Rare disaster risks and gold over 700 years: Evidence from nonparametric quantile regressions. (2022). GUPTA, RANGAN ; Balcilar, Mehmet ; Nel, Jacobus.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722004962.

    Full description at Econpapers || Download paper

  17. Climate risks and forecastability of the realized volatility of gold and other metal prices. (2022). Pierdzioch, Christian ; GUPTA, RANGAN.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722001295.

    Full description at Econpapers || Download paper

  18. Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty. (2022). Salisu, Afees ; GUPTA, RANGAN ; Das, Sonali ; Karmakar, Sayar.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:75:y:2022:i:c:s0301420721005341.

    Full description at Econpapers || Download paper

  19. Forecasting the realized variance of oil-price returns using machine learning: Is there a role for U.S. state-level uncertainty?. (2022). Pierdzioch, Christian ; GUPTA, RANGAN ; Cepni, Oguzhan ; Pienaar, Daniel.
    In: Energy Economics.
    RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322003723.

    Full description at Econpapers || Download paper

  20. Forecasting oil and gold volatilities with sentiment indicators under structural breaks. (2022). GUPTA, RANGAN ; Demirer, Riza ; Ji, Qiang ; Luo, Jiawen.
    In: Energy Economics.
    RePEc:eee:eneeco:v:105:y:2022:i:c:s014098832100596x.

    Full description at Econpapers || Download paper

  21. Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks. (2021). Ji, Qiang ; GUPTA, RANGAN ; Demirer, Riza ; Luo, Jiawen.
    In: Working Papers.
    RePEc:pre:wpaper:202130.

    Full description at Econpapers || Download paper

  22. El Niño, La Niña, and the Forecastability of the Realized Variance of Heating Oil Price Movements. (2021). Pierdzioch, Christian ; GUPTA, RANGAN ; Bouri, Elie ; Balcilar, Mehmet.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:14:p:7987-:d:596011.

    Full description at Econpapers || Download paper

  23. Climate Risks and the Realized Volatility Oil and Gas Prices: Results of an Out-of-Sample Forecasting Experiment. (2021). Pierdzioch, Christian ; GUPTA, RANGAN.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:23:p:8085-:d:693917.

    Full description at Econpapers || Download paper

  24. Forecasting the Volatility of Crude Oil: The Role of Uncertainty and Spillovers. (2021). Pierdzioch, Christian ; GUPTA, RANGAN.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:14:p:4173-:d:591975.

    Full description at Econpapers || Download paper

  25. Forecasting power of infectious diseases-related uncertainty for gold realized variance. (2021). Pierdzioch, Christian ; GUPTA, RANGAN ; Bouri, Elie ; Gkillas, Konstantinos.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:42:y:2021:i:c:s1544612321000179.

    Full description at Econpapers || Download paper

  26. A note on investor happiness and the predictability of realized volatility of gold. (2021). Pierdzioch, Christian ; GUPTA, RANGAN ; Bonato, Matteo ; Gkillas, Konstantinos.
    In: Finance Research Letters.
    RePEc:eee:finlet:v:39:y:2021:i:c:s1544612320303524.

    Full description at Econpapers || Download paper

  27. OPEC news and jumps in the oil market. (2021). Yoon, Seong-Min ; Pierdzioch, Christian ; GUPTA, RANGAN ; Gkillas, Konstantinos.
    In: Energy Economics.
    RePEc:eee:eneeco:v:96:y:2021:i:c:s0140988321000013.

    Full description at Econpapers || Download paper

  28. OPEC News and Jumps in the Oil Market. (2020). Yoon, Seong-Min ; Pierdzioch, Christian ; GUPTA, RANGAN ; Gkillas, Konstantinos.
    In: Working Papers.
    RePEc:pre:wpaper:202053.

    Full description at Econpapers || Download paper

  29. The Role of Global Economic Conditions in Forecasting Gold Market Volatility: Evidence from a GARCH-MIDAS Approach. (2020). Salisu, Afees ; Ji, Qiang ; GUPTA, RANGAN ; Bouri, Elie.
    In: Working Papers.
    RePEc:pre:wpaper:202043.

    Full description at Econpapers || Download paper

  30. Effect of Rare Disaster Risks on Crude Oil: Evidence from El Nino from Over 140 Years of Data. (2020). Pierdzioch, Christian ; GUPTA, RANGAN ; Demirer, Riza ; Nel, Jacobus.
    In: Working Papers.
    RePEc:pre:wpaper:2020104.

    Full description at Econpapers || Download paper

  31. A Note on Oil Price Shocks and the Forecastability of Gold Realized Volatility. (2020). Shahzad, Syed Jawad Hussain ; Pierdzioch, Christian ; GUPTA, RANGAN ; Demirer, Riza ; Hussain, Syed Jawad.
    In: Working Papers.
    RePEc:pre:wpaper:202010.

    Full description at Econpapers || Download paper

  32. Investor Happiness and Predictability of the Realized Volatility of Oil Price. (2020). Pierdzioch, Christian ; GUPTA, RANGAN ; Bonato, Matteo ; Gkillas, Konstantinos.
    In: Working Papers.
    RePEc:pre:wpaper:202009.

    Full description at Econpapers || Download paper

  33. A Note on Investor Happiness and the Predictability of Realized Volatility of Gold. (2020). Pierdzioch, Christian ; GUPTA, RANGAN ; Bonato, Matteo ; Gkillas, Konstantinos.
    In: Working Papers.
    RePEc:pre:wpaper:202004.

    Full description at Econpapers || Download paper

  34. Investor Happiness and Predictability of the Realized Volatility of Oil Price. (2020). Pierdzioch, Christian ; GUPTA, RANGAN ; Bonato, Matteo ; Gkillas, Konstantinos.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:10:p:4309-:d:362539.

    Full description at Econpapers || Download paper

  35. Infectious Diseases, Market Uncertainty and Oil Market Volatility. (2020). Pierdzioch, Christian ; GUPTA, RANGAN ; Demirer, Riza ; Bouri, Elie.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:16:p:4090-:d:395806.

    Full description at Econpapers || Download paper

  36. The role of global economic conditions in forecasting gold market volatility: Evidence from a GARCH-MIDAS approach. (2020). Salisu, Afees ; Ji, Qiang ; GUPTA, RANGAN ; Bouri, Elie.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:54:y:2020:i:c:s0275531920307273.

    Full description at Econpapers || Download paper

  37. The predictive power of oil price shocks on realized volatility of oil: A note. (2020). Shahzad, Syed Jawad Hussain ; Pierdzioch, Christian ; GUPTA, RANGAN ; Demirer, Riza ; Hussain, Syed Jawad.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:69:y:2020:i:c:s0301420720308874.

    Full description at Econpapers || Download paper

  38. Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks. (2020). GUPTA, RANGAN ; Asai, Manabu.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:36:y:2020:i:3:p:933-948.

    Full description at Econpapers || Download paper

  39. Moments-based spillovers across gold and oil markets. (2020). Wang, Shixuan ; Lau, Chi Keung ; GUPTA, RANGAN ; Bonato, Matteo ; Marco, Chi Keung.
    In: Energy Economics.
    RePEc:eee:eneeco:v:89:y:2020:i:c:s0140988320301390.

    Full description at Econpapers || Download paper

  40. Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests. (2019). Pierdzioch, Christian ; GUPTA, RANGAN ; Demirer, Riza ; Gkillas, Konstantinos.
    In: Working Papers.
    RePEc:pre:wpaper:201972.

    Full description at Econpapers || Download paper

  41. Forecasting Volatility and Co-volatility of Crude Oil and Gold Futures: Effects of Leverage, Jumps, Spillovers, and Geopolitical Risks. (2019). GUPTA, RANGAN ; Asai, Manabu.
    In: Working Papers.
    RePEc:pre:wpaper:201951.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 20:43:49 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.