- ‘EU Statistics on Income and Living Conditions (EU-SILC) Methodology—Housing Deprivation’. Eurostat, 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=EU_statistics_on_income_and_living_conditions_ (EU-SILC)_methodology_-_housing_deprivation (accessed on 25 April 2024).
Paper not yet in RePEc: Add citation now
Abbas, K.; Butt, K.M.; Xu, D.; Ali, M.; Baz, K.; Kharl, S.H.; Ahmed, M. Measurements and determinants of extreme multidimensional energy poverty using machine learning. Energy 2022, 251, 123977. [CrossRef]
- Al Kez, D.; Foley, A.; Abdul, Z.K.; Del Rio, D.F. Energy poverty prediction in the United Kingdom: A machine learning approach. Energy Policy 2024, 184, 113909. [CrossRef]
Paper not yet in RePEc: Add citation now
- Annual Progress Report of the Action Plan for Combating Energy Poverty Year 2021 (in Greek). Ministry of Environment & Energy,
Paper not yet in RePEc: Add citation now
- Atsalis, A.; Mirasgedis, S.; Tourkolias, C.; Diakoulaki, D. Fuel poverty in Greece: Quantitative analysis and implications for policy. Energy Build. 2016, 131, 87–98. [CrossRef]
Paper not yet in RePEc: Add citation now
- Available online: https://ypen.gov.gr/wp-content/uploads/2022/04/SDEE-Annual-report-2021-v4-14032022-clean.pdf (accessed on 15 April 2024).
Paper not yet in RePEc: Add citation now
- Balaskas, A.; Papada, L.; Katsoulakos, N.; Damigos, D.; Kaliampakos, D. Energy poverty in the mountainous town of Metsovo, Greece. J. Mt. Sci. 2021, 18, 2240–2254. [CrossRef]
Paper not yet in RePEc: Add citation now
- Benardos, A. Artificial intelligence in underground development: A study of TBM performance. In Proceedings of the UNDERGROUND SPACES 2008, New Forest, UK, 8–10 September 2008; pp. 21–32. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bienvenido-Huertas, D.; Pérez-Fargallo, A.; Alvarado-Amador, R.; Rubio-Bellido, C. Influence of climate on the creation of multilayer perceptrons to analyse the risk of fuel poverty. Energy Build. 2019, 198, 38–60. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bienvenido-Huertas, D.; Sánchez-García, D.; Marín-García, D.; Rubio-Bellido, C. Analysing energy poverty in warm climate zones in Spain through artificial intelligence. J. Build. Eng. 2023, 68, 106116. [CrossRef]
Paper not yet in RePEc: Add citation now
- Boemi, S.-N.; Avdimiotis, S.; Papadopoulos, A.M. Domestic energy deprivation in Greece: A field study. Energy Build. 2017, 144, 167–174. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cheng-wen, Y.; Jian, Y. Application of ANN for the prediction of building energy consumption at different climate zones with HDD and CDD. In 2010 2nd International Conference on Future Computer and Communication; IEEE: Wuhan, China, 2010; pp. V3-286–V3-289. [CrossRef]
Paper not yet in RePEc: Add citation now
- DECC (Dept for Energy and Climate Change). Annual Fuel Poverty Statistics Report 2015. DECC: London, UK, 2015. Available online: https://assets.publishing.service.gov.uk/media/5a814b3340f0b6230269684c/Fuel_Poverty_Report_2015.pdf (accessed on 25 April 2024).
Paper not yet in RePEc: Add citation now
- Elbeltagi, E.; Wefki, H. Predicting energy consumption for residential buildings using ANN through parametric modeling. Energy Rep. 2021, 7, 2534–2545. [CrossRef]
Paper not yet in RePEc: Add citation now
- EU Statistics on Income and Living Conditions. Eurostat, 2024. Available online: https://ec.europa.eu/eurostat/web/microdata/ european-union-statistics-on-income-and-living-conditions (accessed on 25 April 2024).
Paper not yet in RePEc: Add citation now
- European Commission. An Energy Policy for Customers. Commission Staff Working Paper; European Commission: Brussels, Belgium, 2010.
Paper not yet in RePEc: Add citation now
- Eurostat. People at Risk of Poverty or Social Exclusion. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/ view/sdg_01_10/default/table?lang=en (accessed on 25 April 2024).
Paper not yet in RePEc: Add citation now
- Fausett, L.V. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications; Pearson Education: New Delhi, India, 2008.
Paper not yet in RePEc: Add citation now
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Data Mining. Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Waikato, New Zealand, 2016. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.
Paper not yet in RePEc: Add citation now
- Halkos, G.; Kostakis, I. Exploring the persistence and transience of energy poverty: Evidence from a Greek household survey. Energy Effic. 2023, 16, 50. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hassani, H.; Yeganegi, M.R.; Beneki, C.; Unger, S.; Moradghaffari, M. Big Data and Energy Poverty Alleviation. BDCC 2019, 3, 50. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hong, Z.; Park, I.K. Comparative Analysis of Energy Poverty Prediction Models Using Machine Learning Algorithms. JKPA 2021, 56, 239–255. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kalfountzou, E.; Papada, L.; Damigos, D.; Degiannakis, S. Predicting energy poverty in Greece through statistical data analysis. Int. J. Sustain. Energy 2022, 41, 1605–1622. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kalfountzou, E.; Tourkolias, C.; Mirasgedis, S.; Damigos, D. Identifying Energy-Poor Households with Publicly Available Information: Promising Practices and Lessons Learned from the Athens Urban Area, Greece. Energies 2024, 17, 919. [CrossRef]
Paper not yet in RePEc: Add citation now
- Karani, I.; Papada, L.; Kaliampakos, D. Energy poverty signs in mountainous Greek areas: The case of Agrafa. Int. J. Sustain. Energy 2022, 41, 1408–1433. [CrossRef]
Paper not yet in RePEc: Add citation now
Longa, F.D.; Sweerts, B.; Van Der Zwaan, B. Exploring the complex origins of energy poverty in The Netherlands with machine learning. Energy Policy 2021, 156, 112373. [CrossRef]
- López-Vargas, A.; Ledezma-Espino, A.; Sanchis-de-Miguel, A. Methods, data sources and applications of the Artificial Intelligence in the Energy Poverty context: A review. Energy Build. 2022, 268, 112233. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lyra, K.; Mirasgedis, S.; Tourkolias, C. From measuring fuel poverty to identification of fuel poor households: A case study in Greece. Energy Effic. 2022, 15, 6. [CrossRef]
Paper not yet in RePEc: Add citation now
- Michailidis, P.; Michailidis, I.T.; Gkelios, S.; Karatzinis, G.; Kosmatopoulos, E.B. Neuro-distributed cognitive adaptive optimization for training neural networks in a parallel and asynchronous manner. ICA 2023, 31, 19–41. [CrossRef]
Paper not yet in RePEc: Add citation now
- Moon, J.W.; Kim, J.-J. ANN-based thermal control models for residential buildings. Build. Environ. 2010, 45, 1612–1625. [CrossRef]
Paper not yet in RePEc: Add citation now
Ntaintasis, E.; Mirasgedis, S.; Tourkolias, C. Comparing different methodological approaches for measuring energy poverty: Evidence from a survey in the region of Attika, Greece. Energy Policy 2019, 125, 160–169. [CrossRef]
- Palmos Analysis. Thessaloniki: 190,000 Households Vulnerable or in a State of Energy Poverty. Available online: https:// parallaximag.gr/life/energiaki-ftochia-stopoleodomiko-sigkrotima-thessalonikis (accessed on 20 April 2024).
Paper not yet in RePEc: Add citation now
- Papada, L.; Balaskas, A.; Katsoulakos, N.; Kaliampakos, D.; Damigos, D. Fighting Energy Poverty Using User-Driven Approaches in Mountainous Greece: Lessons Learnt from a Living Lab. Energies 2021, 14, 1525. [CrossRef]
Paper not yet in RePEc: Add citation now
- Papada, L.; Kaliampakos, D. A Stochastic Model for energy poverty analysis. Energy Policy 2018, 116, 153–164. [CrossRef]
Paper not yet in RePEc: Add citation now
- Papada, L.; Kaliampakos, D. Being forced to skimp on energy needs: A new look at energy poverty in Greece. Energy Res. Soc. Sci. 2020, 64, 101450. [CrossRef]
Paper not yet in RePEc: Add citation now
Papada, L.; Kaliampakos, D. Developing the energy profile of mountainous areas. Energy 2016, 107, 205–214. [CrossRef]
- Papada, L.; Kaliampakos, D. Energy poverty in Greek mountainous areas: A comparative study. J. Mt. Sci. 2017, 14, 1229–1240. [CrossRef]
Paper not yet in RePEc: Add citation now
- Papada, L.; Kaliampakos, D. Exploring Energy Poverty Indicators Through Artificial Neural Networks. In Artificial Intelligence and Sustainable Computing; Pandit, M., Gaur, M.K., Rana, P.S., Tiwari, A., Eds.; Algorithms for Intelligent Systems; Springer Nature: Singapore, 2022; pp. 231–242. [CrossRef]
Paper not yet in RePEc: Add citation now
- Papada, L.; Kaliampakos, D. Measuring energy poverty in Greece. Energy Policy 2016, 94, 157–165. [CrossRef] Energies 2024, 17, 3163 18 of 19
Paper not yet in RePEc: Add citation now
- Pavićević, M.; Popović, T. Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks. Sensors 2022, 22, 1051. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pino-Mejías, R.; Pérez-Fargallo, A.; Rubio-Bellido, C.; Pulido-Arcas, J.A. Artificial neural networks and linear regression prediction models for social housing allocation: Fuel Poverty Potential Risk Index. Energy 2018, 164, 627–641. [CrossRef]
Paper not yet in RePEc: Add citation now
Rajić, M.N.; Milovanović, M.B.; Antić, D.S.; Maksimović, R.M.; Milosavljević, P.M.; Pavlović, D.L. Analyzing energy poverty using intelligent approach. Energy Environ. 2020, 31, 1448–1472. [CrossRef]
Roberts, D.; Vera-Toscano, E.; Phimister, E. Fuel poverty in the UK: Is there a difference between rural and urban areas? Energy Policy 2015, 87, 216–223. [CrossRef]
- Seo, J.; Kim, S.; Lee, S.; Jeong, H.; Kim, T.; Kim, J. Data-driven approach to predicting the energy performance of residential buildings using minimal input data. Build. Environ. 2022, 214, 108911. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sietsma, J.; Dow, R.J.F. Creating artificial neural networks that generalize. Neural Netw. 1991, 4, 67–79. [CrossRef]
Paper not yet in RePEc: Add citation now
- Spiliotis, E.; Arsenopoulos, A.; Kanellou, E.; Psarras, J.; Kontogiorgos, P. A multi-sourced data based framework for assisting utilities identify energy poor households: A case-study in Greece. Energy Sources Part B Econ. Plan. Policy 2020, 15, 49–71. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tardioli, G.; Kerrigan, R.; Oates, M.; O’Donnell, J.; Finn, D. A Data-Driven Modelling Approach for Large Scale Demand Profiling of Residential Buildings. In Proceedings of the BS 2017: Conference of International Building Performance Simulation Association, San Francisco, CA, USA, 7–9 August 2017; Barnaby, C.S., Wetter, M., Eds.; International Building Performance Simulation Association: Rapid City, SD, USA, 2017. Energies 2024, 17, 3163 19 of 19
Paper not yet in RePEc: Add citation now
- Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]
Paper not yet in RePEc: Add citation now