create a website

Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant. (2022). Urban, Wieslaw ; Slowik, Maciej.
In: Energies.
RePEc:gam:jeners:v:15:y:2022:i:9:p:3382-:d:809621.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 62

References cited by this document

Cocites: 23

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network. (2022). Panagiotou, Dimitrios K ; Dounis, Anastasios I.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:17:p:6453-:d:906048.

    Full description at Econpapers || Download paper

  2. Machine Learning in Operating of Low Voltage Future Grid. (2022). Pijarski, Pawe ; Mroczek, Bartomiej.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:15:p:5388-:d:871807.

    Full description at Econpapers || Download paper

  3. Energy Savings in Production Processes as a Key Component of the Global Energy Problem—The Introduction to the Special Issue of Energies. (2022). Urban, Wieslaw.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:14:p:5158-:d:864064.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E.; Ou Ali, I.H. CNN-LSTM: An Efficient Hybrid Deep Learning Architecture for Predicting Short-Term Photovoltaic Power Production. Electr. Power Syst. Res. 2022, 208, 107908. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Ahmad, A.; Javaid, N.; Mateen, A.; Awais, M.; Khan, Z.A. Short-Term Load Forecasting in Smart Grids: An Intelligent Modular Approach. Energies 2019, 12, 164. [CrossRef]

  3. Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]

  4. Ahn, H.K.; Park, N. Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors. Energies 2021, 14, 436. [CrossRef]

  5. Alotaibi, I.; Abido, M.A.; Khalid, M.; Savkin, A.V. A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources. Energies 2020, 13, 6269. [CrossRef]

  6. Aykroyd, G.R.; Alfaer, N. Sequential Models for Time-evolving Regression Problems with an Application to Energy Demand Prediction. Stoch. Modeling Appl. 2016, 20, 1–16.
    Paper not yet in RePEc: Add citation now
  7. Bibi, N.; Shah, I.; Alsubie, A.; Ali, S.; Lone, S.A. Electricity Spot Prices Forecasting Based on Ensemble Learning. IEEE Access 2021, 9, 150984–150992. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Bilgili, M.; Arslan, N.; Sekertekin, A.; Yasar, A. Application of long short-term memory (LSTM) neural network based on deep learning for electricity energy consumption forecasting. Turk. J. Elec. Eng. Comp. Sci. 2022, 30, 140–157. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Brahma, B.; Wadhvani, R. Solar Irradiance Forecasting Based on Deep Learning Methodologies and Multi-Site Data. Symmetry 2020, 12, 1830. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Choi, J.Y.; Lee, B. Combining LSTM Network Ensemble via Adaptive Weighting for Improved Time Series Forecasting. Math. Probl. Eng. 2018, 2018, 2470171. [CrossRef]

  11. Considine, T.; Cox, W.; Cazalet, E.G. Understanding Microgrids as the Essential Architecture of Smart Energy. In Proceedings of the Grid-Interop Forum 2012, Irving, TX, USA, 3–6 December 2012. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. del Real, A.J.; Dorado, F.; Durán, J. Energy Demand Forecasting Using Deep Learning: Applications for the French Grid. Energies 2020, 13, 2242. [CrossRef]

  13. Deligiannidis, S.; Mesaritakis, C.; Bogris, A. Performance and Complexity Evaluation of Recurrent Neural Network Models for Fibre Nonlinear Equalization in Digital Coherent Systems. In 2020 European Conference on Optical Communications (ECOC); IEEE: Brussels, Belgium, 2020; pp. 1–4. [CrossRef] Energies 2022, 15, 3382 16 of 16
    Paper not yet in RePEc: Add citation now
  14. Diebold, F.X.; Mariano, R.S. Comparing Predictive Accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [CrossRef]

  15. Elattar, E.E.; Sabiha, N.A.; Alsharef, M.; Metwaly, M.K.; Abd-Elhady, A.M.; Taha, I.B.M. Short Term Electric Load Forecasting Using Hybrid Algorithm for Smart Cities. Appl. Intell. 2020, 50, 3379–3399. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Emami, A.; Sarvi, M.; Asadi Bagloee, S. Using Kalman Filter Algorithm for Short-Term Traffic Flow Prediction in a Connected Vehicle Environment. J. Mod. Transport. 2019, 27, 222–232. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Fang, T.; Lahdelma, R. Evaluation of a Multiple Linear Regression Model and SARIMA Model in Forecasting Heat Demand for District Heating System. Appl. Energy 2016, 179, 544–552. [CrossRef]

  18. Graves, A.; Liwicki, M.; Fernandez, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868. [CrossRef]
    Paper not yet in RePEc: Add citation now
  19. Hirose, K.; Wada, K.; Hori, M.; Taniguchi, R. Event Effects Estimation on Electricity Demand Forecasting. Energies 2020, 13, 5839. [CrossRef]

  20. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Jeon, B.; Kim, E.-J. Next-Day Prediction of Hourly Solar Irradiance Using Local Weather Forecasts and LSTM Trained with Non-Local Data. Energies 2020, 13, 5258. [CrossRef]

  22. Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly Accurate Energy Consumption Forecasting Model Based on Parallel LSTM Neural Networks. Adv. Eng. Inform. 2022, 51, 101442. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Kang, T.; Lim, D.Y.; Tayara, H.; Chong, K.T. Forecasting of Power Demands Using Deep Learning. Appl. Sci. 2020, 10, 7241. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Karijadi, I.; Chou, S.-Y. A Hybrid RF-LSTM Based on CEEMDAN for Improving the Accuracy of Building Energy Consumption Prediction. Energy Build. 2022, 259, 111908. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Kaur, D.; Islam, S.N.; Mahmud, M.A.; Dong, Z. Energy Forecasting in Smart Grid Systems: A Review of the State-of-the-Art Techniques. arXiv 2020, arXiv:2011.12598.
    Paper not yet in RePEc: Add citation now
  26. Keller, F.; Schultz, C.; Simon, P.; Braunreuther, S.; Glasschröder, J.; Reinhart, G. Integration and Interaction of Energy Flexible Manufacturing Systems within a Smart Grid. Procedia CIRP 2017, 61, 416–421. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Kempener, R.; Komor, P.; Hoke, A. Smart Grids and Renewables, A Guide for Effective Deployment, Working Paper. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2013/smart_grids.pdf?la=en&hash=08F3E571 B5580F017E70BCD1EC39864536681ADB (accessed on 8 October 2021). Energies 2022, 15, 3382 15 of 16
    Paper not yet in RePEc: Add citation now
  28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980.
    Paper not yet in RePEc: Add citation now
  29. Konstantinou, M.; Peratikou, S.; Charalambides, A.G. Solar Photovoltaic Forecasting of Power Output Using LSTM Networks. Atmosphere 2021, 12, 124. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Kumar, S.; Hussain, L.; Banarjee, S.; Reza, M. Energy Load Forecasting Using Deep Learning Approach-LSTM and GRU in Spark Cluster. In Proceedings of the 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), Kolkata, India, 12–13 January 2018; pp. 1–4. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Laib, O.; Khadir, M.T.; Mihaylova, L. Toward Efficient Energy Systems Based on Natural Gas Consumption Prediction with LSTM Recurrent Neural Networks. Energy 2019, 177, 530–542. [CrossRef]

  32. Lisi, F.; Shah, I. Forecasting Next-Day Electricity Demand and Prices Based on Functional Models. Energy Syst. 2020, 11, 947–979. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Luo, X.; Zhang, D.; Zhu, X. Deep Learning Based Forecasting of Photovoltaic Power Generation by Incorporating Domain Knowledge. Energy 2021, 225, 120240. [CrossRef]

  34. Luo, X.J.; Oyedele, L.O. Forecasting Building Energy Consumption: Adaptive Long-Short Term Memory Neural Networks Driven by Genetic Algorithm. Adv. Eng. Inform. 2021, 50, 101357. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Ma, J.; Ma, X. A Review of Forecasting Algorithms and Energy Management Strategies for Microgrids. Syst. Sci. Control. Eng. 2018, 6, 237–248. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Manowska, A. Using the LSTM Network to Forecast the Demand for Electricity in Poland. Appl. Sci. 2020, 10, 8455. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Masembe, A. Reliability Benefit of Smart Grid Technologies: A Case for South Africa. J. Energy S. Afr. 2015, 26, 2–9. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Mele, E.; Elias, C.; Ktena, A. Machine Learning Platform for Profiling and Forecasting at Microgrid Level. Electr. Control. Commun. Eng. 2019, 15, 21–29. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Palma-Behnke, R.; Reyes, L.; Jimenez-Estevez, G. Smart Grid Solutions for Rural Areas. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–6. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Pao, H. Comparing Linear and Nonlinear Forecasts for Taiwan’s Electricity Consumption. Energy 2006, 31, 2129–2141. [CrossRef]

  41. Pena-Gallardo, R.; Medina-Rios, A. A Comparison of Deep Learning Methods for Wind Speed Forecasting. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020; pp. 1–6. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective Energy Consumption Forecasting Using Empirical Wavelet Transform and Long Short-Term Memory. Energy 2022, 238, 121756. [CrossRef]

  43. Sabzehgar, R.; Amirhosseini, D.Z.; Rasouli, M. Solar Power Forecast for a Residential Smart Microgrid Based on Numerical Weather Predictions Using Artificial Intelligence Methods. J. Build. Eng. 2020, 32, 101629. [CrossRef]
    Paper not yet in RePEc: Add citation now
  44. Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition. arXiv 2014, arXiv:1402.1128.
    Paper not yet in RePEc: Add citation now
  45. Samad, T.; Kiliccote, S. Smart Grid Technologies and Applications for the Industrial Sector. Comput. Chem. Eng. 2012, 47, 76–84. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Shah, I.; Bibi, H.; Ali, S.; Wang, L.; Yue, Z. Forecasting One-Day-Ahead Electricity Prices for Italian Electricity Market Using Parametric and Nonparametric Approaches. IEEE Access 2020, 8, 123104–123113. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Shah, I.; Iftikhar, H.; Ali, S. Modeling and Forecasting Medium-Term Electricity Consumption Using Component Estimation Technique. Forecasting 2020, 2, 163–179. [CrossRef]

  48. Shah, I.; Iftikhar, H.; Ali, S.; Wang, D. Short-term electricity demand forecasting using components estimation technique. Energies 2019, 12, 2532. [CrossRef]

  49. Shahid, A. Smart Grid Integration of Renewable Energy Systems. In Proceedings of the 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA), Paris, France, 14–17 October 2018; pp. 944–948. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Shulyma, O.; Shendryk, V.; Baranova, I.; Marchenko, A. The Features of the Smart MicroGrid as the Object of Information Modeling. In Information and Software Technologies, 2nd ed.; Dregvaite, G., Damasevicius, R., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 465, pp. 12–23. [CrossRef]
    Paper not yet in RePEc: Add citation now
  51. Siami-Namini, S.; Tavakoli, N.; Siami Namin, A. A Comparison of ARIMA and LSTM in Forecasting Time Series. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 1394–1401. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Somu, N.; Raman, M.R.G.; Ramamritham, K. A Deep Learning Framework for Building Energy Consumption Forecast. Renew. Sustain. Energy Rev. 2021, 137, 110591. [CrossRef]

  53. Su, W.; Wang, J.; Zhang, K.; Huang, A.Q. Model Predictive Control-Based Power Dispatch for Distribution System Considering Plug-in Electric Vehicle Uncertainty. Electr. Power Syst. Res. 2014, 106, 29–35. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Sun, Y.; Haghighat, F.; Fung, B.C.M. A Review of The-State-of-the-Art in Data-Driven Approaches for Building Energy Prediction. Energy Build. 2020, 221, 110022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  55. Wang, J.Q.; Du, Y.; Wang, J. LSTM Based Long-Term Energy Consumption Prediction with Periodicity. Energy 2020, 197, 117197. [CrossRef]

  56. Wang, Y.; Huang, Y.; Wang, Y.; Li, F.; Zhang, Y.; Tian, C. Operation Optimization in a Smart Micro-Grid in the Presence of Distributed Generation and Demand Response. Sustainability 2018, 10, 847. [CrossRef]
    Paper not yet in RePEc: Add citation now
  57. Wood, D.A. Hourly-Averaged Solar plus Wind Power Generation for Germany 2016: Long-Term Prediction, Short-Term Forecasting, Data Mining and Outlier Analysis. Sustain. Cities Soc. 2020, 60, 102227. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; Van Mierlo, J. Integrating Renewable Energy in Smart Grid System: Architecture, Virtualization and Analysis. Sustain. Energy Grids Netw. 2019, 18, 100226. [CrossRef]
    Paper not yet in RePEc: Add citation now
  59. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016, arXiv:1609.08144.
    Paper not yet in RePEc: Add citation now
  60. Yang, H.-T.; Huang, C.-M.; Huang, C.-L. Identification of ARMAX Model for Short Term Load Forecasting: An Evolutionary Programming Approach. IEEE Trans. Power Syst. 1996, 11, 403–408. [CrossRef]
    Paper not yet in RePEc: Add citation now
  61. Yaprakdal, F.; Yılmaz, M.B.; Baysal, M.; Anvari-Moghaddam, A. A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid. Sustainability 2020, 12, 1653. [CrossRef]

  62. Zhang, W.; Zhang, H.; Liu, J.; Li, K.; Yang, D.; Tian, H. Weather Prediction with Multiclass Support Vector Machines in the Fault Detection of Photovoltaic System. IEEE/CAA J. Autom. Sinica 2017, 4, 520–525. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Control of Operational Modes of an Urban Distribution Grid under Conditions of Uncertainty. (2023). Onka, Zsolt ; Beryozkina, Svetlana ; Tavarov, Saidjon Shiralievich ; Matrenin, Pavel ; Safaraliev, Murodbek ; Senyuk, Mihail ; Zicmane, Inga ; Sidorov, Alexander.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:8:p:3497-:d:1125598.

    Full description at Econpapers || Download paper

  2. An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks. (2023). Radhoush, Sepideh ; Nehrir, Hashem ; Whitaker, Bradley M.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:16:p:5972-:d:1216849.

    Full description at Econpapers || Download paper

  3. Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead. (2023). Leonowicz, Zbigniew ; Shahzad, Sulman ; Akhtar, Saima ; Gono, Radomir ; Jasiski, Micha ; Kilic, Heybet ; Ullah, Hafiz Sami ; Zaheer, Asad.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:10:p:4060-:d:1145829.

    Full description at Econpapers || Download paper

  4. Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing. (2023). Lopez-Lorente, Javier ; Tziolis, Georgios ; Makrides, George ; Georghiou, George E ; Spanias, Chrysovalantis ; Livera, Andreas ; Theocharides, Spyros ; Theodoride, Maria.
    In: Energy.
    RePEc:eee:energy:v:271:y:2023:i:c:s0360544223004127.

    Full description at Econpapers || Download paper

  5. Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant. (2022). Urban, Wieslaw ; Slowik, Maciej.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:9:p:3382-:d:809621.

    Full description at Econpapers || Download paper

  6. Long-Term Electricity Demand Forecasting in the Steel Complex Micro-Grid Electricity Supply Chain—A Coupled Approach. (2022). Kazemi, Seyed Mohammad ; Moalem, Sepehr ; Ahari, Roya M ; Moazzami, Majid ; Shahgholian, Ghazanfar.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:21:p:7972-:d:954847.

    Full description at Econpapers || Download paper

  7. Machine Learning-Based Load Forecasting for Nanogrid Peak Load Cost Reduction. (2022). Yan, Bing ; Kumar, Akash ; Bilton, Ace.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:18:p:6721-:d:914807.

    Full description at Econpapers || Download paper

  8. Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids. (2022). Merrad, Yaine ; Gunawan, Teddy Surya ; Toha, Siti Fauziah ; Mesri, Mokhtaria ; Habaebi, Mohamed Hadi ; Islam, Md Rafiqul.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:12:p:4461-:d:842434.

    Full description at Econpapers || Download paper

  9. Forecasting: theory and practice. (2022). Thomakos, Dimitrios ; Shang, Han Lin ; Sermpinis, Georgios ; Rubaszek, Michał ; Reade, J ; Paccagnini, Alessia ; Martinez, Andrew ; Li, Feng ; Hendry, David ; Guidolin, Massimo ; Grossi, Luigi ; Franses, Philip Hans ; Fiszeder, Piotr ; Clements, Michael ; Castle, Jennifer ; Babai, Mohamed Zied ; Assimakopoulos, Vassilios ; Pedregal, Diego J ; Trapero, Juan Ramon ; Meeran, Sheik ; Koehler, Anne B ; Guseo, Renato ; Gunter, Ulrich ; Barrow, Devon K ; Pavia, Jose M ; de Baets, Shari ; Talagala, Priyanga Dilini ; Januschowski, Tim ; Frazier, David T ; Jeon, Jooyoung ; Hollyman, Ross ; Panagiotelis, Anastasios ; Petropoulos, Fotios ; Gilliland, Michael ; Thorarinsdottir, Thordis ; Boylan, John E ; Winkler, Robert L ; Yusupova, Alisa ; Ziel, Florian ; Pinson, Pierre ; Rapach, David E ; Ellison, Joanne ; Bessa, Ricardo J ; Dokumentov, Alexander ; Cyrino, Fernando Luiz ; Modis, Theodore ; Apiletti, Daniele ; Browell, Jethro ; Goodwin, Paul ; Kang, Yanfei ; Pedio, Manuela ; Kolassa, Stephan ; Carnevale, Claudio ; Ramos, Patricia ; Grushka-Cockayne, Yael ; Todini, Ezio ; Makridakis, Spyros ; Cordeiro, Clara ; Cirillo, Pasquale ; Wang, Xiaoqian ; Spiliotis, Evangelos ; Tashman, Len ; ben Taieb, Souhaib ; Bergmeir, Christoph ; Bijak, Jakub ; Kourentzes, Nikolaos ; Guo, Xiaojia ; Nikolopoulos, Konstantinos ; Leva, Sonia ; Rostami-Tabar, Bahman ; Panapakidis, Ioannis ; Harvey, Nigel ; Richmond, Victor ; Onkal, Dilek ; Litsiou, Konstantia ; Gonul, Sinan M ; Syntetos, Aris A.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:38:y:2022:i:3:p:705-871.

    Full description at Econpapers || Download paper

  10. Electrical Load Demand Forecasting Using Feed-Forward Neural Networks. (2021). Guedes, Vanessa ; Pinto, Tiago ; Morais, Hugo ; Machado, Eduardo.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:22:p:7644-:d:679891.

    Full description at Econpapers || Download paper

  11. Advances in the Application of Machine Learning Techniques for Power System Analytics: A Survey. (2021). Miraftabzadeh, Seyed Mahdi ; Igual, Raul ; Longo, Michela ; Pasetti, Marco ; Foiadelli, Federica.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:16:p:4776-:d:609357.

    Full description at Econpapers || Download paper

  12. Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience. (2021). Moncecchi, Matteo ; Merlo, Marco ; Morotti, Andrea ; Bosisio, Alessandro.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:14:p:4133-:d:591057.

    Full description at Econpapers || Download paper

  13. Minutely Active Power Forecasting Models Using Neural Networks. (2020). Kontogiannis, Dimitrios ; Bargiotas, Dimitrios ; Daskalopulu, Aspassia.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:8:p:3177-:d:345620.

    Full description at Econpapers || Download paper

  14. A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid. (2020). Baysal, Mustafa ; Yaprakdal, Fatma ; Yilmaz, Berkay M ; Anvari-Moghaddam, Amjad.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:4:p:1653-:d:324095.

    Full description at Econpapers || Download paper

  15. Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid. (2020). Kim, Yunsun ; Son, Heung-Gu.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:9:p:2377-:d:355978.

    Full description at Econpapers || Download paper

  16. A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical Energy Consumption Forecasting in a Smart Grid. (2020). Shafiq, Zeeshan ; Wadud, Zahid ; Ali, Mohammad Usman ; Alimgeer, Khurram Saleem ; Khan, Imran ; Hafeez, Ghulam ; Derhab, Abdelouahid.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:9:p:2244-:d:353681.

    Full description at Econpapers || Download paper

  17. Intelligent Systems for Power Load Forecasting: A Study Review. (2020). Snasel, Vaclav ; Misak, Stanislav ; Jahan, Ibrahim Salem.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:6105-:d:448942.

    Full description at Econpapers || Download paper

  18. Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler. (2020). Ali, Usman ; Ayub, Nasir ; Irfan, Muhammad ; Awais, Muhammad ; Hamdi, Mohammed ; Muhammad, Fazal ; Alghamdi, Abdullah.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:19:p:5193-:d:424040.

    Full description at Econpapers || Download paper

  19. Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control. (2020). Nivet, Marie-Laure ; Duchaud, Jean-Laurent ; Notton, Gilles ; Voyant, Cyril ; Fouilloy, Alexis.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:14:p:3565-:d:382948.

    Full description at Econpapers || Download paper

  20. Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. (2020). Ahmad, Waqas ; Ali, Tariq ; Ayub, Nasir ; Shiraz, Muhammad ; Irfan, Muhammad ; Awais, Muhammad ; Glowacz, Adam.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:11:p:2907-:d:368029.

    Full description at Econpapers || Download paper

  21. Game Theoretical Energy Management with Storage Capacity Optimization and Photo-Voltaic Cell Generated Power Forecasting in Micro Grid. (2019). Javaid, Nadeem ; Alhussein, Musaed ; Rasheed, Muhammad Babar ; Aurangzeb, Khursheed ; Naz, Aqdas ; Haseeb, Abdul.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:10:p:2763-:d:231102.

    Full description at Econpapers || Download paper

  22. Research on Short-Term Load Prediction Based on Seq2seq Model. (2019). Wen, Yafeng ; An, Xiaonan ; Chen, SI ; Sun, Shuyan ; Mahato, Nawaraj Kumar ; Gong, Gangjun.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:16:p:3199-:d:259358.

    Full description at Econpapers || Download paper

  23. Short-Term Electric Power Demand Forecasting Using NSGA II-ANFIS Model. (2019). Menezes, Raimundo ; de Souza, Nilmar ; Jadidi, Aydin ; de Castro, Antonio Cezar.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:10:p:1891-:d:232249.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-02 22:05:46 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.