create a website

Artificial Neural Networks as a Tool to Understand Complex Energy Poverty Relationships: The Case of Greece. (2024). Papada, Lefkothea ; Kaliampakos, Dimitris.
In: Energies.
RePEc:gam:jeners:v:17:y:2024:i:13:p:3163-:d:1423469.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 49

References cited by this document

Cocites: 29

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A Comparative Analysis of Machine Learning Algorithms in Energy Poverty Prediction. (2025). Damigos, Dimitris ; Kaliampakos, Dimitris ; Mirasgedis, Sevastianos ; Tourkolias, Christos ; Papada, Lefkothea ; Kalfountzou, Elpida.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:5:p:1133-:d:1599415.

    Full description at Econpapers || Download paper

  2. Exploring Energy Poverty: Toward a Comprehensive Predictive Framework. (2025). McLellan, Benjamin Craig ; Chapman, Andrew ; Mochida, Takako.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:10:p:2516-:d:1654874.

    Full description at Econpapers || Download paper

  3. Households Vulnerable to Energy Poverty in the Visegrad Group Countries: An Analysis of Socio-Economic Factors Using a Machine Learning Approach. (2024). Wojewdzka-Wiewirska, Agnieszka ; Grzybowska, Urszula ; Dudek, Hanna ; Vaznonien, Gintar.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:24:p:6310-:d:1543807.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. ‘EU Statistics on Income and Living Conditions (EU-SILC) Methodology—Housing Deprivation’. Eurostat, 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=EU_statistics_on_income_and_living_conditions_ (EU-SILC)_methodology_-_housing_deprivation (accessed on 25 April 2024).
    Paper not yet in RePEc: Add citation now
  2. Abbas, K.; Butt, K.M.; Xu, D.; Ali, M.; Baz, K.; Kharl, S.H.; Ahmed, M. Measurements and determinants of extreme multidimensional energy poverty using machine learning. Energy 2022, 251, 123977. [CrossRef]

  3. Al Kez, D.; Foley, A.; Abdul, Z.K.; Del Rio, D.F. Energy poverty prediction in the United Kingdom: A machine learning approach. Energy Policy 2024, 184, 113909. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Annual Progress Report of the Action Plan for Combating Energy Poverty Year 2021 (in Greek). Ministry of Environment & Energy,
    Paper not yet in RePEc: Add citation now
  5. Atsalis, A.; Mirasgedis, S.; Tourkolias, C.; Diakoulaki, D. Fuel poverty in Greece: Quantitative analysis and implications for policy. Energy Build. 2016, 131, 87–98. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Available online: https://ypen.gov.gr/wp-content/uploads/2022/04/SDEE-Annual-report-2021-v4-14032022-clean.pdf (accessed on 15 April 2024).
    Paper not yet in RePEc: Add citation now
  7. Balaskas, A.; Papada, L.; Katsoulakos, N.; Damigos, D.; Kaliampakos, D. Energy poverty in the mountainous town of Metsovo, Greece. J. Mt. Sci. 2021, 18, 2240–2254. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Benardos, A. Artificial intelligence in underground development: A study of TBM performance. In Proceedings of the UNDERGROUND SPACES 2008, New Forest, UK, 8–10 September 2008; pp. 21–32. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Bienvenido-Huertas, D.; Pérez-Fargallo, A.; Alvarado-Amador, R.; Rubio-Bellido, C. Influence of climate on the creation of multilayer perceptrons to analyse the risk of fuel poverty. Energy Build. 2019, 198, 38–60. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Bienvenido-Huertas, D.; Sánchez-García, D.; Marín-García, D.; Rubio-Bellido, C. Analysing energy poverty in warm climate zones in Spain through artificial intelligence. J. Build. Eng. 2023, 68, 106116. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Boemi, S.-N.; Avdimiotis, S.; Papadopoulos, A.M. Domestic energy deprivation in Greece: A field study. Energy Build. 2017, 144, 167–174. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Cheng-wen, Y.; Jian, Y. Application of ANN for the prediction of building energy consumption at different climate zones with HDD and CDD. In 2010 2nd International Conference on Future Computer and Communication; IEEE: Wuhan, China, 2010; pp. V3-286–V3-289. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. DECC (Dept for Energy and Climate Change). Annual Fuel Poverty Statistics Report 2015. DECC: London, UK, 2015. Available online: https://assets.publishing.service.gov.uk/media/5a814b3340f0b6230269684c/Fuel_Poverty_Report_2015.pdf (accessed on 25 April 2024).
    Paper not yet in RePEc: Add citation now
  14. Elbeltagi, E.; Wefki, H. Predicting energy consumption for residential buildings using ANN through parametric modeling. Energy Rep. 2021, 7, 2534–2545. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. EU Statistics on Income and Living Conditions. Eurostat, 2024. Available online: https://ec.europa.eu/eurostat/web/microdata/ european-union-statistics-on-income-and-living-conditions (accessed on 25 April 2024).
    Paper not yet in RePEc: Add citation now
  16. European Commission. An Energy Policy for Customers. Commission Staff Working Paper; European Commission: Brussels, Belgium, 2010.
    Paper not yet in RePEc: Add citation now
  17. Eurostat. People at Risk of Poverty or Social Exclusion. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/ view/sdg_01_10/default/table?lang=en (accessed on 25 April 2024).
    Paper not yet in RePEc: Add citation now
  18. Fausett, L.V. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications; Pearson Education: New Delhi, India, 2008.
    Paper not yet in RePEc: Add citation now
  19. Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Data Mining. Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Waikato, New Zealand, 2016. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
    Paper not yet in RePEc: Add citation now
  20. Géron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019.
    Paper not yet in RePEc: Add citation now
  21. Halkos, G.; Kostakis, I. Exploring the persistence and transience of energy poverty: Evidence from a Greek household survey. Energy Effic. 2023, 16, 50. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Hassani, H.; Yeganegi, M.R.; Beneki, C.; Unger, S.; Moradghaffari, M. Big Data and Energy Poverty Alleviation. BDCC 2019, 3, 50. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Hong, Z.; Park, I.K. Comparative Analysis of Energy Poverty Prediction Models Using Machine Learning Algorithms. JKPA 2021, 56, 239–255. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Kalfountzou, E.; Papada, L.; Damigos, D.; Degiannakis, S. Predicting energy poverty in Greece through statistical data analysis. Int. J. Sustain. Energy 2022, 41, 1605–1622. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Kalfountzou, E.; Tourkolias, C.; Mirasgedis, S.; Damigos, D. Identifying Energy-Poor Households with Publicly Available Information: Promising Practices and Lessons Learned from the Athens Urban Area, Greece. Energies 2024, 17, 919. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Karani, I.; Papada, L.; Kaliampakos, D. Energy poverty signs in mountainous Greek areas: The case of Agrafa. Int. J. Sustain. Energy 2022, 41, 1408–1433. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Longa, F.D.; Sweerts, B.; Van Der Zwaan, B. Exploring the complex origins of energy poverty in The Netherlands with machine learning. Energy Policy 2021, 156, 112373. [CrossRef]

  28. López-Vargas, A.; Ledezma-Espino, A.; Sanchis-de-Miguel, A. Methods, data sources and applications of the Artificial Intelligence in the Energy Poverty context: A review. Energy Build. 2022, 268, 112233. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Lyra, K.; Mirasgedis, S.; Tourkolias, C. From measuring fuel poverty to identification of fuel poor households: A case study in Greece. Energy Effic. 2022, 15, 6. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Michailidis, P.; Michailidis, I.T.; Gkelios, S.; Karatzinis, G.; Kosmatopoulos, E.B. Neuro-distributed cognitive adaptive optimization for training neural networks in a parallel and asynchronous manner. ICA 2023, 31, 19–41. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Moon, J.W.; Kim, J.-J. ANN-based thermal control models for residential buildings. Build. Environ. 2010, 45, 1612–1625. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Ntaintasis, E.; Mirasgedis, S.; Tourkolias, C. Comparing different methodological approaches for measuring energy poverty: Evidence from a survey in the region of Attika, Greece. Energy Policy 2019, 125, 160–169. [CrossRef]

  33. Palmos Analysis. Thessaloniki: 190,000 Households Vulnerable or in a State of Energy Poverty. Available online: https:// parallaximag.gr/life/energiaki-ftochia-stopoleodomiko-sigkrotima-thessalonikis (accessed on 20 April 2024).
    Paper not yet in RePEc: Add citation now
  34. Papada, L.; Balaskas, A.; Katsoulakos, N.; Kaliampakos, D.; Damigos, D. Fighting Energy Poverty Using User-Driven Approaches in Mountainous Greece: Lessons Learnt from a Living Lab. Energies 2021, 14, 1525. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Papada, L.; Kaliampakos, D. A Stochastic Model for energy poverty analysis. Energy Policy 2018, 116, 153–164. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Papada, L.; Kaliampakos, D. Being forced to skimp on energy needs: A new look at energy poverty in Greece. Energy Res. Soc. Sci. 2020, 64, 101450. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Papada, L.; Kaliampakos, D. Developing the energy profile of mountainous areas. Energy 2016, 107, 205–214. [CrossRef]

  38. Papada, L.; Kaliampakos, D. Energy poverty in Greek mountainous areas: A comparative study. J. Mt. Sci. 2017, 14, 1229–1240. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Papada, L.; Kaliampakos, D. Exploring Energy Poverty Indicators Through Artificial Neural Networks. In Artificial Intelligence and Sustainable Computing; Pandit, M., Gaur, M.K., Rana, P.S., Tiwari, A., Eds.; Algorithms for Intelligent Systems; Springer Nature: Singapore, 2022; pp. 231–242. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Papada, L.; Kaliampakos, D. Measuring energy poverty in Greece. Energy Policy 2016, 94, 157–165. [CrossRef] Energies 2024, 17, 3163 18 of 19
    Paper not yet in RePEc: Add citation now
  41. Pavićević, M.; Popović, T. Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks. Sensors 2022, 22, 1051. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Pino-Mejías, R.; Pérez-Fargallo, A.; Rubio-Bellido, C.; Pulido-Arcas, J.A. Artificial neural networks and linear regression prediction models for social housing allocation: Fuel Poverty Potential Risk Index. Energy 2018, 164, 627–641. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Rajić, M.N.; Milovanović, M.B.; Antić, D.S.; Maksimović, R.M.; Milosavljević, P.M.; Pavlović, D.L. Analyzing energy poverty using intelligent approach. Energy Environ. 2020, 31, 1448–1472. [CrossRef]

  44. Roberts, D.; Vera-Toscano, E.; Phimister, E. Fuel poverty in the UK: Is there a difference between rural and urban areas? Energy Policy 2015, 87, 216–223. [CrossRef]

  45. Seo, J.; Kim, S.; Lee, S.; Jeong, H.; Kim, T.; Kim, J. Data-driven approach to predicting the energy performance of residential buildings using minimal input data. Build. Environ. 2022, 214, 108911. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Sietsma, J.; Dow, R.J.F. Creating artificial neural networks that generalize. Neural Netw. 1991, 4, 67–79. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Spiliotis, E.; Arsenopoulos, A.; Kanellou, E.; Psarras, J.; Kontogiorgos, P. A multi-sourced data based framework for assisting utilities identify energy poor households: A case-study in Greece. Energy Sources Part B Econ. Plan. Policy 2020, 15, 49–71. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Tardioli, G.; Kerrigan, R.; Oates, M.; O’Donnell, J.; Finn, D. A Data-Driven Modelling Approach for Large Scale Demand Profiling of Residential Buildings. In Proceedings of the BS 2017: Conference of International Building Performance Simulation Association, San Francisco, CA, USA, 7–9 August 2017; Barnaby, C.S., Wetter, M., Eds.; International Building Performance Simulation Association: Rapid City, SD, USA, 2017. Energies 2024, 17, 3163 19 of 19
    Paper not yet in RePEc: Add citation now
  49. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Enduring Inequalities: Analyzing Energy Poverty Inertia Across K-Means Clusters. (2025). Chew, Leslie Bravo ; Budra, Santiago.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp17809.

    Full description at Econpapers || Download paper

  2. Toward Proactive Policy Design: Identifying To-Be Energy-Poor Households Using Shap for Early Intervention. (2025). Freitas, Diogo Nuno ; Ferm, Eduardo ; Budra, Santiago.
    In: IZA Discussion Papers.
    RePEc:iza:izadps:dp17669.

    Full description at Econpapers || Download paper

  3. A Comparative Analysis of Machine Learning Algorithms in Energy Poverty Prediction. (2025). Damigos, Dimitris ; Kaliampakos, Dimitris ; Mirasgedis, Sevastianos ; Tourkolias, Christos ; Papada, Lefkothea ; Kalfountzou, Elpida.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:5:p:1133-:d:1599415.

    Full description at Econpapers || Download paper

  4. Novel Artificial Intelligence Applications in Energy: A Systematic Review. (2025). Strbac, Goran ; Zhang, Tai.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:14:p:3747-:d:1702113.

    Full description at Econpapers || Download paper

  5. Machine Learning with Administrative Data for Energy Poverty Identification in the UK. (2025). Zheng, Lin ; McKenna, Eoghan.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:12:p:3054-:d:1675189.

    Full description at Econpapers || Download paper

  6. Machine learning-based prediction of energy poverty in Bangladesh: Unveiling key socioeconomic drivers for targeted policy actions. (2025). Chapman, Andrew J ; Sen, Kanchan Kumar ; Pal, Bikash ; Rjbongshi, Ajoy ; Karmaker, Shamal Chandra.
    In: Socio-Economic Planning Sciences.
    RePEc:eee:soceps:v:99:y:2025:i:c:s003801212500062x.

    Full description at Econpapers || Download paper

  7. Alleviating the rural household energy poverty in China: The role of digital economy. (2025). Wang, Haijie ; Gao, Junsong ; Yan, Tong ; Huang, Rongbing.
    In: Energy Economics.
    RePEc:eee:eneeco:v:142:y:2025:i:c:s0140988324008697.

    Full description at Econpapers || Download paper

  8. Evaluating four decades of energy policy evolution for sustainable development of a South Asian country—Nepal: A comprehensive review. (2024). Bhattarai, Utsav ; Apan, Armando ; Devkota, Laxmi P ; Maraseni, Tek.
    In: Sustainable Development.
    RePEc:wly:sustdv:v:32:y:2024:i:6:p:6703-6731.

    Full description at Econpapers || Download paper

  9. Factor Analysis of Sustainable Livelihood Potential Development for Poverty Alleviation Using Structural Equation Modeling. (2024). Kiattisin, Supaporn ; Na, Smitti Darakorn ; Ngamwong, Nitjakaln.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:10:p:4213-:d:1396523.

    Full description at Econpapers || Download paper

  10. Households Vulnerable to Energy Poverty in the Visegrad Group Countries: An Analysis of Socio-Economic Factors Using a Machine Learning Approach. (2024). Wojewdzka-Wiewirska, Agnieszka ; Grzybowska, Urszula ; Dudek, Hanna ; Vaznonien, Gintar.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:24:p:6310-:d:1543807.

    Full description at Econpapers || Download paper

  11. Artificial Neural Networks as a Tool to Understand Complex Energy Poverty Relationships: The Case of Greece. (2024). Papada, Lefkothea ; Kaliampakos, Dimitris.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:13:p:3163-:d:1423469.

    Full description at Econpapers || Download paper

  12. How Do Remittances Influence the Mitigation of Energy Poverty in Latin America? An Empirical Analysis Using a Panel Data Approach. (2024). Vallejo-Mata, Juan ; Gonzalez, Maria Gabriela ; Cejas, Magda Francisca ; Zurita, Eduardo German.
    In: Economies.
    RePEc:gam:jecomi:v:12:y:2024:i:2:p:40-:d:1332376.

    Full description at Econpapers || Download paper

  13. Forecasting energy poverty using different machine learning techniques for Missouri. (2024). Sykuta, Michael ; Ohler, Adrienne ; Balkissoon, Sarah ; Fox, Neil ; Lupo, Anthony ; Beetstra, Margaret ; Miller, Steve J ; Penny, Stephen G ; Haupt, Sue Ellen.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s036054422403682x.

    Full description at Econpapers || Download paper

  14. Energy poverty prediction in the United Kingdom: A machine learning approach. (2024). Abdul, Zrar Khald ; del Rio, Dylan Furszyfer ; al Kez, Dlzar ; Foley, Aoife.
    In: Energy Policy.
    RePEc:eee:enepol:v:184:y:2024:i:c:s0301421523004949.

    Full description at Econpapers || Download paper

  15. Targeting SDG7: Identifying heterogeneous energy dilemmas for socially disadvantaged groups in India using machine learning. (2024). Yang, Shiyu ; Li, Jun.
    In: Energy Economics.
    RePEc:eee:eneeco:v:138:y:2024:i:c:s0140988324005620.

    Full description at Econpapers || Download paper

  16. Turning the page on energy poverty? Quasi-experimental evidence on education and energy poverty in Zimbabwe. (2024). Makate, Marshall.
    In: Energy Economics.
    RePEc:eee:eneeco:v:137:y:2024:i:c:s0140988324004924.

    Full description at Econpapers || Download paper

  17. Combining energy subsidies is not free: distributional effects and energy poverty. (2024). Mara, Ibez Martn ; Milena, Poggiese.
    In: Asociación Argentina de Economía Política: Working Papers.
    RePEc:aep:anales:4752.

    Full description at Econpapers || Download paper

  18. Multidimensional Energy Poverty in China: Measurement and Spatio-Temporal Disparities Characteristics. (2023). Geng, Hong ; Wang, FU ; Zha, Donglan ; Zhang, Chaoqun.
    In: Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement.
    RePEc:spr:soinre:v:168:y:2023:i:1:d:10.1007_s11205-023-03129-2.

    Full description at Econpapers || Download paper

  19. Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index. (2023). Xie, Yuxiang.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:18:p:13603-:d:1237922.

    Full description at Econpapers || Download paper

  20. Energy Poverty and Low Carbon Energy Transition. (2023). Kyriakopoulos, Grigorios L ; Streimikiene, Dalia.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:2:p:610-:d:1025084.

    Full description at Econpapers || Download paper

  21. Energy poverty prediction and effective targeting for just transitions with machine learning. (2023). Lynch, Muireann ; Reaos, Miguel Tovar ; Spandagos, Constantine.
    In: Papers.
    RePEc:esr:wpaper:wp762.

    Full description at Econpapers || Download paper

  22. A novel energy poverty evaluation: Study of the European Union countries. (2023). Pishahang, Mohammad ; Hasheminasab, Hamidreza ; Streimikiene, Dalia.
    In: Energy.
    RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030432.

    Full description at Econpapers || Download paper

  23. Energy poverty prediction and effective targeting for just transitions with machine learning. (2023). Spandagos, Constantine ; Lynch, Muireann A ; Tovar, Miguel Angel.
    In: Energy Economics.
    RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006291.

    Full description at Econpapers || Download paper

  24. Linking Housing Conditions and Energy Poverty: From a Perspective of Household Energy Self-Restriction. (2022). Chen, Keyu ; Feng, Chao.
    In: IJERPH.
    RePEc:gam:jijerp:v:19:y:2022:i:14:p:8254-:d:857139.

    Full description at Econpapers || Download paper

  25. Energy Poverty as a Current Problem in the Light of Economic and Social Challenges. (2022). Piwowar, Arkadiusz.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:22:p:8554-:d:973745.

    Full description at Econpapers || Download paper

  26. How does urbanization affect the direct rebound effect? Evidence from residential electricity consumption in China. (2022). Han, Ying ; Li, Xue-Dong ; Zhou, Jie-Qi ; Shi, Jian-Hua.
    In: Energy.
    RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221025482.

    Full description at Econpapers || Download paper

  27. Examining the multidimensional energy poverty trap and its determinants: An empirical analysis at household and community levels in six provinces of China. (2022). Huang, Yatao ; Guo, Xuanxuan ; Jiao, Wenxian ; Wang, Kang ; Chen, Jingyang ; Li, Erling ; Yan, Yutong.
    In: Energy Policy.
    RePEc:eee:enepol:v:169:y:2022:i:c:s030142152200413x.

    Full description at Econpapers || Download paper

  28. Childhood adversity and energy poverty. (2022). tani, max ; Smyth, Russell ; Guo, Liwen ; Cheng, Zhiming.
    In: Energy Economics.
    RePEc:eee:eneeco:v:111:y:2022:i:c:s0140988322002626.

    Full description at Econpapers || Download paper

  29. Empirical Evidence on the Incidence and Persistence of Energy Poverty in Australia. (2022). Brown, Heather ; Veratoscano, Esperanza.
    In: Australian Economic Review.
    RePEc:bla:ausecr:v:55:y:2022:i:4:p:515-529.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 08:56:55 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.