- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Abdelrahim, M.; Merlosy, C.; Wang, T. Hybrid Machine Learning Approaches: A Method to Improve Expected Output of Semi-Structured Sequential Data. In Proceedings of the 2016 IEEE 10th International Conference on Semantic Computing, ICSC 2016, Laguna Hills, CA, USA, 4–6 February 2016; pp. 342–345.
Paper not yet in RePEc: Add citation now
- Afgan, N.H.; Carvalho, M.G. Sustainability Assessment of a Hybrid Energy System. Energy Policy 2008, 36, 2903–2910. [CrossRef]
Paper not yet in RePEc: Add citation now
- Afridi, Y.S.; Ahmad, K.; Hassan, L. Artificial Intelligence Based Prognostic Maintenance of Renewable Energy Systems: A Review of Techniques, Challenges, and Future Research Directions. Int. J. Energy Res. 2021, 46, 21619–21642. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics Systems and Artificial Intelligence: Applications of Industry 4.0. Energy Rep. 2022, 8, 334–361. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ahmed, A.; Khalid, M. A Review on the Selected Applications of Forecasting Models in Renewable Power Systems. Renew. Sustain. Energy Rev. 2019, 100, 9–21. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ajagekar, A.; You, F. Quantum Computing and Quantum Artificial Intelligence for Renewable and Sustainable Energy: A Emerging Prospect towards Climate Neutrality. Renew. Sustain. Energy Rev. 2022, 165, 112493. [CrossRef]
Paper not yet in RePEc: Add citation now
- AL-Musaylh, M.S.; Deo, R.C.; Adamowski, J.F.; Li, Y. Short-Term Electricity Demand Forecasting Using Machine Learning Methods Enriched with Ground-Based Climate and ECMWF Reanalysis Atmospheric Predictors in Southeast Queensland, Australia. Renew. Sustain. Energy Rev. 2019, 113, 109293. [CrossRef]
Paper not yet in RePEc: Add citation now
- Aler, R.; Huertas-Tato, J.; Valls, J.M.; Galván, I.M. Improving Prediction Intervals Using Measured Solar Power with a MultiObjective Approach. Energies 2019, 12, 4713. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alhanaf, A.S.; Balik, H.H.; Farsadi, M. Intelligent Fault Detection and Classification Schemes for Smart Grids Based on Deep Neural Networks. Energies 2023, 16, 7680. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ali, S.S.; Choi, B.J. State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review. Electronics 2020, 9, 1030. [CrossRef] Energies 2023, 16, 8057 27 of 27
Paper not yet in RePEc: Add citation now
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–21.
Paper not yet in RePEc: Add citation now
- AlShabi, M.; El Haj Assad, M. Artificial Intelligence Applications in Renewable Energy Systems. In Design and Performance Optimization of Renewable Energy Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 251–295, ISBN 9780128216026.
Paper not yet in RePEc: Add citation now
- Asghar, M.R.; Dán, G.; Miorandi, D.; Chlamtac, I. Smart Meter Data Privacy: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2820–2835. [CrossRef]
Paper not yet in RePEc: Add citation now
- Barlev, D.; Vidu, R.; Stroeve, P. Innovation in Concentrated Solar Power. Sol. Energy Mater. Sol. Cells 2011, 95, 2703–2725. [CrossRef]
Paper not yet in RePEc: Add citation now
- Benali, L.; Notton, G.; Fouilloy, A.; Voyant, C.; Dizene, R. Solar Radiation Forecasting Using Artificial Neural Network and Random Forest Methods: Application to Normal Beam, Horizontal Diffuse and Global Components. Renew. Energy 2019, 132, 871–884. [CrossRef]
Paper not yet in RePEc: Add citation now
- Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum Machine Learning. Nature 2017, 549, 195–202. [CrossRef]
Paper not yet in RePEc: Add citation now
Boza, P.; Evgeniou, T. Artificial Intelligence to Support the Integration of Variable Renewable Energy Sources to the Power System. Appl. Energy 2021, 290, 116754. [CrossRef]
- Braswell, G. Artificial Intelligence Comes of Age in Oil and Gas. J. Pet. Technol. 2013, 65, 50–57. [CrossRef]
Paper not yet in RePEc: Add citation now
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
Paper not yet in RePEc: Add citation now
- Brouwer, A.S.; Van Den Broek, M.; Seebregts, A.; Faaij, A. Impacts of Large-Scale Intermittent Renewable Energy Sources on Electricity Systems, and How These Can Be Modeled. Renew. Sustain. Energy Rev. 2014, 33, 443–466. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A Review of Artificial Neural Network Models for Ambient Air Pollution Prediction. Environ. Model. Softw. 2019, 119, 285–304. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cao, B.; Dong, W.; Lv, Z.; Gu, Y.; Singh, S.; Kumar, P. Hybrid Microgrid Many-Objective Sizing Optimization with Fuzzy Decision. IEEE Trans. Fuzzy Syst. 2020, 28, 2702–2710. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends. Neurocomputing 2020, 408, 189–215. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chen, Y.; Zhang, D.; Li, X.; Peng, Y.; Wu, C.; Pu, H.; Zhou, D.; Cao, Y.; Zhang, J. Significant Wave Height Prediction through Artificial Intelligent Mode Decomposition for Wave Energy Management. Energy AI 2023, 14, 100257. [CrossRef]
Paper not yet in RePEc: Add citation now
- Choi, S.R.; Lee, M. Transformer Architecture and Attention Mechanisms in Genome Data Analysis: A Comprehensive Review. Biology 2023, 12, 1033. [CrossRef]
Paper not yet in RePEc: Add citation now
Chou, J.S.; Tran, D.S. Forecasting Energy Consumption Time Series Using Machine Learning Techniques Based on Usage Patterns of Residential Householders. Energy 2018, 165, 709–726. [CrossRef]
- Chowdhury, G.G. Natural Language Processing. Inf. Sci. Technol. 2003, 37, 51–89. [CrossRef]
Paper not yet in RePEc: Add citation now
- Confalonieri, R.; Coba, L.; Wagner, B.; Besold, T.R. A Historical Perspective of Explainable Artificial Intelligence. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1391. [CrossRef]
Paper not yet in RePEc: Add citation now
- Damon Matthews, H.; Wynes, S. Current Global Efforts Are Insufficient to Limit Warming to 1.5 ◦C. Science 2022, 376, 1404–1409. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Dehghani, M.; Trojovská, E.; Trojovský, P. A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems on the Base of Simulation of Driving Training Process. Sci. Rep. 2022, 12, 9924. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Deng, X.; Lv, T. Power System Planning with Increasing Variable Renewable Energy: A Review of Optimization Models. J. Clean. Prod. 2020, 246, 118962. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dewitte, S.; Cornelis, J.P.; Müller, R.; Munteanu, A. Artificial Intelligence Revolutionises Weather Forecast, Climate Monitoring and Decadal Prediction. Remote. Sens. 2021, 13, 3209. [CrossRef]
Paper not yet in RePEc: Add citation now
- Diahovchenko, I.; Kolcun, M.; Čonka, Z.; Savkiv, V.; Mykhailyshyn, R. Progress and Challenges in Smart Grids: Distributed Generation, Smart Metering, Energy Storage and Smart Loads. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1319–1333. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dimd, B.D.; Voller, S.; Cali, U.; Midtgard, O.M. A Review of Machine Learning-Based Photovoltaic Output Power Forecasting: Nordic Context. IEEE Access 2022, 10, 26404–26425. [CrossRef]
Paper not yet in RePEc: Add citation now
- Doddy Clarke, E.; Sweeney, C. Solar Energy and Weather. In Solar Energy Forecasting and Resource Assessment; Elsevier Inc.: Amsterdam, The Netherlands, 2022; Volume 77, pp. 90–91, ISBN 9780123971777.
Paper not yet in RePEc: Add citation now
- Dogaru, D.I.; Dumitrache, I. Cyber Security of Smart Grids in the Context of Big Data and Machine Learning. In Proceedings of the 2019 22nd International Conference on Control Systems and Computer Science, CSCS 2019, Bucharest, Romania, 28–30 May 2019; pp. 61–67.
Paper not yet in RePEc: Add citation now
- Donadio, L.; Fang, J.; Porté-Agel, F. Numerical Weather Prediction and Artificial Neural Network Coupling for Wind Energy Forecast. Energies 2021, 14, 338. [CrossRef]
Paper not yet in RePEc: Add citation now
- El Bouchefry, K.; de Souza, R.S. Learning in Big Data: Introduction to Machine Learning. In Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 225–249, ISBN 9780128191552.
Paper not yet in RePEc: Add citation now
- Fan, X.; Li, Y. Energy Management of Renewable Based Power Grids Using Artificial Intelligence: Digital Twin of Renewables. Sol. Energy 2023, 262, 111867. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fan, Z.; Fan, B.; Peng, J.; Liu, W. Operation Loss Minimization Targeted Distributed Optimal Control of DC Microgrids. IEEE Syst. J. 2020, 15, 5186–5196. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ferrari, F.; Besio, G.; Cassola, F.; Mazzino, A. Optimized Wind and Wave Energy Resource Assessment and Offshore Exploitability in the Mediterranean Sea. Energy 2019, 190, 116447. [CrossRef]
Paper not yet in RePEc: Add citation now
- García Márquez, F.P.; Peinado Gonzalo, A. A Comprehensive Review of Artificial Intelligence and Wind Energy. Arch. Comput. Methods Eng. 2022, 29, 2935–2958. [CrossRef] Energies 2023, 16, 8057 24 of 27
Paper not yet in RePEc: Add citation now
- Garud, K.S.; Jayaraj, S.; Lee, M.Y. A Review on Modeling of Solar Photovoltaic Systems Using Artificial Neural Networks, Fuzzy Logic, Genetic Algorithm and Hybrid Models. Int. J. Energy Res. 2021, 45, 6–35. [CrossRef]
Paper not yet in RePEc: Add citation now
- Granovskii, M.; Dincer, I.; Rosen, M.A. Greenhouse Gas Emissions Reduction by Use of Wind and Solar Energies for Hydrogen and Electricity Production: Economic Factors. Int. J. Hydrogen Energy 2007, 32, 927–931. [CrossRef]
Paper not yet in RePEc: Add citation now
- Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A Guide to Machine Learning for Biologists. Nat. Rev. Mol. Cell Biol. 2022, 23, 40–55. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Gu, G.H.; Noh, J.; Kim, I.; Jung, Y. Machine Learning for Renewable Energy Materials. J. Mater. Chem. A Mater. 2019, 7, 17096–17117. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gupta, V.; Sharma, M.; Pachauri, R.K.; Dinesh Babu, K.N. Comprehensive Review on Effect of Dust on Solar Photovoltaic System and Mitigation Techniques. Sol. Energy 2019, 191, 596–622. [CrossRef]
Paper not yet in RePEc: Add citation now
- Guzman, A.L.; Lewis, S.C. Artificial Intelligence and Communication: A Human–Machine Communication Research Agenda. New Media Soc. 2020, 22, 70–86. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Hannan, M.A.; Al-Shetwi, A.Q.; Ker, P.J.; Begum, R.A.; Mansor, M.; Rahman, S.A.; Dong, Z.Y.; Tiong, S.K.; Mahlia, T.M.I.; Muttaqi, K.M. Impact of Renewable Energy Utilization and Artificial Intelligence in Achieving Sustainable Development Goals. Energy Rep. 2021, 7, 5359–5373. [CrossRef]
Paper not yet in RePEc: Add citation now
Harrou, F.; Sun, Y.; Taghezouit, B.; Dairi, A. Artificial Intelligence Techniques for Solar Irradiance and PV Modeling and Forecasting. Energies 2023, 16, 6731. [CrossRef]
- Haupt, S.E.; McCandless, T.C.; Dettling, S.; Alessandrini, S.; Lee, J.A.; Linden, S.; Petzke, W.; Brummet, T.; Nguyen, N.; Kosović, B.; et al. Combining Artificial Intelligence with Physics-Based Methods for Probabilistic Renewable Energy Forecasting. Energies 2020, 13, 1979. [CrossRef]
Paper not yet in RePEc: Add citation now
Herrera, G.P.; Constantino, M.; Su, J.J.; Naranpanawa, A. Renewable Energy Stocks Forecast Using Twitter Investor Sentiment and Deep Learning. Energy Econ. 2022, 114, 106285. [CrossRef]
Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial Intelligence Based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives. Appl. Energy 2021, 287, 116601. [CrossRef]
- Hirschberg, J.; Manning, C.D. Advances in Natural Language Processing. Science 2015, 349, 261–266. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
Hirth, L.; Ueckerdt, F.; Edenhofer, O. Integration Costs Revisited—An Economic Framework for Wind and Solar Variability. Renew. Energy 2015, 74, 925–939. [CrossRef]
- Ho, A.; Mcclean, J.; Ong, S.P. The Promise and Challenges of Quantum Computing for Energy Storage. Joule 2018, 2, 810–813. [CrossRef]
Paper not yet in RePEc: Add citation now
Hodge, B.M.; Brancucci Martinez-Anido, C.; Wang, Q.; Chartan, E.; Florita, A.; Kiviluoma, J. The Combined Value of Wind and Solar Power Forecasting Improvements and Electricity Storage. Appl. Energy 2018, 214, 1–15. [CrossRef]
- Ibrar, M.; Hassan, M.A.; Shaukat, K.; Alam, T.M.; Khurshid, K.S.; Hameed, I.A.; Aljuaid, H.; Luo, S. A Machine Learning-Based Model for Stability Prediction of Decentralized Power Grid Linked with Renewable Energy Resources. Wirel. Commun. Mob. Comput. 2022, 2022, 2697303. [CrossRef]
Paper not yet in RePEc: Add citation now
- IRENA. Advanced Forecasting of Variable Renewable Power Generation: Innovation Landscape Brief; IRENA: Masdar City, United Arab Emirates, 2020; ISBN 978-92-9260-179-9.
Paper not yet in RePEc: Add citation now
- IRENA. Renewable Capacity Statistics 2022; IRENA: Masdar City, United Arab Emirates, 2022.
Paper not yet in RePEc: Add citation now
- Jha, S.K.; Bilalovic, J.; Jha, A.; Patel, N.; Zhang, H. Renewable Energy: Present Research and Future Scope of Artificial Intelligence. Renew. Sustain. Energy Rev. 2017, 77, 297–317. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kambalimath, S.; Deka, P.C. A Basic Review of Fuzzy Logic Applications in Hydrology and Water Resources. Appl. Water Sci. 2020, 10, 191. [CrossRef]
Paper not yet in RePEc: Add citation now
- Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kingsford, C.; Salzberg, S.L. What Are Decision Trees? Nat. Biotechnol. 2008, 26, 1011–1012. [CrossRef]
Paper not yet in RePEc: Add citation now
Köhler, C.; Steiner, A.; Saint-Drenan, Y.M.; Ernst, D.; Bergmann-Dick, A.; Zirkelbach, M.; Ben Bouallègue, Z.; Metzinger, I.; Ritter, B. Critical Weather Situations for Renewable Energies—Part B: Low Stratus Risk for Solar Power. Renew. Energy 2017, 101, 794–803. [CrossRef]
- Koroteev, D.; Tekic, Z. Artificial Intelligence in Oil and Gas Upstream: Trends, Challenges, and Scenarios for the Future. Energy AI 2020, 3, 100041. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kroposki, B. Integrating High Levels of Variable Renewable Energy into Electric Power Systems. J. Mod. Power Syst. Clean. Energy 2017, 5, 831–837. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lai, Y.H.; Wu, Y.K. A Review of Methods for Estimating the Power Generation of Invisible Solar Sites. In Proceedings of the 2020 International Symposium on Computer, Consumer and Control, IS3C 2020, Taichung City, Taiwan, 13–19 November 2020; pp. 424–427.
Paper not yet in RePEc: Add citation now
Lebotsa, M.E.; Sigauke, C.; Bere, A.; Fildes, R.; Boylan, J.E. Short Term Electricity Demand Forecasting Using Partially Linear Additive Quantile Regression with an Application to the Unit Commitment Problem. Appl. Energy 2018, 222, 104–118. [CrossRef]
Li, P.; Zhang, C.; Long, H. Solar Power Interval Prediction via Lower and Upper Bound Estimation with a New Model Initialization Approach. Energies 2019, 12, 4146. [CrossRef]
- Li, Y.; Tao, Q.; Gong, Y. Digital Twin Simulation for Integration of Blockchain and Internet of Things for Optimal Smart Management of PV-Based Connected Microgrids. Sol. Energy 2023, 251, 306–314. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A Survey of Transformers. AI Open 2022, 3, 111–132. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, Z.; Sun, Y.; Xing, C.; Liu, J.; He, Y.; Zhou, Y.; Zhang, G. Artificial Intelligence Powered Large-Scale Renewable Integrations in Multi-Energy Systems for Carbon Neutrality Transition: Challenges and Future Perspectives. Energy AI 2022, 10, 100195. [CrossRef]
Paper not yet in RePEc: Add citation now
Lyu, W.; Liu, J. Artificial Intelligence and Emerging Digital Technologies in the Energy Sector. Appl. Energy 2021, 303, 117615. [CrossRef]
- Ma, Y.; Lv, Q.; Zhang, R.; Zhang, Y.; Zhu, H.; Yin, W. Short-Term Photovoltaic Power Forecasting Method Based on Irradiance Correction and Error Forecasting. Energy Rep. 2021, 7, 5495–5509. [CrossRef]
Paper not yet in RePEc: Add citation now
- Machlev, R.; Heistrene, L.; Perl, M.; Levy, K.Y.; Belikov, J.; Mannor, S.; Levron, Y. Explainable Artificial Intelligence (XAI) Techniques for Energy and Power Systems: Review, Challenges and Opportunities. Energy AI 2022, 9, 100169. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mantas, V.M.; Liu, Z.; Caro, C.; Pereira, A.J.S.C. Validation of TRMM Multi-Satellite Precipitation Analysis (TMPA) Products in the Peruvian Andes. Atmos. Res. 2015, 163, 132–145. [CrossRef]
Paper not yet in RePEc: Add citation now
- Martínez-lvarez, F.; Troncoso, A.; Riquelme, J.C.; Aguilar Ruiz, J.S. Energy Time Series Forecasting Based on Pattern Sequence Similarity. IEEE Trans. Knowl. Data Eng. 2011, 23, 1230–1243. [CrossRef]
Paper not yet in RePEc: Add citation now
Mayer, M.J.; Gróf, G. Extensive Comparison of Physical Models for Photovoltaic Power Forecasting. Appl. Energy 2021, 283, 116239. [CrossRef]
McCandless, T.; Dettling, S.; Ellen Haupt, S. Comparison of Implicit vs. Explicit Regime Identification in Machine Learning Methods for Solar Irradiance Prediction. Energies 2020, 13, 689. [CrossRef]
- Meenal, R.; Binu, D.; Ramya, K.C.; Michael, P.A.; Vinoth Kumar, K.; Rajasekaran, E.; Sangeetha, B. Weather Forecasting for Renewable Energy System: A Review. Arch. Comput. Methods Eng. 2022, 29, 2875–2891. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Lalas, D.P.; Moschovits, M.; Karagiannis, F.; Papakonstantinou, D. Models for Mid-Term Electricity Demand Forecasting Incorporating Weather Influences. Energy 2006, 31, 208–227. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mousavi, S.M.; Ghasemi, M.; Manshadi, M.D.; Mosavi, A. Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory. Mathematics 2021, 9, 871. [CrossRef]
Paper not yet in RePEc: Add citation now
- Msigwa, G.; Ighalo, J.O.; Yap, P.S. Considerations on Environmental, Economic, and Energy Impacts of Wind Energy Generation: Projections towards Sustainability Initiatives. Sci. Total Environ. 2022, 849, 157755. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nishant, R.; Kennedy, M.; Corbett, J. Artificial Intelligence for Sustainability: Challenges, Opportunities, and a Research Agenda. Int. J. Inf. Manag. 2020, 53, 102104. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nti, E.K.; Cobbina, S.J.; Attafuah, E.E.; Opoku, E.; Gyan, M.A. Environmental Sustainability Technologies in Biodiversity, Energy, Transportation and Water Management Using Artificial Intelligence: A Systematic Review. Sustain. Futur. 2022, 4, 100068. [CrossRef]
Paper not yet in RePEc: Add citation now
- Olympios, A.V.; McTigue, J.D.; Farres-Antunez, P.; Tafone, A.; Romagnoli, A.; Li, Y.; Ding, Y.; Steinmann, W.D.; Wang, L.; Chen, H.; et al. Progress and Prospects of Thermo-Mechanical Energy Storage-a Critical Review. Progress Energy 2020, 3, 022001. [CrossRef]
Paper not yet in RePEc: Add citation now
- Parrales, A.; Reyes-Téllez, E.D.; Ajbar, W.; Hernández, J.A. Artificial Neural Network Applied to the Renewable Energy System Performance. In Artificial Neural Networks for Renewable Energy Systems and Real-World Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 11–43, ISBN 9780128207932.
Paper not yet in RePEc: Add citation now
- Patra, J.C.; Modanese, C.; Acciarri, M. Artificial Neural Network-Based Modelling of Compensated Multi-Crystalline Solar-Grade Silicon under Wide Temperature Variations. IET Renew. Power Gener. 2016, 10, 1010–1016. [CrossRef]
Paper not yet in RePEc: Add citation now
- Peng, Z.; Peng, S.; Fu, L.; Lu, B.; Tang, J.; Wang, K.; Li, W. A Novel Deep Learning Ensemble Model with Data Denoising for Short-Term Wind Speed Forecasting. Energy Convers. Manag. 2020, 207, 112524. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pilania, G.; Gubernatis, J.E.; Lookman, T. Multi-Fidelity Machine Learning Models for Accurate Bandgap Predictions of Solids. Comput. Mater. Sci. 2017, 129, 156–163. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pinson, P.; Chevallier, C.; Kariniotakis, G.N. Trading Wind Generation from Short-Term Probabilistic Forecasts of Wind Power. IEEE Trans. Power Syst. 2007, 22, 1148–1156. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pu, Z.; Kalnay, E. Numerical Weather Prediction Basics: Models, Numerical Methods, and Data Assimilation. In Handbook of Hydrometeorological Ensemble Forecasting; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–31.
Paper not yet in RePEc: Add citation now
- Qazi, A.; Fayaz, H.; Wadi, A.; Raj, R.G.; Rahim, N.A.; Khan, W.A. The Artificial Neural Network for Solar Radiation Prediction and Designing Solar Systems: A Systematic Literature Review. J. Clean. Prod. 2015, 104, 1–12. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ramchoun, H.; Amine, M.; Idrissi, J.; Ghanou, Y.; Ettaouil, M. Multilayer Perceptron: Architecture Optimization and Training. Int. J. Interact. Multimed. Artif. Intell. 2016, 4, 26. [CrossRef]
Paper not yet in RePEc: Add citation now
- Raynaud, D.; Hingray, B.; François, B.; Creutin, J.D. Energy Droughts from Variable Renewable Energy Sources in European Climates. Renew. Energy 2018, 125, 578–589. [CrossRef] Energies 2023, 16, 8057 23 of 27
Paper not yet in RePEc: Add citation now
- Raza, M.Q.; Khosravi, A. A Review on Artificial Intelligence Based Load Demand Forecasting Techniques for Smart Grid and Buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [CrossRef]
Paper not yet in RePEc: Add citation now
- Roga, S.; Bardhan, S.; Kumar, Y.; Dubey, S.K. Recent Technology and Challenges of Wind Energy Generation: A Review. Sustain. Energy Technol. Assess. 2022, 52, 102239. [CrossRef]
Paper not yet in RePEc: Add citation now
- Saheb, T.; Dehghani, M.; Saheb, T. Artificial Intelligence for Sustainable Energy: A Contextual Topic Modeling and Content Analysis. Sustain. Comput. Inform. Syst. 2022, 35, 100699. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sami, M.S.; Abrar, M.; Akram, R.; Hussain, M.M.; Nazir, M.H.; Khan, M.S.; Raza, S. Energy Management of Microgrids for Smart Cities: A Review. Energies 2021, 14, 5976. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Sarwat, A.I.; Amini, M.; Domijan, A.; Damnjanovic, A.; Kaleem, F. Weather-Based Interruption Prediction in the Smart Grid Utilizing Chronological Data. J. Mod. Power Syst. Clean. Energy 2016, 4, 308–315. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shams, M.H.; Niaz, H.; Hashemi, B.; Jay Liu, J.; Siano, P.; Anvari-Moghaddam, A. Artificial Intelligence-Based Prediction and Analysis of the Oversupply of Wind and Solar Energy in Power Systems. Energy Convers. Manag. 2021, 250, 114892. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shapi, M.K.M.; Ramli, N.A.; Awalin, L.J. Energy Consumption Prediction by Using Machine Learning for Smart Building: Case Study in Malaysia. Dev. Built Environ. 2021, 5, 100037. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shrivastava, N.A.; Lohia, K.; Panigrahi, B.K. A Multiobjective Framework for Wind Speed Prediction Interval Forecasts. Renew. Energy 2016, 87, 903–910. [CrossRef] Energies 2023, 16, 8057 26 of 27
Paper not yet in RePEc: Add citation now
- Sperati, S.; Alessandrini, S.; Pinson, P.; Kariniotakis, G. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation. Energies 2015, 8, 9594–9619. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sun, M.; Feng, C.; Zhang, J. Factoring Behind-the-Meter Solar into Load Forecasting: Case Studies under Extreme Weather. In Proceedings of the 2020 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2020, Washington, DC, USA, 17–20 February 2020. Energies 2023, 16, 8057 25 of 27
Paper not yet in RePEc: Add citation now
- Surendiran, B.; Dhanasekaran, K.; Tamizhselvi, A. A Study on Quantum Machine Learning for Accurate and Efficient Weather Prediction. In Proceedings of the 6th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2022, Dharan, Nepal, 10–12 November 2022; pp. 534–537.
Paper not yet in RePEc: Add citation now
- Sweeney, C.; Bessa, R.J.; Browell, J.; Pinson, P. The Future of Forecasting for Renewable Energy. Wiley Interdiscip. Rev. Energy Environ. 2020, 9, e365. [CrossRef]
Paper not yet in RePEc: Add citation now
- Taunk, K.; De, S.; Verma, S.; Swetapadma, A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems, ICCS 2019, Madurai, India, 15–17 May 2019; pp. 1255–1260.
Paper not yet in RePEc: Add citation now
- Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Role of Optimization Techniques in Microgrid Energy Management Systems—A Review. Energy Strategy Rev. 2022, 43, 100899. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tufail, S.; Riggs, H.; Tariq, M.; Sarwat, A.I. Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics 2023, 12, 1789. [CrossRef]
Paper not yet in RePEc: Add citation now
- Uihlein, A.; Magagna, D. Wave and Tidal Current Energy—A Review of the Current State of Research beyond Technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [CrossRef]
Paper not yet in RePEc: Add citation now
Valdivia-Bautista, S.M.; Domínguez-Navarro, J.A.; Pérez-Cisneros, M.; Vega-Gómez, C.J.; Castillo-Téllez, B. Artificial Intelligence in Wind Speed Forecasting: A Review. Energies 2023, 16, 2457. [CrossRef]
- Van Der Wiel, K.; Bloomfield, H.C.; Lee, R.W.; Stoop, L.P.; Blackport, R.; Screen, J.A.; Selten, F.M. The Influence of Weather Regimes on European Renewable Energy Production and Demand. Environ. Res. Lett. 2019, 14, 094010. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2023.
Paper not yet in RePEc: Add citation now
- Vera, Y.E.G.; Dufo-López, R.; Bernal-Agustín, J.L. Energy Management in Microgrids with Renewable Energy Sources: A Literature Review. Appl. Sci. 2019, 9, 3854. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vialetto, G.; Noro, M. Enhancement of a Short-Term Forecasting Method Based on Clustering and KNN: Application to an Industrial Facility Powered by a Cogenerator. Energies 2019, 12, 4407. [CrossRef]
Paper not yet in RePEc: Add citation now
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine Learning Methods for Solar Radiation Forecasting: A Review. Renew. Energy 2017, 105, 569–582. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wahid, F.; Kim, D.H. A Prediction Approach for Demand Analysis of Energy Consumption Using K-Nearest Neighbor in Residential Buildings. Int. J. Smart Home 2016, 10, 97–108. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, H.; Liu, Y.; Zhou, B.; Li, C.; Cao, G.; Voropai, N.; Barakhtenko, E. Taxonomy Research of Artificial Intelligence for Deterministic Solar Power Forecasting. Energy Convers. Manag. 2020, 214, 112909. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wu, B.; Widanage, W.D.; Yang, S.; Liu, X. Battery Digital Twins: Perspectives on the Fusion of Models, Data and Artificial Intelligence for Smart Battery Management Systems. Energy AI 2020, 1, 100016. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wu, Y.K.; Huang, C.L.; Phan, Q.T.; Li, Y.Y. Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints. Energies 2022, 15, 3320. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional Neural Networks: An Overview and Application in Radiology. Insights Imaging 2018, 9, 611–629. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yang, S.; Yu, X.; Zhou, Y. LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example. In Proceedings of the 2020 International Workshop on Electronic Communication and Artificial Intelligence, IWECAI 2020, Shanghai, China, 12–14 June 2020; pp. 98–101.
Paper not yet in RePEc: Add citation now
- Yao, Z.; Lum, Y.; Johnston, A.; Mejia-Mendoza, L.M.; Zhou, X.; Wen, Y.; Aspuru-Guzik, A.; Sargent, E.H.; Seh, Z.W. Machine Learning for a Sustainable Energy Future. Nat. Rev. Mater. 2023, 8, 202–215. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Ying, X. An Overview of Overfitting and Its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yoldaş, Y.; Önen, A.; Muyeen, S.M.; Vasilakos, A.V.; Alan, İ. Enhancing Smart Grid with Microgrids: Challenges and Opportunities. Renew. Sustain. Energy Rev. 2017, 72, 205–214. [CrossRef]
Paper not yet in RePEc: Add citation now
- Younis, A.; Alhorr, Y. Modeling of Dust Soiling Effects on Solar Photovoltaic Performance: A Review. Sol. Energy 2021, 220, 1074–1088. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yousef, L.A.; Temimi, M.; Molini, A.; Weston, M.; Wehbe, Y.; Mandous, A. Al Cloud Cover over the Arabian Peninsula from Global Remote Sensing and Reanalysis Products. Atmos. Res. 2020, 238, 104866. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yousef, L.A.; Temimi, M.; Wehbe, Y.; Al Mandous, A. Total Cloud Cover Climatology over the United Arab Emirates. Atmos. Sci. Lett. 2019, 20, e883. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yousuf, M.U.; Al-Bahadly, I.; Avci, E. Current Perspective on the Accuracy of Deterministic Wind Speed and Power Forecasting. IEEE Access 2019, 7, 159547–159564. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, W.; Patros, P.; Young, B.; Klinac, E.; Walmsley, T.G. Energy Digital Twin Technology for Industrial Energy Management: Classification, Challenges and Future. Renew. Sustain. Energy Rev. 2022, 161, 112407. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yushchenko, A.; de Bono, A.; Chatenoux, B.; Patel, M.K.; Ray, N. GIS-Based Assessment of Photovoltaic (PV) and Concentrated Solar Power (CSP) Generation Potential in West Africa. Renew. Sustain. Energy Rev. 2018, 81, 2088–2103. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zanib, N.; Batool, M.; Riaz, S.; Nawaz, F. Performance Analysis of Renewable Energy Based Distributed Generation System Using ANN Tuned UPQC. IEEE Access 2022, 10, 110034–110049. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, C.; Lu, Y. Study on Artificial Intelligence: The State of the Art and Future Prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, K.; Wang, X.; Wu, H.; Zhang, X.; Fang, Y.; Zhang, L.; Wang, H. Study of the Performance of Deep Learning Methods Used to Predict Tidal Current Movement. J. Mar. Sci. Eng. 2023, 11, 26. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, Y.; Wang, J.; Wang, X. Review on Probabilistic Forecasting of Wind Power Generation. Renew. Sustain. Energy Rev. 2014, 32, 255–270. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhao, E.; Sun, S.; Wang, S. New Developments in Wind Energy Forecasting with Artificial Intelligence and Big Data: A Scientometric Insight. Data Sci. Manag. 2022, 5, 84–95. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhou, Y. Ocean Energy Applications for Coastal Communities with Artificial Intelligence—A State-of-the-Art Review. Energy AI 2022, 10, 100189. [CrossRef]
Paper not yet in RePEc: Add citation now