- Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E.; Ou Ali, I.H. CNN-LSTM: An Efficient Hybrid Deep Learning Architecture for Predicting Short-Term Photovoltaic Power Production. Electr. Power Syst. Res. 2022, 208, 107908. [CrossRef]
Paper not yet in RePEc: Add citation now
Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-Term Load Forecasting in Smart Grids: An Intelligent Modular Approach. Energies 2019, 12, 164. [CrossRef]
Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]
Ahn, H.K.; Park, N. Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors. Energies 2021, 14, 436. [CrossRef]
Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies 2020, 13, 6269. [CrossRef]
- Aykroyd, G.R.; Alfaer, N. Sequential Models for Time-evolving Regression Problems with an Application to Energy Demand Prediction. Stoch. Modeling Appl. 2016, 20, 1â16.
Paper not yet in RePEc: Add citation now
- Bibi, N.; Shah, I.; Alsubie, A.; Ali, S.; Lone, S.A. Electricity Spot Prices Forecasting Based on Ensemble Learning. IEEE Access 2021, 9, 150984â150992. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bilgili, M.; Arslan, N.; Sekertekin, A.; Yasar, A. Application of long short-term memory (LSTM) neural network based on deep learning for electricity energy consumption forecasting. Turk. J. Elec. Eng. Comp. Sci. 2022, 30, 140â157. [CrossRef]
Paper not yet in RePEc: Add citation now
- Brahma, B.; Wadhvani, R. Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data. Symmetry 2020, 12, 1830. [CrossRef]
Paper not yet in RePEc: Add citation now
Choi, J.Y.; Lee, B. Combining LSTM Network Ensemble via Adaptive Weighting for Improved Time Series Forecasting. Math. Probl. Eng. 2018, 2018, 2470171. [CrossRef]
- Considine, T.; Cox, W.; Cazalet, E.G. Understanding Microgrids as the Essential Architecture of Smart Energy. In Proceedings of the Grid-Interop Forum 2012, Irving, TX, USA, 3â6 December 2012. [CrossRef]
Paper not yet in RePEc: Add citation now
del Real, A.J.; Dorado, F.; Durán, J. Energy Demand Forecasting Using Deep Learning: Applications for the French Grid. Energies 2020, 13, 2242. [CrossRef]
- Deligiannidis, S.; Mesaritakis, C.; Bogris, A. Performance and Complexity Evaluation of Recurrent Neural Network Models for Fibre Nonlinear Equalization in Digital Coherent Systems. In 2020 European Conference on Optical Communications (ECOC); IEEE: Brussels, Belgium, 2020; pp. 1â4. [CrossRef] Energies 2022, 15, 3382 16 of 16
Paper not yet in RePEc: Add citation now
Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 2002, 20, 134â144. [CrossRef]
- Elattar, E.E.; Sabiha, N.A.; Alsharef, M.; Metwaly, M.K.; Abd-Elhady, A.M.; Taha, I.B.M. Short Term Electric Load Forecasting Using Hybrid Algorithm for Smart Cities. Appl. Intell. 2020, 50, 3379â3399. [CrossRef]
Paper not yet in RePEc: Add citation now
- Emami, A.; Sarvi, M.; Asadi Bagloee, S. Using Kalman Filter Algorithm for Short-Term Traffic Flow Prediction in a Connected Vehicle Environment. J. Mod. Transport. 2019, 27, 222â232. [CrossRef]
Paper not yet in RePEc: Add citation now
Fang, T.; Lahdelma, R. Evaluation of a Multiple Linear Regression Model and SARIMA Model in Forecasting Heat Demand for District Heating System. Appl. Energy 2016, 179, 544â552. [CrossRef]
- Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855â868. [CrossRef]
Paper not yet in RePEc: Add citation now
Hirose, K.; Wada, K.; Hori, M.; Taniguchi, R. Event Effects Estimation on Electricity Demand Forecasting. Energies 2020, 13, 5839. [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735â1780. [CrossRef]
Paper not yet in RePEc: Add citation now
Jeon, B.; Kim, E.-J. Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with Non-Local Data. Energies 2020, 13, 5258. [CrossRef]
- Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly Accurate Energy Consumption Forecasting Model Based on Parallel LSTM Neural Networks. Adv. Eng. Inform. 2022, 51, 101442. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kang, T.; Lim, D.Y.; Tayara, H.; Chong, K.T. Forecasting of Power Demands Using Deep Learning. Appl. Sci. 2020, 10, 7241. [CrossRef]
Paper not yet in RePEc: Add citation now
- Karijadi, I.; Chou, S.-Y. A Hybrid RF-LSTM Based on CEEMDAN for Improving the Accuracy of Building Energy Consumption Prediction. Energy Build. 2022, 259, 111908. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kaur, D.; Islam, S.N.; Mahmud, M.A.; Dong, Z. Energy Forecasting in Smart Grid Systems: A Review of the State-of-the-Art Techniques. arXiv 2020, arXiv:2011.12598.
Paper not yet in RePEc: Add citation now
- Keller, F.; Schultz, C.; Simon, P.; Braunreuther, S.; Glasschröder, J.; Reinhart, G. Integration and Interaction of Energy Flexible Manufacturing Systems within a Smart Grid. Procedia CIRP 2017, 61, 416â421. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kempener, R.; Komor, P.; Hoke, A. Smart Grids and Renewables, A Guide for Effective Deployment, Working Paper. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/smart_grids.pdf?la=en&hash=08F3E571 B5580F017E70BCD1EC39864536681ADB (accessed on 8 October 2021). Energies 2022, 15, 3382 15 of 16
Paper not yet in RePEc: Add citation now
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
Paper not yet in RePEc: Add citation now
- Konstantinou, M.; Peratikou, S.; Charalambides, A.G. Solar Photovoltaic Forecasting of Power Output Using LSTM Networks. Atmosphere 2021, 12, 124. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kumar, S.; Hussain, L.; Banarjee, S.; Reza, M. Energy Load Forecasting Using Deep Learning Approach-LSTM and GRU in Spark Cluster. In Proceedings of the 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), Kolkata, India, 12â13 January 2018; pp. 1â4. [CrossRef]
Paper not yet in RePEc: Add citation now
Laib, O.; Khadir, M.T.; Mihaylova, L. Toward Efficient Energy Systems Based on Natural Gas Consumption Prediction with LSTM Recurrent Neural Networks. Energy 2019, 177, 530â542. [CrossRef]
- Lisi, F.; Shah, I. Forecasting Next-Day Electricity Demand and Prices Based on Functional Models. Energy Syst. 2020, 11, 947â979. [CrossRef]
Paper not yet in RePEc: Add citation now
Luo, X.; Zhang, D.; Zhu, X. Deep Learning Based Forecasting of Photovoltaic Power Generation by Incorporating Domain Knowledge. Energy 2021, 225, 120240. [CrossRef]
- Luo, X.J.; Oyedele, L.O. Forecasting Building Energy Consumption: Adaptive Long-Short Term Memory Neural Networks Driven by Genetic Algorithm. Adv. Eng. Inform. 2021, 50, 101357. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ma, J.; Ma, X. A Review of Forecasting Algorithms and Energy Management Strategies for Microgrids. Syst. Sci. Control. Eng. 2018, 6, 237â248. [CrossRef]
Paper not yet in RePEc: Add citation now
- Manowska, A. Using the LSTM Network to Forecast the Demand for Electricity in Poland. Appl. Sci. 2020, 10, 8455. [CrossRef]
Paper not yet in RePEc: Add citation now
- Masembe, A. Reliability Benefit of Smart Grid Technologies: A Case for South Africa. J. Energy S. Afr. 2015, 26, 2â9. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mele, E.; Elias, C.; Ktena, A. Machine Learning Platform for Profiling and Forecasting at Microgrid Level. Electr. Control. Commun. Eng. 2019, 15, 21â29. [CrossRef]
Paper not yet in RePEc: Add citation now
- Palma-Behnke, R.; Reyes, L.; Jimenez-Estevez, G. Smart Grid Solutions for Rural Areas. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22â26 July 2012; pp. 1â6. [CrossRef]
Paper not yet in RePEc: Add citation now
Pao, H. Comparing Linear and Nonlinear Forecasts for Taiwanâs Electricity Consumption. Energy 2006, 31, 2129â2141. [CrossRef]
- Pena-Gallardo, R.; Medina-Rios, A. A Comparison of Deep Learning Methods for Wind Speed Forecasting. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4â6 November 2020; pp. 1â6. [CrossRef]
Paper not yet in RePEc: Add citation now
Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective Energy Consumption Forecasting Using Empirical Wavelet Transform and Long Short-Term Memory. Energy 2022, 238, 121756. [CrossRef]
- Sabzehgar, R.; Amirhosseini, D.Z.; Rasouli, M. Solar Power Forecast for a Residential Smart Microgrid Based on Numerical Weather Predictions Using Artificial Intelligence Methods. J. Build. Eng. 2020, 32, 101629. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv 2014, arXiv:1402.1128.
Paper not yet in RePEc: Add citation now
- Samad, T.; Kiliccote, S. Smart Grid Technologies and Applications for the Industrial Sector. Comput. Chem. Eng. 2012, 47, 76â84. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shah, I.; Bibi, H.; Ali, S.; Wang, L.; Yue, Z. Forecasting One-Day-Ahead Electricity Prices for Italian Electricity Market Using Parametric and Nonparametric Approaches. IEEE Access 2020, 8, 123104â123113. [CrossRef]
Paper not yet in RePEc: Add citation now
Shah, I.; Iftikhar, H.; Ali, S. Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique. Forecasting 2020, 2, 163â179. [CrossRef]
Shah, I.; Iftikhar, H.; Ali, S.; Wang, D. Short-term electricity demand forecasting using components estimation technique. Energies 2019, 12, 2532. [CrossRef]
- Shahid, A. Smart Grid Integration of Renewable Energy Systems. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14â17 October 2018; pp. 944â948. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shulyma, O.; Shendryk, V.; Baranova, I.; Marchenko, A. The Features of the Smart MicroGrid as the Object of Information Modeling. In Information and Software Technologies, 2nd ed.; Dregvaite, G., Damasevicius, R., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 465, pp. 12â23. [CrossRef]
Paper not yet in RePEc: Add citation now
- Siami-Namini, S.; Tavakoli, N.; Siami Namin, A. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17â20 December 2018; pp. 1394â1401. [CrossRef]
Paper not yet in RePEc: Add citation now
Somu, N.; Raman, M.R.G.; Ramamritham, K. A Deep Learning Framework for Building Energy Consumption Forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [CrossRef]
- Su, W.; Wang, J.; Zhang, K.; Huang, A.Q. Model Predictive Control-Based Power Dispatch for Distribution System Considering Plug-in Electric Vehicle Uncertainty. Electr. Power Syst. Res. 2014, 106, 29â35. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sun, Y.; Haghighat, F.; Fung, B.C.M. A Review of The-State-of-the-Art in Data-Driven Approaches for Building Energy Prediction. Energy Build. 2020, 221, 110022. [CrossRef]
Paper not yet in RePEc: Add citation now
Wang, J.Q.; Du, Y.; Wang, J. LSTM Based Long-Term Energy Consumption Prediction with Periodicity. Energy 2020, 197, 117197. [CrossRef]
- Wang, Y.; Huang, Y.; Wang, Y.; Li, F.; Zhang, Y.; Tian, C. Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response. Sustainability 2018, 10, 847. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wood, D.A. Hourly-Averaged Solar plus Wind Power Generation for Germany 2016: Long-Term Prediction, Short-Term Forecasting, Data Mining and Outlier Analysis. Sustain. Cities Soc. 2020, 60, 102227. [CrossRef]
Paper not yet in RePEc: Add citation now
- Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating Renewable Energy in Smart Grid System: Architecture, Virtualization and Analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Googleâs Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
Paper not yet in RePEc: Add citation now
- Yang, H.-T.; Huang, C.-M.; Huang, C.-L. Identification of ARMAX Model for Short Term Load Forecasting: An Evolutionary Programming Approach. IEEE Trans. Power Syst. 1996, 11, 403â408. [CrossRef]
Paper not yet in RePEc: Add citation now
Yaprakdal, F.; Yılmaz, M.B.; Baysal, M.; Anvari-Moghaddam, A. A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid. Sustainability 2020, 12, 1653. [CrossRef]
- Zhang, W.; Zhang, H.; Liu, J.; Li, K.; Yang, D.; Tian, H. Weather Prediction with Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System. IEEE/CAA J. Autom. Sinica 2017, 4, 520â525. [CrossRef]
Paper not yet in RePEc: Add citation now