create a website

Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework. (2024). Baraldi, Piero ; Aghaei, Mohammadreza ; Alrbai, Mohammad ; Madhiarasan, Manoharan ; Al-Ghussain, Loiy ; Alahmer, Hussein ; Zio, Enrico ; Abubaker, Ahmad M ; Ahmad, Adnan Darwish ; Al-Dahidi, Sameer.
In: Energies.
RePEc:gam:jeners:v:17:y:2024:i:16:p:4145-:d:1460190.

Full description at Econpapers || Download paper

Cited: 4

Citations received by this document

Cites: 254

References cited by this document

Cocites: 57

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Advancements and Challenges in Photovoltaic Power Forecasting: A Comprehensive Review. (2025). di Leo, Paolo ; Ciocia, Alessandro ; Malgaroli, Gabriele ; Spertino, Filippo.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:8:p:2108-:d:1638094.

    Full description at Econpapers || Download paper

  2. TSMixer- and Transfer Learning-Based Highly Reliable Prediction with Short-Term Time Series Data in Small-Scale Solar Power Generation Systems. (2025). Lee, Younjeong ; Jeong, Jongpil.
    In: Energies.
    RePEc:gam:jeners:v:18:y:2025:i:4:p:765-:d:1585652.

    Full description at Econpapers || Download paper

  3. Techno-economic implications and cost of forecasting errors in solar PV power production using optimized deep learning models. (2025). Rinchi, Bilal ; Al-Ghussain, Loiy ; Alahmer, Hussein ; Hayajneh, Hassan S ; Al-Dahidi, Sameer ; Alrbai, Mohammad.
    In: Energy.
    RePEc:eee:energy:v:323:y:2025:i:c:s0360544225015191.

    Full description at Econpapers || Download paper

  4. Wind and Photovoltaic Power Generation Forecasting for Virtual Power Plants Based on the Fusion of Improved K-Means Cluster Analysis and Deep Learning. (2024). Luo, Yanhong ; Gu, Taiyu ; Qiu, Zhichao ; Tian, YE ; Liu, Hengyu.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:23:p:10740-:d:1538661.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abdel-Nasser, M.; Mahmoud, K. Accurate Photovoltaic Power Forecasting Models Using Deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Abdellatif, A.; Mubarak, H.; Ahmad, S.; Ahmed, T.; Shafiullah, G.M.; Hammoudeh, A.; Abdellatef, H.; Rahman, M.M.; Gheni, H.M. Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model. Sustainability 2022, 14, 11083. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Aghaei, M.; Dolara, A.; Leva, S.; Grimaccia, F. Image Resolution and Defects Detection in PV Inspection by Unmanned Technologies. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  4. Aghajani, A.; Kazemzadeh, R.; Ebrahimi, A. A Novel Hybrid Approach for Predicting Wind Farm Power Production Based on Wavelet Transform, Hybrid Neural Networks and Imperialist Competitive Algorithm. Energy Convers. Manag. 2016, 121, 232–240. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Agoua, X.G.; Girard, R.; Kariniotakis, G. Photovoltaic Power Forecasting: Assessment of the Impact of Multiple Sources of Spatio-Temporal Data on Forecast Accuracy. Energies 2021, 14, 1432. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Aguiar, L.M.; Pereira, B.; Lauret, P.; Díaz, F.; David, M. Combining Solar Irradiance Measurements, Satellite-Derived Data and a Numerical Weather Prediction Model to Improve Intra-Day Solar Forecasting. Renew. Energy 2016, 97, 599–610. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Mohamed Shah, N. Review on Forecasting of Photovoltaic Power Generation Based on Machine Learning and Metaheuristic Techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Alrbai, M.; Qawasmeh, R.B. Extreme Learning Machines for Solar Photovoltaic Power Predictions. Energies 2018, 11, 2725. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Louzazni, M. Assessment of Artificial Neural Networks Learning Algorithms and Training Datasets for Solar Photovoltaic Power Production Prediction. Front. Energy Res. 2019, 7, 1–18. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Al-Dahidi, S.; Ayadi, O.; Alrbai, M.; Adeeb, J. Ensemble Approach of Optimized Artificial Neural Networks for Solar Photovoltaic Power Prediction. IEEE Access 2019, 7, 81741–81758. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Al-Dahidi, S.; Baraldi, P.; Zio, E.; Legnani, E. A Dynamic Weighting Ensemble Approach for Wind Energy Production Prediction. In Proceedings of the 2017 2nd International Conference on System Reliability and Safety, Milan, Italy, 20–22 December 2017; pp. 296–302. Energies 2024, 17, 4145 37 of 38
    Paper not yet in RePEc: Add citation now
  13. Al-Dahidi, S.; Baraldi, P.; Zio, E.; Montelatici, L. Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production. Sustainability 2021, 13, 6417. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Al-Dahidi, S.; Di Maio, F.; Baraldi, P.; Zio, E. A Locally Adaptive Ensemble Approach for Data-Driven Prognostics of Heterogeneous Fleets. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2017, 231, 350–363. [CrossRef]

  15. Al-Dahidi, S.; Louzazni, M.; Omran, N. A Local Training Strategy-Based Artificial Neural Network for Predicting the Power Production of Solar Photovoltaic Systems. IEEE Access 2020, 8, 150262–150281. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Al-Ghussain, L.; Subaih, M.A.; Annuk, A. Evaluation of the Accuracy of Different PV Estimation Models and the Effect of Dust Cleaning: Case Study a 103 MW PV Plant in Jordan. Sustainability 2022, 14, 982. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Alam, A.M.; Nahid-Al-Masood; Iqbal Asif Razee, M.; Zunaed, M. Solar PV Power Forecasting Using Traditional Methods and Machine Learning Techniques. In Proceedings of the 2021 IEEE Kansas Power and Energy Conference, KPEC 2021, Manhattan, KS, USA, 19–20 April 2021.
    Paper not yet in RePEc: Add citation now
  18. Alessandrini, S.; Delle Monache, L.; Sperati, S.; Cervone, G. An Analog Ensemble for Short-Term Probabilistic Solar Power Forecast. Appl. Energy 2015, 157, 95–110. [CrossRef]

  19. Alfadda, A.; Adhikari, R.; Kuzlu, M.; Rahman, S. Hour-Ahead Solar PV Power Forecasting Using SVR Based Approach. In Proceedings of the 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 23–26 April 2017; IEEE: New York City, NY, USA, 2017; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  20. AlHakeem, D.; Mandal, P.; Haque, A.U.; Yona, A.; Senjyu, T.; Tseng, T.-L. A New Strategy to Quantify Uncertainties of WaveletGRNN -PSO Based Solar PV Power Forecasts Using Bootstrap Confidence Intervals. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  21. Alimohammadi, S.; He, D. Multi-Stage Algorithm for Uncertainty Analysis of Solar Power Forecasting. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–21 July 2016; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  22. Alizamir, M.; Shiri, J.; Fard, A.F.; Kim, S.; Gorgij, A.R.D.; Heddam, S.; Singh, V.P. Improving the Accuracy of Daily Solar Radiation Prediction by Climatic Data Using an Efficient Hybrid Deep Learning Model: Long Short-Term Memory (LSTM) Network Coupled with Wavelet Transform. Eng. Appl. Artif. Intell. 2023, 123, 106199. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. AlKandari, M.; Ahmad, I. Solar Power Generation Forecasting Using Ensemble Approach Based on Deep Learning and Statistical Methods. Appl. Comput. Inform. 2024, 20, 231–250. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Allik, A.; Annuk, A. Interpolation of Intra-Hourly Electricity Consumption and Production Data. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 131–136.
    Paper not yet in RePEc: Add citation now
  25. Almeida, M.P.; Muñoz, M.; de la Parra, I.; Perpiñán, O. Comparative Study of PV Power Forecast Using Parametric and Nonparametric PV Models. Sol. Energy 2017, 155, 854–866. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Almeida, M.P.; Perpiñán, O.; Narvarte, L. PV Power Forecast Using a Nonparametric PV Model. Sol. Energy 2015, 115, 354–368. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Almonacid, F.; Pérez-Higueras, P.J.; Fernández, E.F.; Hontoria, L. A Methodology Based on Dynamic Artificial Neural Network for Short-Term Forecasting of the Power Output of a PV Generator. Energy Convers. Manag. 2014, 85, 389–398. [CrossRef]
    Paper not yet in RePEc: Add citation now
  28. Alomari, M.H.; Adeeb, J.; Younis, O. Solar Photovoltaic Power Forecasting in Jordan Using Artificial Neural Networks. Int. J. Electr. Comput. Eng. IJECE 2018, 8, 497. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Amarasinghe, P.A.G.M.; Abeygunawardana, N.S.; Jayasekara, T.N.; Edirisinghe, E.A.J.P.; Abeygunawardane, S.K. Ensemble Models for Solar Power Forecasting—A Weather Classification Approach. AIMS Energy 2020, 8, 252–271. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Amiri, A.F.; Chouder, A.; Oudira, H.; Silvestre, S.; Kichou, S. Improving Photovoltaic Power Prediction: Insights through Computational Modeling and Feature Selection. Energies 2024, 17, 3078. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de-Pison, F.J.; Antonanzas-Torres, F. Review of Photovoltaic Power Forecasting. Sol. Energy 2016, 136, 78–111. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Aprillia, H.; Yang, H.-T.; Huang, C.-M. Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network-Salp Swarm Algorithm. Energies 2020, 13, 1879. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Asrari, A.; Wu, T.X.; Ramos, B. A Hybrid Algorithm for Short-Term Solar Power Prediction—Sunshine State Case Study. IEEE Trans. Sustain. Energy 2017, 8, 582–591. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Azuatalam, D.; Paridari, K.; Ma, Y.; Förstl, M.; Chapman, A.C.; Verbič, G. Energy Management of Small-Scale PV-Battery Systems: A Systematic Review Considering Practical Implementation, Computational Requirements, Quality of Input Data and Battery Degradation. Renew. Sustain. Energy Rev. 2019, 112, 555–570. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Bacher, P.; Madsen, H.; Nielsen, H.A. Online Short-Term Solar Power Forecasting. Sol. Energy 2009, 83, 1772–1783. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Badosa, J.; Haeffelin, M.; Kalecinski, N.; Bonnardot, F.; Jumaux, G. Reliability of Day-Ahead Solar Irradiance Forecasts on Reunion Island Depending on Synoptic Wind and Humidity Conditions. Sol. Energy 2015, 115, 306–321. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Bai, X.; Liang, L.; Zhu, X. Improved Markov-chain-based Ultra-short-term PV Forecasting Method for Enhancing Power System Resilience. J. Eng. 2021, 2021, 114–124. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Baraldi, P.; Razavi-Far, R.; Zio, E. Classifier-Ensemble Incremental-Learning Procedure for Nuclear Transient Identification at Different Operational Conditions. Reliab. Eng. Syst. Saf. 2011, 96, 480–488. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Barhmi, K.; Heynen, C.; Golroodbari, S.; van Sark, W. A Review of Solar Forecasting Techniques and the Role of Artificial Intelligence. Solar 2024, 4, 99–135. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Başaran, K.; Bozyiğit, F.; Siano, P.; Yıldırım Taşer, P.; Kılınç, D. Systematic Literature Review of Photovoltaic Output Power Forecasting. IET Renew. Power Gener. 2020, 14, 3961–3973. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Basaran, K.; Çelikten, A.; Bulut, H. A Short-Term Photovoltaic Output Power Forecasting Based on Ensemble Algorithms Using Hyperparameter Optimization. Electr. Eng. 2024. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Behera, M.K.; Majumder, I.; Nayak, N. Solar Photovoltaic Power Forecasting Using Optimized Modified Extreme Learning Machine Technique. Eng. Sci. Technol. Int. J. 2018, 21, 428–438. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Benitez, I.B.; Ibañez, J.A.; Lumabad, C.D.; Cañete, J.M.; De los Reyes, F.N.; Principe, J.A. A Novel Data Gaps Filling Method for Solar PV Output Forecasting. J. Renew. Sustain. Energy 2023, 15, 046102. [CrossRef]
    Paper not yet in RePEc: Add citation now
  44. Bessa, R.J.; Trindade, A.; Miranda, V. Spatial-Temporal Solar Power Forecasting for Smart Grids. IEEE Trans. Ind. Inform. 2015, 11, 232–241. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Bessa, R.J.; Trindade, A.; Silva, C.S.P.; Miranda, V. Probabilistic Solar Power Forecasting in Smart Grids Using Distributed Information. Int. J. Electr. Power Energy Syst. 2015, 72, 16–23. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Blanc, P.; Remund, J.; Vallance, L. 6-Short-Term Solar Power Forecasting Based on Satellite Images. In Renewable Energy Forecasting: From Models to Applications; Woodhead Publishing Series in Energy; Kariniotakis, G., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 179–198, ISBN 978-0-08-100504-0.
    Paper not yet in RePEc: Add citation now
  47. Botev, Z.I.; Grotowski, J.F.; Kroese, D.P. Kernel Density Estimation via Diffusion. Ann. Stat. 2010, 38, 2916–2957. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Bracale, A.; Caramia, P.; Carpinelli, G.; Di Fazio, A.; Ferruzzi, G. A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control. Energies 2013, 6, 733–747. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Cao, H.; Yang, J.; Zhao, X.; Yao, T.; Wang, J.; He, H.; Wang, Y. Dual-Encoder Transformer for Short-Term Photovoltaic Power Prediction Using Satellite Remote-Sensing Data. Appl. Sci. 2023, 13, 1908. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Cervone, G.; Clemente-Harding, L.; Alessandrini, S.; Delle Monache, L. Short-Term Photovoltaic Power Forecasting Using Artificial Neural Networks and an Analog Ensemble. Renew. Energy 2017, 108, 274–286. [CrossRef]

  51. Chandel, S.S.; Gupta, A.; Chandel, R.; Tajjour, S. Review of Deep Learning Techniques for Power Generation Prediction of Industrial Solar Photovoltaic Plants. Sol. Compass 2023, 8, 100061. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Chen, C.; Duan, S.; Cai, T.; Liu, B. Online 24-h Solar Power Forecasting Based on Weather Type Classification Using Artificial Neural Network. Sol. Energy 2011, 85, 2856–2870. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Chen, C.; Shi, J.; Lu, N.; Zhu, Z.H.; Jiang, B. Data-Driven Predictive Maintenance Strategy Considering the Uncertainty in Remaining Useful Life Prediction. Neurocomputing 2022, 494, 79–88. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Chen, Y.; Li, X.; Zhao, S. A Novel Photovoltaic Power Prediction Method Based on a Long Short-Term Memory Network Optimized by an Improved Sparrow Search Algorithm. Electronics 2024, 13, 993. [CrossRef]
    Paper not yet in RePEc: Add citation now
  55. Cheng, L.; Zang, H.; Ding, T.; Wei, Z.; Sun, G. Multi-Meteorological-Factor-Based Graph Modeling for Photovoltaic Power Forecasting. IEEE Trans. Sustain. Energy 2021, 12, 1593–1603. [CrossRef]
    Paper not yet in RePEc: Add citation now
  56. Choi, S.; Hur, J. An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic Forecasting. Energies 2020, 13, 1438. [CrossRef]
    Paper not yet in RePEc: Add citation now
  57. Chow, C.W.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-Hour Forecasting with a Total Sky Imager at the UC San Diego Solar Energy Testbed. Sol. Energy 2011, 85, 2881–2893. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Coimbra, C.F.M.; Kleissl, J.; Marquez, R. Chapter 8—Overview of Solar-Forecasting Methods and a Metric for Accuracy Evaluation. In Solar Energy Forecasting and Resource Assessment; Kleissl, J., Ed.; Academic Press: Boston, IL, USA, 2013; pp. 171–194, ISBN 978-0-12-397177-7.
    Paper not yet in RePEc: Add citation now
  59. da Silva Fonseca Junior, J.G.; Oozeki, T.; Ohtake, H.; Shimose, K.; Takashima, T.; Ogimoto, K. Regional Forecasts and Smoothing Effect of Photovoltaic Power Generation in Japan: An Approach with Principal Component Analysis. Renew. Energy 2014, 68, 403–413. [CrossRef]
    Paper not yet in RePEc: Add citation now
  60. Dara, S.; Tumma, P. Feature Extraction By Using Deep Learning: A Survey. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 1795–1801.
    Paper not yet in RePEc: Add citation now
  61. Das, S. Short Term Forecasting of Solar Radiation and Power Output of 89.6kWp Solar PV Power Plant. Mater. Today Proc. 2021, 39, 1959–1969. [CrossRef]
    Paper not yet in RePEc: Add citation now
  62. Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of Photovoltaic Power Generation and Model Optimization: A Review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [CrossRef]

  63. de Freitas Viscondi, G.; Alves-Souza, S.N. A Systematic Literature Review on Big Data for Solar Photovoltaic Electricity Generation Forecasting. Sustain. Energy Technol. Assess. 2019, 31, 54–63. [CrossRef]
    Paper not yet in RePEc: Add citation now
  64. Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of Solar Irradiance Forecasting Methods and a Proposition for Small-Scale Insular Grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [CrossRef]
    Paper not yet in RePEc: Add citation now
  65. Dimd, B.D.; Völler, S.; Cali, U.; Midtgård, O.-M. A Review of Machine Learning-Based Photovoltaic Output Power Forecasting: Nordic Context. IEEE Access 2022, 10, 26404–26425. [CrossRef] Energies 2024, 17, 4145 30 of 38
    Paper not yet in RePEc: Add citation now
  66. Ding, M.; Wang, L.; Bi, R. An ANN-Based Approach for Forecasting the Power Output of Photovoltaic System. Procedia Environ. Sci. 2011, 11, 1308–1315. [CrossRef]
    Paper not yet in RePEc: Add citation now
  67. Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World—A Review. Energy Procedia 2013, 33, 311–321. [CrossRef]
    Paper not yet in RePEc: Add citation now
  68. El Bourakadi, D.; Ramadan, H.; Yahyaouy, A.; Boumhidi, J. A Novel Solar Power Prediction Model Based on Stacked BiLSTM Deep Learning and Improved Extreme Learning Machine. Int. J. Inf. Technol. 2022, 15, 587–594. [CrossRef]
    Paper not yet in RePEc: Add citation now
  69. Elsinga, B.; van Sark, W.G.J.H.M. Short-Term Peer-to-Peer Solar Forecasting in a Network of Photovoltaic Systems. Appl. Energy 2017, 206, 1464–1483. [CrossRef]

  70. Escrig, H.; Batlles, F.J.; Alonso, J.; Baena, F.M.; Bosch, J.L.; Salbidegoitia, I.B.; Burgaleta, J.I. Cloud Detection, Classification and Motion Estimation Using Geostationary Satellite Imagery for Cloud Cover Forecast. Energy 2013, 55, 853–859. [CrossRef]
    Paper not yet in RePEc: Add citation now
  71. Eseye, A.T.; Zhang, J.; Zheng, D. Short-Term Photovoltaic Solar Power Forecasting Using a Hybrid Wavelet-PSO-SVM Model Based on SCADA and Meteorological Information. Renew. Energy 2018, 118, 357–367. [CrossRef]

  72. Feng, C.; Zhang, J.; Zhang, W.; Hodge, B.-M. Convolutional Neural Networks for Intra-Hour Solar Forecasting Based on Sky Image Sequences. Appl. Energy 2022, 310, 118438. [CrossRef]

  73. Fentis, A.; Bahatti, L.; Tabaa, M.; Mestari, M. Short-Term Nonlinear Autoregressive Photovoltaic Power Forecasting Using Statistical Learning Approaches and in-Situ Observations. Int. J. Energy Environ. Eng. 2019, 10, 189–206. [CrossRef]
    Paper not yet in RePEc: Add citation now
  74. Filipe, J.M.; Bessa, R.J.; Sumaili, J.; Tome, R.; Sousa, J.N. A Hybrid Short-Term Solar Power Forecasting Tool. In Proceedings of the 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP), Porto, Portugal, 11–16 September 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  75. Fornara, F.; Pattitoni, P.; Mura, M.; Strazzera, E. Predicting Intention to Improve Household Energy Efficiency: The Role of Value-Belief-Norm Theory, Normative and Informational Influence, and Specific Attitude. J. Environ. Psychol. 2016, 45, 1–10. [CrossRef]
    Paper not yet in RePEc: Add citation now
  76. Gao, B.; Yang, H.; Lin, H.-C.; Wang, Z.; Zhang, W.; Li, H. A Hybrid Improved Whale Optimization Algorithm with Support Vector Machine for Short-Term Photovoltaic Power Prediction. Appl. Artif. Intell. 2022, 36, 2014187. [CrossRef]
    Paper not yet in RePEc: Add citation now
  77. Garip, Z.; Ekinci, E.; Alan, A. Day-Ahead Solar Photovoltaic Energy Forecasting Based on Weather Data Using LSTM Networks: A Comparative Study for Photovoltaic (PV) Panels in Turkey. Electr. Eng. 2023, 105, 3329–3345. [CrossRef]
    Paper not yet in RePEc: Add citation now
  78. Gensler, A.; Henze, J.; Sick, B.; Raabe, N. Deep Learning for Solar Power Forecasting—An Approach Using AutoEncoder and LSTM Neural Networks. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 2858–2865.
    Paper not yet in RePEc: Add citation now
  79. Gigoni, L.; Betti, A.; Crisostomi, E.; Franco, A.; Tucci, M.; Bizzarri, F.; Mucci, D. Day-Ahead Hourly Forecasting of Power Generation From Photovoltaic Plants. IEEE Trans. Sustain. Energy 2018, 9, 831–842. [CrossRef]
    Paper not yet in RePEc: Add citation now
  80. Gohari, M.I.; Urquhart, B.; Yang, H.; Kurtz, B.; Nguyen, D.; Chow, C.W.; Ghonima, M.; Kleissl, J. Comparison of Solar Power Output Forecasting Performance of the Total Sky Imager and the University of California, San Diego Sky Imager. Energy Procedia 2014, 49, 2340–2350. [CrossRef]
    Paper not yet in RePEc: Add citation now
  81. González Ordiano, J..; Waczowicz, S.; Reischl, M.; Mikut, R.; Hagenmeyer, V. Photovoltaic Power Forecasting Using Simple Data-Driven Models without Weather Data. Comput. Sci. Res. Dev. 2017, 32, 237–246. [CrossRef]
    Paper not yet in RePEc: Add citation now
  82. Gotseff, P.; Cale, J.; Baggu, M.; Narang, D.; Carroll, K. Accurate Power Prediction of Spatially Distributed PV Systems Using Localized Irradiance Measurements. In Proceedings of the 2014 IEEE PES General Meeting Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  83. Goverde, H.; Goossens, D.; Govaerts, J.; Catthoor, F.; Baert, K.; Poortmans, J.; Driesen, J. Spatial and Temporal Analysis of Wind Effects on PV Modules: Consequences for Electrical Power Evaluation. Sol. Energy 2017, 147, 292–299. [CrossRef]
    Paper not yet in RePEc: Add citation now
  84. Gupta, P.; Singh, R. PV Power Forecasting Based on Data-Driven Models: A Review. Int. J. Sustain. Eng. 2021, 14, 1733–1755. [CrossRef]
    Paper not yet in RePEc: Add citation now
  85. Gürtler, M.; Paulsen, T. The Effect of Wind and Solar Power Forecasts on Day-Ahead and Intraday Electricity Prices in Germany. Energy Econ. 2018, 75, 150–162. [CrossRef]

  86. Gutierrez-Corea, F.-V.; Manso-Callejo, M.-A.; Moreno-Regidor, M.-P.; Manrique-Sancho, M.-T. Forecasting Short-Term Solar Irradiance Based on Artificial Neural Networks and Data from Neighboring Meteorological Stations. Sol. Energy 2016, 134, 119–131. [CrossRef]
    Paper not yet in RePEc: Add citation now
  87. Guyon, I.; Elisseeff, A. An Introduction to Feature Extraction. In Studies in Fuzziness and Soft Computing; STUDFUZZ, Volume 207; Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–25, ISBN 978-3-540-35488-8.
    Paper not yet in RePEc: Add citation now
  88. Hadi, S.J.; Tombul, M. Monthly Streamflow Forecasting Using Continuous Wavelet and Multi-Gene Genetic Programming Combination. J. Hydrol. 2018, 561, 674–687. [CrossRef]
    Paper not yet in RePEc: Add citation now
  89. Haque, A.U.; Nehrir, M.H.; Mandal, P. Solar PV Power Generation Forecast Using a Hybrid Intelligent Approach. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  90. Heo, J.; Song, K.; Han, S.U.; Lee, D.E. Multi-Channel Convolutional Neural Network for Integration of Meteorological and Geographical Features in Solar Power Forecasting. Appl. Energy 2021, 295, 117083. [CrossRef]

  91. Herrera-Casanova, R.; Conde, A.; Santos-Pérez, C. Hour-Ahead Photovoltaic Power Prediction Combining BiLSTM and Bayesian Optimization Algorithm, with Bootstrap Resampling for Interval Predictions. Sensors 2024, 24, 882. [CrossRef]
    Paper not yet in RePEc: Add citation now
  92. Heskes, T. Practical Confidence and Prediction Intervals. Adv. Neural Inf. Process. Syst. 1997, 176–182.
    Paper not yet in RePEc: Add citation now
  93. Hong, T.; Pinson, P.; Fan, S.; Zareipour, H.; Troccoli, A.; Hyndman, R.J. Probabilistic Energy Forecasting: Global Energy Forecasting Competition 2014 and Beyond. Int. J. Forecast. 2016, 32, 896–913. [CrossRef]
    Paper not yet in RePEc: Add citation now
  94. Hosenuzzaman, M.; Rahim, N.A.; Selvaraj, J.; Hasanuzzaman, M.; Malek, A.B.M.A.; Nahar, A. Global Prospects, Progress, Policies, and Environmental Impact of Solar Photovoltaic Power Generation. Renew. Sustain. Energy Rev. 2015, 41, 284–297. [CrossRef]

  95. Hossain, M.; Mekhilef, S.; Danesh, M.; Olatomiwa, L.; Shamshirband, S. Application of Extreme Learning Machine for Short Term Output Power Forecasting of Three Grid-Connected PV Systems. J. Clean Prod. 2017, 167, 395–405. [CrossRef]
    Paper not yet in RePEc: Add citation now
  96. Hossain, M.S.; Mahmood, H. Short-Term Photovoltaic Power Forecasting Using an LSTM Neural Network and Synthetic Weather Forecast. IEEE Access 2020, 8, 172524–172533. [CrossRef]
    Paper not yet in RePEc: Add citation now
  97. Hwang, J.T.G.; Ding, A.A. Prediction Intervals for Artificial Neural Networks. J. Am. Stat. Assoc. 1997, 92, 748–757. [CrossRef]
    Paper not yet in RePEc: Add citation now
  98. Ibrahim, I.A.; Hossain, M.J.; Duck, B.C. An Optimized Offline Random Forests-Based Model for Ultra-Short-Term Prediction of PV Characteristics. IEEE Trans. Ind. Inform. 2020, 16, 202–214. [CrossRef]
    Paper not yet in RePEc: Add citation now
  99. International Energy Agency (IEA). World Energy Outlook 2020; International Energy Agency: Paris, France, 2020.
    Paper not yet in RePEc: Add citation now
  100. Jakoplić, A.; Franković, D.; Kirinčić, V.; Plavšić, T. Benefits of Short-Term Photovoltaic Power Production Forecasting to the Power System. Optim. Eng. 2020, 22, 9–27. [CrossRef]
    Paper not yet in RePEc: Add citation now
  101. Jamil, W.J.; Rahman, H.A.; Shaari, S.; Desa, M.K.M. Modeling of Soiling Derating Factor in Determining Photovoltaic Outputs. IEEE J. Photovolt. 2020, 10, 1417–1423. [CrossRef]
    Paper not yet in RePEc: Add citation now
  102. Jang, H.S.; Bae, K.Y.; Park, H.-S.; Sung, D.K. Solar Power Prediction Based on Satellite Images and Support Vector Machine. IEEE Trans. Sustain. Energy 2016, 7, 1255–1263. [CrossRef]
    Paper not yet in RePEc: Add citation now
  103. Jebli, I.; Belouadha, F.-Z.; Kabbaj, M.I.; Tilioua, A. Prediction of Solar Energy Guided by Pearson Correlation Using Machine Learning. Energy 2021, 224, 120109. [CrossRef]

  104. Jogunuri, S.; Josh, F.T.; Stonier, A.A.; Peter, G.; Jayaraj, J.; Jaganathan, S.; Jency Joseph, J.; Ganji, V. Random Forest Machine Learning Algorithm Based Seasonal Multi-Step Ahead Short-Term Solar Photovoltaic Power Output Forecasting. IET Renew. Power Gener. 2024, 1–16. [CrossRef]
    Paper not yet in RePEc: Add citation now
  105. Jung, J.; Han, S.; Kim, B. Digital Numerical Map-Oriented Estimation of Solar Energy Potential for Site Selection of Photovoltaic Solar Panels on National Highway Slopes. Appl. Energy 2019, 242, 57–68. [CrossRef]

  106. Kaplani, E.; Kaplanis, S. Thermal Modelling and Experimental Assessment of the Dependence of PV Module Temperature on Wind Velocity and Direction, Module Orientation and Inclination. Sol. Energy 2014, 107, 443–460. [CrossRef]
    Paper not yet in RePEc: Add citation now
  107. Kazem, H.A.; Chaichan, M.T. Effect of Humidity on Photovoltaic Performance Based on Experimental Study. Int. J. Appl. Eng. Res. 2015, 10, 43572–43577.
    Paper not yet in RePEc: Add citation now
  108. Keddouda, A.; Ihaddadene, R.; Boukhari, A.; Atia, A.; Arıcı, M.; Lebbihiat, N.; Ihaddadene, N. Solar Photovoltaic Power Prediction Using Artificial Neural Network and Multiple Regression Considering Ambient and Operating Conditions. Energy Convers. Manag. 2023, 288, 117186. [CrossRef]
    Paper not yet in RePEc: Add citation now
  109. KEMMOKU, Y.; ORITA, S.; NAKAGAWA, S.; SAKAKIBARA, T. Daily Insolation Forecasting Using a Multi-Stage Neural Network. Sol. Energy 1999, 66, 193–199. [CrossRef]
    Paper not yet in RePEc: Add citation now
  110. Khademi, M.; Moadel, M.; Khosravi, A. Power Prediction and Technoeconomic Analysis of a Solar PV Power Plant by MLP-ABC and COMFAR III, Considering Cloudy Weather Conditions. Int. J. Chem. Eng. 2016, 2016, 1031943. [CrossRef]
    Paper not yet in RePEc: Add citation now
  111. Khalid, S.; Khalil, T.; Nasreen, S. A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning. In Proceedings of the 2014 Science and Information Conference, London, UK, 27–29 August 2014; pp. 372–378.
    Paper not yet in RePEc: Add citation now
  112. Khan, I.; Zhu, H.; Yao, J.; Khan, D.; Iqbal, T. Hybrid Power Forecasting Model for Photovoltaic Plants Based on Neural Network with Air Quality Index. Int. J. Photoenergy 2017, 2017, 1–9. [CrossRef]
    Paper not yet in RePEc: Add citation now
  113. Khan, W.; Walker, S.; Zeiler, W. Improved Solar Photovoltaic Energy Generation Forecast Using Deep Learning-Based Ensemble Stacking Approach. Energy 2022, 240, 122812. [CrossRef]

  114. Khandakar, A.; Chowdhury, M.E.H.; Kazi, M.K.; Benhmed, K.; Touati, F.; Al-Hitmi, M.; Gonzales, A.S.P. Machine Learning Based Photovoltaics (PV) Power Prediction Using Different Environmental Parameters of Qatar. Energies 2019, 12, 2782. [CrossRef]

  115. Khosravi, A.; Nahavandi, S.; Creighton, D.; Atiya, A.F. Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals. IEEE Trans. Neural Netw. Publ. IEEE Neural Netw. Counc. 2011, 22, 337–346. [CrossRef]
    Paper not yet in RePEc: Add citation now
  116. Kosmopoulos, P.G.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Bais, A. Solar Energy Prediction and Verification Using Operational Model Forecasts and Ground-Based Solar Measurements. Energy 2015, 93, 1918–1930. [CrossRef]

  117. Koster, D.; Minette, F.; Braun, C.; O’Nagy, O. Short-Term and Regionalized Photovoltaic Power Forecasting, Enhanced by Reference Systems, on the Example of Luxembourg. Renew. Energy 2019, 132, 455–470. [CrossRef]
    Paper not yet in RePEc: Add citation now
  118. Kow, K.W.; Wong, Y.W.; Rajkumar, R.K.; Rajkumar, R.K.; Isa, D. Incremental Unsupervised Learning Algorithm for Power Fluctuation Event Detection in PV Grid-Tied Systems BT. In Proceedings of the 9th International Conference on Robotic, Vision, Signal Processing and Power Applications, Penang, Malaysia, 2–3 February 2016; Ibrahim, H., Iqbal, S., Teoh, S.S., Mustaffa, M.T., Eds.; Springer Singapore: Singapore, 2017; pp. 673–679.
    Paper not yet in RePEc: Add citation now
  119. Kumar, A.; Rizwan, M.; Nangia, U. A Hybrid Intelligent Approach for Solar Photovoltaic Power Forecasting: Impact of Aerosol Data. Arab. J. Sci. Eng. 2020, 45, 1715–1732. [CrossRef]
    Paper not yet in RePEc: Add citation now
  120. Kumar, A.; Rizwan, M.; Nangia, U. Artificial Neural Network Based Model for Short Term Solar Radiation Forecasting Considering Aerosol Index. In Proceedings of the 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 22–24 October 2018; pp. 212–217.
    Paper not yet in RePEc: Add citation now
  121. Kurtz, B.; Mejia, F.; Kleissl, J. A Virtual Sky Imager Testbed for Solar Energy Forecasting. Sol. Energy 2017, 158, 753–759. [CrossRef]
    Paper not yet in RePEc: Add citation now
  122. Lateko, A.A.H.; Yang, H.-T.; Huang, C.-M.; Aprillia, H.; Hsu, C.-Y.; Zhong, J.-L.; Phương, N.H. Stacking Ensemble Method with the RNN Meta-Learner for Short-Term PV Power Forecasting. Energies 2021, 14, 4733. [CrossRef]
    Paper not yet in RePEc: Add citation now
  123. Lee, D.-S.; Son, S.-Y. Weighted Average Ensemble-Based PV Forecasting in a Limited Environment with Missing Data of PV Power. Sustainability 2024, 16, 4069. [CrossRef] Energies 2024, 17, 4145 35 of 38
    Paper not yet in RePEc: Add citation now
  124. Lee, D.S.; Lai, C.W.; Fu, S.K. A Short- and Medium-Term Forecasting Model for Roof PV Systems with Data Pre-Processing. Heliyon 2024, 10, e27752. [CrossRef]
    Paper not yet in RePEc: Add citation now
  125. Leva, S.; Dolara, A.; Grimaccia, F.; Mussetta, M.; Ogliari, E. Analysis and Validation of 24 Hours Ahead Neural Network Forecasting of Photovoltaic Output Power. Math. Comput. Simul. 2017, 131, 88–100. [CrossRef]
    Paper not yet in RePEc: Add citation now
  126. Li, G.; Wang, H.; Zhang, S.; Xin, J.; Liu, H. Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach. Energies 2019, 12, 2538. [CrossRef] Energies 2024, 17, 4145 36 of 38
    Paper not yet in RePEc: Add citation now
  127. Li, G.; Xie, S.; Wang, B.; Xin, J.; Li, Y.; Du, S. Photovoltaic Power Forecasting with a Hybrid Deep Learning Approach. IEEE Access 2020, 8, 175871–175880. [CrossRef]
    Paper not yet in RePEc: Add citation now
  128. Li, P.; Zhou, K.; Lu, X.; Yang, S. A Hybrid Deep Learning Model for Short-Term PV Power Forecasting. Appl. Energy 2020, 259,
    Paper not yet in RePEc: Add citation now
  129. Li, P.; Zhou, K.; Yang, S. Photovoltaic Power Forecasting: Models and Methods. In Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–6. [CrossRef]
    Paper not yet in RePEc: Add citation now
  130. Li, Q.; Zhang, X.; Ma, T.; Jiao, C.; Wang, H.; Hu, W. A Multi-Step Ahead Photovoltaic Power Prediction Model Based on Similar Day, Enhanced Colliding Bodies Optimization, Variational Mode Decomposition, and Deep Extreme Learning Machine. Energy 2021, 224, 120094. [CrossRef]

  131. Li, Q.; Zhang, X.; Ma, T.; Liu, D.; Wang, H.; Hu, W. A Multi-Step Ahead Photovoltaic Power Forecasting Model Based on TimeGAN, Soft DTW-Based K-Medoids Clustering, and a CNN-GRU Hybrid Neural Network. Energy Rep. 2022, 8, 10346–10362. [CrossRef]
    Paper not yet in RePEc: Add citation now
  132. Liang, L.; Su, T.; Gao, Y.; Qin, F.; Pan, M. FCDT-IWBOA-LSSVR: An Innovative Hybrid Machine Learning Approach for Efficient Prediction of Short-to-Mid-Term Photovoltaic Generation. J. Clean. Prod. 2023, 385, 135716. [CrossRef]
    Paper not yet in RePEc: Add citation now
  133. Liu, F.; Hu, B.; Li, R.; Li, Y. A Novel Control Strategy of Energy Storage System Considering Prediction Errors of Photovoltaic Power. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1247–1251.
    Paper not yet in RePEc: Add citation now
  134. Liu, J.; Fang, W.; Zhang, X.; Yang, C. An Improved Photovoltaic Power Forecasting Model With the Assistance of Aerosol Index Data. IEEE Trans. Sustain. Energy 2015, 6, 434–442. [CrossRef]
    Paper not yet in RePEc: Add citation now
  135. Liu, L.; Li, Y. Research on a Photovoltaic Power Prediction Model Based on an IAO-LSTM Optimization Algorithm. Processes 2023, 11, 1957. [CrossRef]
    Paper not yet in RePEc: Add citation now
  136. Liu, W.; Ren, C.; Xu, Y. Missing-Data Tolerant Hybrid Learning Method for Solar Power Forecasting. IEEE Trans. Sustain. Energy 2022, 13, 1843–1852. [CrossRef]
    Paper not yet in RePEc: Add citation now
  137. Liu, X.; Liu, Y.; Kong, X.; Ma, L.; Besheer, A.H.; Lee, K.Y. Deep Neural Network for Forecasting of Photovoltaic Power Based on Wavelet Packet Decomposition with Similar Day Analysis. Energy 2023, 271, 126963. [CrossRef]

  138. Liu, Z.; Zhang, Z. Solar Forecasting by K-Nearest Neighbors Method with Weather Classification and Physical Model. In Proceedings of the NAPS 2016—48th North American Power Symposium, Denver, Colorado, USA, 18–20 September 2016.
    Paper not yet in RePEc: Add citation now
  139. Lorenz, E.; Kühnert, J.; Heinemann, D. Short Term Forecasting of Solar Irradiance by Combining Satellite Data and Numerical Weather Predictions. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition; European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), Frankfurt, Germany, 24–28 September 2012; pp. 4401–4405.
    Paper not yet in RePEc: Add citation now
  140. Luo, X.; Zhu, X.; Gee Lim, E. A Hybrid Model for Short Term Real-Time Electricity Price Forecasting in Smart Grid. Big Data Anal. 2018, 3, 8. [CrossRef]
    Paper not yet in RePEc: Add citation now
  141. Mahmud, K.; Azam, S.; Karim, A.; Zobaed, S.; Shanmugam, B.; Mathur, D. Machine Learning Based PV Power Generation Forecasting in Alice Springs. IEEE Access 2021, 9, 46117–46128. [CrossRef]
    Paper not yet in RePEc: Add citation now
  142. Malvoni, M.; Fiore, M.C.; Maggiotto, G.; Mancarella, L.; Quarta, R.; Radice, V.; Congedo, P.M.; De Giorgi, M.G. Improvements in the Predictions for the Photovoltaic System Performance of the Mediterranean Regions. Energy Convers. Manag. 2016, 128, 191–202. [CrossRef]
    Paper not yet in RePEc: Add citation now
  143. Mandal, P.; Madhira, S.T.S.; Ul haque, A.; Meng, J.; Pineda, R.L. Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques. Procedia Comput. Sci. 2012, 12, 332–337. [CrossRef]
    Paper not yet in RePEc: Add citation now
  144. Markovics, D.; Mayer, M.J. Comparison of Machine Learning Methods for Photovoltaic Power Forecasting Based on Numerical Weather Prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364. [CrossRef]
    Paper not yet in RePEc: Add citation now
  145. Massidda, L.; Marrocu, M. Use of Multilinear Adaptive Regression Splines and Numerical Weather Prediction to Forecast the Power Output of a PV Plant in Borkum, Germany. Sol. Energy 2017, 146, 141–149. [CrossRef]
    Paper not yet in RePEc: Add citation now
  146. Mayer, M.J.; Gróf, G. Extensive Comparison of Physical Models for Photovoltaic Power Forecasting. Appl. Energy 2021, 283,

  147. Mellit, A.; Massi Pavan, A.; Lughi, V. Deep Learning Neural Networks for Short-Term Photovoltaic Power Forecasting. Renew. Energy 2021, 172, 276–288. [CrossRef]
    Paper not yet in RePEc: Add citation now
  148. Miraftabzadeh, S.M.; Longo, M.; Brenna, M. Knowledge Extraction From PV Power Generation With Deep Learning Autoencoder and Clustering-Based Algorithms. IEEE Access 2023, 11, 69227–69240. [CrossRef]
    Paper not yet in RePEc: Add citation now
  149. Mishra, M.; Byomakesha Dash, P.; Nayak, J.; Naik, B.; Kumar Swain, S. Deep Learning and Wavelet Transform Integrated Approach for Short-Term Solar PV Power Prediction. Measurement 2020, 166, 108250. [CrossRef]
    Paper not yet in RePEc: Add citation now
  150. Mohamad Radzi, P.N.L.; Akhter, M.N.; Mekhilef, S.; Mohamed Shah, N. Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting. Sustainability 2023, 15, 2942. [CrossRef]
    Paper not yet in RePEc: Add citation now
  151. Momete, D.C. Analysis of the Potential of Clean Energy Deployment in the European Union. IEEE Access 2018, 6, 54811–54822. [CrossRef]
    Paper not yet in RePEc: Add citation now
  152. Mubarak, H.; Hammoudeh, A.; Ahmad, S.; Abdellatif, A.; Mekhilef, S.; Mokhlis, H.; Dupont, S. A Hybrid Machine Learning Method with Explicit Time Encoding for Improved Malaysian Photovoltaic Power Prediction. J. Clean. Prod. 2023, 382, 134979. [CrossRef]
    Paper not yet in RePEc: Add citation now
  153. Mukherjee, D.P.; Acton, S.T. Cloud Tracking by Scale Space Classification. IEEE Trans. Geosci. Remote Sens. 2002, 40, 405–415. [CrossRef]
    Paper not yet in RePEc: Add citation now
  154. Murakami, Y.; Takabayashi, Y.; Noro, Y. Photovoltaic Power Prediction and Its Application to Smart Grid. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20–23 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 47–50.
    Paper not yet in RePEc: Add citation now
  155. Murphy, A.H.; Epstein, E.S. Skill Scores and Correlation Coefficients in Model Verification. Mon. Weather. Rev. 1989, 117, 572–582. [CrossRef]
    Paper not yet in RePEc: Add citation now
  156. Nespoli, A.; Ogliari, E.; Leva, S.; Massi Pavan, A.; Mellit, A.; Lughi, V.; Dolara, A. Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques. Energies 2019, 12, 1621. [CrossRef]
    Paper not yet in RePEc: Add citation now
  157. Ng, A.Y.; Jordan, M.I.; Weiss, Y. On Spectral Clustering: Analysis and an Algorithm. Nips 2001, 14, 849–856.
    Paper not yet in RePEc: Add citation now
  158. Nguyen Trong, T.; Vu Xuan Son, H.; Do Dinh, H.; Takano, H.; Nguyen Duc, T. Short-Term PV Power Forecast Using Hybrid Deep Learning Model and Variational Mode Decomposition. Energy Rep. 2023, 9, 712–717. [CrossRef]
    Paper not yet in RePEc: Add citation now
  159. Nguyen, T.; Nguyen, G.; Nguyen, B.M. EO-CNN: An Enhanced CNN Model Trained by Equilibrium Optimization for Traffic Transportation Prediction. Proc. Procedia Comput. Sci. 2020, 176, 800–809. [CrossRef]
    Paper not yet in RePEc: Add citation now
  160. Ni, Q.; Zhuang, S.; Sheng, H.; Wang, S.; Xiao, J. An Optimized Prediction Intervals Approach for Short Term PV Power Forecasting. Energies 2017, 10, 1669. [CrossRef]
    Paper not yet in RePEc: Add citation now
  161. Niccolai, A.; Dolara, A.; Ogliari, E. Hybrid PV Power Forecasting Methods: A Comparison of Different Approaches. Energies 2021, 14, 451. [CrossRef]
    Paper not yet in RePEc: Add citation now
  162. Nix, D.; Weigend, A.S. Estimating the Mean and Variance of the Target Probability Distribution. In Proceedings of the 1994 IEEE International Conference on Neural Networks (ICNN’94), Orlando, FL, USA, 28 June–2 July 1994; Volume 1, pp. 55–60. [CrossRef]
    Paper not yet in RePEc: Add citation now
  163. Oprea, S.-V.; Bâra, A. Ultra-Short-Term Forecasting for Photovoltaic Power Plants and Real-Time Key Performance Indicators Analysis with Big Data Solutions. Two Case Studies-PV Agigea and PV Giurgiu Located in Romania. Comput. Ind. 2020, 120,
    Paper not yet in RePEc: Add citation now
  164. Ospina, J.; Newaz, A.; Faruque, M.O. Forecasting of PV Plant Output Using Hybrid Wavelet-Based LSTM-DNN Structure Model. IET Renew. Power Gener. 2019, 13, 1087–1095. [CrossRef] Energies 2024, 17, 4145 34 of 38
    Paper not yet in RePEc: Add citation now
  165. Ozbek, A.; Yildirim, A.; Bilgili, M. Deep Learning Approach for One-Hour Ahead Forecasting of Energy Production in a Solar-PV Plant. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 44, 10465–10480. [CrossRef]
    Paper not yet in RePEc: Add citation now
  166. Pan, S.; Liu, D.; Zhu, H.; Ji, W.; Zhang, M.; Lu, Y. Optimization Control of Active Distribution Network Based on Photovoltaic Forecast Information. In Proceedings of the 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, Chian, 23–26 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 594–597.
    Paper not yet in RePEc: Add citation now
  167. Park, T.; Song, K.; Jeong, J.; Kim, H. Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants. Energies 2023, 16, 5293. [CrossRef]

  168. Pattanaik, D.; Mishra, S.; Khuntia, G.P.; Dash, R.; Swain, S.C. An Innovative Learning Approach for Solar Power Forecasting Using Genetic Algorithm and Artificial Neural Network. Open Eng. 2020, 10, 630–641. [CrossRef]
    Paper not yet in RePEc: Add citation now
  169. Pedro, H.T.C.; Coimbra, C.F.M. Assessment of Forecasting Techniques for Solar Power Production with No Exogenous Inputs. Sol. Energy 2012, 86, 2017–2028. [CrossRef]
    Paper not yet in RePEc: Add citation now
  170. Pelland, S.; Remund, J.; Kleissl, J.; Oozeki, T.; De Brabandere, K. Task 14—Photovoltaics and Solar Forecasting State of Art Report; International Energy Agency: Paris, France, 2013.
    Paper not yet in RePEc: Add citation now
  171. Peng, C.; Zou, J.; Zhang, Z.; Han, L.; Liu, M. An Ultra-Short-Term Pre-Plan Power Curve Based Smoothing Control Approach for Grid-Connected Wind-Solar-Battery Hybrid Power System. IFAC-PapersOnLine 2017, 50, 7711–7716. [CrossRef]
    Paper not yet in RePEc: Add citation now
  172. Peng, Z.; Yoo, S.; Yu, D.; Huang, D. Solar Irradiance Forecast System Based on Geostationary Satellite. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; IEEE: New York City, NY, USA, 2013; pp. 708–713.
    Paper not yet in RePEc: Add citation now
  173. Peng, Z.; Yu, D.; Huang, D.; Heiser, J.; Yoo, S.; Kalb, P. 3D Cloud Detection and Tracking System for Solar Forecast Using Multiple Sky Imagers. Sol. Energy 2015, 118, 496–519. [CrossRef]
    Paper not yet in RePEc: Add citation now
  174. PR, J.V.; Sam K, N.; T, V.; Kathiresan, A.C. Development and Performance Analysis of Aquila Algorithm Optimized SPV Power Imputation and Forecasting Models. IEEE Trans Sustain. Energy 2024, 15, 2103–2114. [CrossRef]
    Paper not yet in RePEc: Add citation now
  175. Puah, B.K.; Chong, L.W.; Wong, Y.W.; Begam, K.M.; Khan, N.; Juman, M.A.; Rajkumar, R.K. A Regression Unsupervised Incremental Learning Algorithm for Solar Irradiance Prediction. Renew. Energy 2021, 164, 908–925. [CrossRef]
    Paper not yet in RePEc: Add citation now
  176. Qin, S.; Wang, B.X.; Wu, W.; Ma, C. The Prediction Intervals of Remaining Useful Life Based on Constant Stress Accelerated Life Test Data. Eur. J. Oper. Res. 2022, 301, 747–755. [CrossRef]
    Paper not yet in RePEc: Add citation now
  177. Rafati, A.; Joorabian, M.; Mashhour, E.; Shaker, H.R. High Dimensional Very Short-Term Solar Power Forecasting Based on a Data-Driven Heuristic Method. Energy 2021, 219, 119647. [CrossRef]
    Paper not yet in RePEc: Add citation now
  178. Raj, V.; Dotse, S.-Q.; Sathyajith, M.; Petra, M.I.; Yassin, H. Ensemble Machine Learning for Predicting the Power Output from Different Solar Photovoltaic Systems. Energies 2023, 16, 671. [CrossRef]
    Paper not yet in RePEc: Add citation now
  179. Ramana, P.V. SPV Technology Dissemination—A Global Review. In Solar Photovoltaic Systems in Bangladesh: Experiences and Opportunities; Eusuf, M., Ed.; The University Press Limited: Dhaka, Bangladesh, 2005; pp. 119–138.
    Paper not yet in RePEc: Add citation now
  180. Ramesh, G.; Logeshwaran, J.; Kiruthiga, T.; Lloret, J. Prediction of Energy Production Level in Large PV Plants through AUTO-Encoder Based Neural-Network (AUTO-NN) with Restricted Boltzmann Feature Extraction. Future Internet 2023, 15, 46. [CrossRef]
    Paper not yet in RePEc: Add citation now
  181. Ray, B.; Shah, R.; Islam, M.R.; Islam, S. A New Data Driven Long-Term Solar Yield Analysis Model of Photovoltaic Power Plants. IEEE Access 2020, 8, 136223–136233. [CrossRef]
    Paper not yet in RePEc: Add citation now
  182. Razavi-Far, R.; Baraldi, P.; Zio, E. Dynamic Weighting Ensembles for Incremental Learning and Diagnosing New Concept Class Faults in Nuclear Power Systems. IEEE Trans. Nucl. Sci. 2012, 59, 2520–2530. [CrossRef]
    Paper not yet in RePEc: Add citation now
  183. Reikard, G. Predicting Solar Radiation at High Resolutions: A Comparison of Time Series Forecasts. Sol. Energy 2009, 83, 342–349. [CrossRef]
    Paper not yet in RePEc: Add citation now
  184. Rizzi, F.; van Eck, N.J.; Frey, M. The Production of Scientific Knowledge on Renewable Energies: Worldwide Trends, Dynamics and Challenges and Implications for Management. Renew. Energy 2014, 62, 657–671. [CrossRef]
    Paper not yet in RePEc: Add citation now
  185. Saint-Drenan, Y.M.; Bofinger, S.; Fritz, R.; Vogt, S.; Good, G.H.; Dobschinski, J. An Empirical Approach to Parameterizing Photovoltaic Plants for Power Forecasting and Simulation. Sol. Energy 2015, 120, 479–493. [CrossRef] Energies 2024, 17, 4145 32 of 38
    Paper not yet in RePEc: Add citation now
  186. Saint-Drenan, Y.M.; Good, G.H.; Braun, M.; Freisinger, T. Analysis of the Uncertainty in the Estimates of Regional PV Power Generation Evaluated with the Upscaling Method. Sol. Energy 2016, 135, 536–550. [CrossRef]
    Paper not yet in RePEc: Add citation now
  187. Sengupta, A.; Das, D.K. Wavelet Transform Based Data Processing Technique for Solar and Wind Energy Forecasting Using Auto Regressive Integrated Moving Average Model. In Proceedings of the 5th International Conference on Energy, Power, and Environment: Towards Flexible Green Energy Tech-nologies, ICEPE 2023, Shillong, India, 15–17 June 2023.
    Paper not yet in RePEc: Add citation now
  188. Shakya, A.; Michael, S.; Saunders, C.; Armstrong, D.; Pandey, P.; Chalise, S.; Tonkoski, R. Using Markov Switching Model for Solar Irradiance Forecasting in Remote Microgrids. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7.
    Paper not yet in RePEc: Add citation now
  189. Sharma, V.; Cali, U.; Hagenmeyer, V.; Mikut, R.; Ordiano, J..G. Numerical Weather Prediction Data Free Solar Power Forecasting with Neural Networks. In Proceedings of the Proceedings of the Ninth International Conference on Future Energy Systems, Karlsruhe, Germany, 12–15 June 2018; Association for Computing Machinery: New York, NY, USA; pp. 604–609.
    Paper not yet in RePEc: Add citation now
  190. Sheng, H.; Xiao, J.; Cheng, Y.; Ni, Q.; Wang, S. Short-Term Solar Power Forecasting Based on Weighted Gaussian Process Regression. IEEE Trans. Ind. Electron. 2018, 65, 300–308. [CrossRef]
    Paper not yet in RePEc: Add citation now
  191. Shi, J.; Lee, W.-J.; Liu, Y.; Yang, Y.; Wang, P. Forecasting Power Output of Photovoltaic System Based on Weather Classification and Support Vector Machine. In Proceedings of the 2011 IEEE Industry Applications Society Annual Meeting, Orlando, FL, USA, 9–13 October 2011; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  192. Si, Z.; Yang, M.; Yu, Y.; Ding, T. Photovoltaic Power Forecast Based on Satellite Images Considering Effects of Solar Position. Appl. Energy 2021, 302, 117514. [CrossRef]

  193. Si, Z.; Yu, Y.; Yang, M.; Li, P. Hybrid Solar Forecasting Method Using Satellite Visible Images and Modified Convolutional Neural Networks. IEEE Trans. Ind. Appl. 2021, 57, 5–16. [CrossRef]
    Paper not yet in RePEc: Add citation now
  194. Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar Photovoltaic Generation Forecasting Methods: A Review. Energy Convers. Manag. 2018, 156, 459–497. [CrossRef]
    Paper not yet in RePEc: Add citation now
  195. Sperati, S.; Alessandrini, S.; Pinson, P.; Kariniotakis, G. The “Weather Intelligence for Renewable Energies” Benchmarking Exercise on Short-Term Forecasting of Wind and Solar Power Generation. Energies 2015, 8, 9594–9619. [CrossRef]
    Paper not yet in RePEc: Add citation now
  196. Stuhlmann, R.; Rieland, M.; Paschke, E. An Improvement of the IGMK Model to Derive Total and Diffuse Solar Radiation at the Surface from Satellite Data. J. Appl. Meteorol. 1990, 29, 586–603. [CrossRef]
    Paper not yet in RePEc: Add citation now
  197. Tawn, R.; Browell, J. A Review of Very Short-Term Wind and Solar Power Forecasting. Renew. Sustain. Energy Rev. 2022, 153,
    Paper not yet in RePEc: Add citation now
  198. Tian, J.; Ooka, R.; Lee, D. Multi-Scale Solar Radiation and Photovoltaic Power Forecasting with Machine Learning Algorithms in Urban Environment: A State-of-the-Art Review. J. Clean. Prod. 2023, 426, 139040. [CrossRef]
    Paper not yet in RePEc: Add citation now
  199. Touati, F.; Chowdhury, N.A.; Benhmed, K.; San Pedro Gonzales, A.J.R.; Al-Hitmi, M.A.; Benammar, M.; Gastli, A.; Ben-Brahim, L. Long-Term Performance Analysis and Power Prediction of PV Technology in the State of Qatar. Renew. Energy 2017, 113, 952–965. [CrossRef]

  200. Tuohy, A.; Zack, J.; Haupt, S.E.; Sharp, J.; Ahlstrom, M.; Dise, S.; Grimit, E.; Mohrlen, C.; Lange, M.; Casado, M.G.; et al. Solar Forecasting: Methods, Challenges, and Performance. IEEE Power Energy Mag. 2015, 13, 50–59. [CrossRef]
    Paper not yet in RePEc: Add citation now
  201. Urquhart, B.; Kurtz, B.; Dahlin, E.; Ghonima, M.; Shields, J.E.; Kleissl, J. Development of a Sky Imaging System for Short-Term Solar Power Forecasting. Atmos. Meas. Tech. 2015, 8, 875–890. [CrossRef]
    Paper not yet in RePEc: Add citation now
  202. Urquhart, B.G.; Chow, C.W.; Nguyen, A.; Kleissl, J.; Sengupta, M.; Blatchford, J.; Jeon, D.C. Towards Intra-Hour Solar Forecasting Using Two Sky Imagers at a Large Solar Power Plant. In Proceedings of the American Solar Energy Society, Denver, CO, USA, 13–17 May 2012; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  203. VanDeventer, W.; Jamei, E.; Thirunavukkarasu, G.S.; Soon, T.K.; Horan, B.; Mekhilef, S.; Stojcevski, A. Short-Term PV Power Forecasting Using Hybrid GASVM Technique. Renew. Energy 2019, 140, 367–379. [CrossRef]
    Paper not yet in RePEc: Add citation now
  204. Wan, C.; Lin, J.; Song, Y.; Xu, Z.; Yang, G. Probabilistic Forecasting of Photovoltaic Generation: An Efficient Statistical Approach. IEEE Trans. Power Syst. 2017, 32, 2471–2472. [CrossRef]
    Paper not yet in RePEc: Add citation now
  205. Wan, C.; Zhao, J.; Song, Y.; Xu, Z.; Lin, J.; Hu, Z. Photovoltaic and Solar Power Forecasting for Smart Grid Energy Management. CSEE J. Power Energy Syst. 2016, 1, 38–46. [CrossRef]
    Paper not yet in RePEc: Add citation now
  206. Wang, C.; Lu, X.; Zhen, Z.; Wang, F.; Xu, X.; Ren, H. Ultra-Short-Term Regional PV Power Forecasting Based on Fluctuation Pattern Recognition with Satellite Images. In Proceedings of the 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), Jinan, China, 4–6 December 2020; pp. 970–975.
    Paper not yet in RePEc: Add citation now
  207. Wang, F.; Lu, X.; Mei, S.; Su, Y.; Zhen, Z.; Zou, Z.; Zhang, X.; Yin, R.; Duić, N.; Shafie-khah, M.; et al. A Satellite Image Data Based Ultra-Short-Term Solar PV Power Forecasting Method Considering Cloud Information from Neighboring Plant. Energy 2022, 238,
    Paper not yet in RePEc: Add citation now
  208. Wang, F.; Zhang, Z.; Liu, C.; Yu, Y.; Pang, S.; Duić, N.; Shafie-khah, M.; Catalão, J.P.S. Generative Adversarial Networks and Convolutional Neural Networks Based Weather Classification Model for Day Ahead Short-Term Photovoltaic Power Forecasting. Energy Convers. Manag. 2019, 181, 443–462. [CrossRef]
    Paper not yet in RePEc: Add citation now
  209. Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short Term Solar PV Power Forecasting. Appl. Sci. 2018, 8, 28. [CrossRef]
    Paper not yet in RePEc: Add citation now
  210. Wang, G.; Su, Y.; Shu, L. One-Day-Ahead Daily Power Forecasting of Photovoltaic Systems Based on Partial Functional Linear Regression Models. Renew. Energy 2016, 96, 469–478. [CrossRef]
    Paper not yet in RePEc: Add citation now
  211. Wang, H.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and Probabilistic Forecasting of Photovoltaic Power Based on Deep Convolutional Neural Network. Energy Convers. Manag. 2017, 153, 409–422. [CrossRef]
    Paper not yet in RePEc: Add citation now
  212. Wang, J.; Zhong, H.; Lai, X.; Xia, Q.; Wang, Y.; Kang, C. Exploring Key Weather Factors from Analytical Modeling toward Improved Solar Power Forecasting. IEEE Trans. Smart Grid 2019, 10, 1417–1427. [CrossRef]
    Paper not yet in RePEc: Add citation now
  213. Wang, K.; Qi, X.; Liu, H. Photovoltaic Power Forecasting Based LSTM-Convolutional Network. Energy 2019, 189, 116225. [CrossRef]

  214. Wang, Y.; Yang, Q.; Xue, H.; Mi, Y.; Tu, Y. Ultra-Short-Term PV Power Prediction Model Based on HP-OVMD and Enhanced Emotional Neural Network. IET Renew. Power Gener. 2022, 16, 2233–2247. [CrossRef]
    Paper not yet in RePEc: Add citation now
  215. Wen, Y.; AlHakeem, D.; Mandal, P.; Chakraborty, S.; Wu, Y.-K.; Senjyu, T.; Paudyal, S.; Tseng, T.-L. Performance Evaluation of Probabilistic Methods Based on Bootstrap and Quantile Regression to Quantify PV Power Point Forecast Uncertainty. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 1134–1144. [CrossRef]
    Paper not yet in RePEc: Add citation now
  216. Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
    Paper not yet in RePEc: Add citation now
  217. Wolff, B.; Kühnert, J.; Lorenz, E.; Kramer, O.; Heinemann, D. Comparing Support Vector Regression for PV Power Forecasting to a Physical Modeling Approach Using Measurement, Numerical Weather Prediction, and Cloud Motion Data. Sol. Energy 2016, 135, 197–208. [CrossRef]
    Paper not yet in RePEc: Add citation now
  218. Xu, Q.; Lan, P.; Zhang, B.; Ren, Z.; Yan, Y. Preparation of Syngas via Catalytic Gasification of Biomass with a Nickel-Based Catalyst. Energy Sources Part A Recovery Util. Environ. Eff. 2013, 35, 848–858. [CrossRef]
    Paper not yet in RePEc: Add citation now
  219. Yamin, N.; Bhat, G. Online Solar Energy Prediction for Energy-Harvesting Internet of Things Devices. In Proceedings of the 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Boston, MA, USA, 26–28 July 2021; pp. 1–6. Energies 2024, 17, 4145 38 of 38
    Paper not yet in RePEc: Add citation now
  220. Yan, J.; Hu, L.; Zhen, Z.; Wang, F.; Qiu, G.; Li, Y.; Yao, L.; Shafie-khah, M.; Catalao, J.P.S. Frequency-Domain Decomposition and Deep Learning Based Solar PV Power Ultra-Short-Term Forecasting Model. IEEE Trans. Ind. Appl. 2021, 57, 3282–3295. [CrossRef]
    Paper not yet in RePEc: Add citation now
  221. Yang, D. A Guideline to Solar Forecasting Research Practice: Reproducible, Operational, Probabilistic or Physically-Based, Ensemble, and Skill (ROPES). J. Renew. Sustain. Energy 2019, 11, 022701. [CrossRef]
    Paper not yet in RePEc: Add citation now
  222. Yang, D.; Dong, Z. Operational Photovoltaics Power Forecasting Using Seasonal Time Series Ensemble. Sol. Energy 2018, 166, 529–541. [CrossRef]
    Paper not yet in RePEc: Add citation now
  223. Yang, D.; Quan, H.; Disfani, V.R.; Liu, L. Reconciling Solar Forecasts: Geographical Hierarchy. Sol. Energy 2017, 146, 276–286. [CrossRef]
    Paper not yet in RePEc: Add citation now
  224. Yang, D.; Wang, W.; Gueymard, C.A.; Hong, T.; Kleissl, J.; Huang, J.; Perez, M.J.; Perez, R.; Bright, J.M.; Xia, X.; et al. A Review of Solar Forecasting, Its Dependence on Atmospheric Sciences and Implications for Grid Integration: Towards Carbon Neutrality. Renew. Sustain. Energy Rev. 2022, 161, 112348. [CrossRef]

  225. Yang, D.; Yagli, G.M.; Srinivasan, D. Sub-Minute Probabilistic Solar Forecasting for Real-Time Stochastic Simulations. Renew. Sustain. Energy Rev. 2022, 153, 111736. [CrossRef]
    Paper not yet in RePEc: Add citation now
  226. Yang, H.-T.; Huang, C.-M.; Huang, Y.-C.; Pai, Y.-S. A Weather-Based Hybrid Method for 1-Day Ahead Hourly Forecasting of PV Power Output. IEEE Trans. Sustain. Energy 2014, 5, 917–926. [CrossRef]
    Paper not yet in RePEc: Add citation now
  227. Yang, L.; Cui, X.; Li, W. A Method for Predicting Photovoltaic Output Power Based on PCC-GRA-PCA Meteorological Elements Dimensionality Reduction Method. Int. J. Green Energy 2024, 21, 2327–2340. [CrossRef]
    Paper not yet in RePEc: Add citation now
  228. Yang, M.; Peng, T.; Su, X.; Ma, M. Short-Term Photovoltaic Power Interval Prediction Based on the Improved Generalized Error Mixture Distribution and Wavelet Packet-LSSVM. Front. Energy Res. 2021, 9. [CrossRef]
    Paper not yet in RePEc: Add citation now
  229. Yang, T.; Li, X.; Qi, L.; Hui, D.; Jia, X. A Schedule Method of Battery Energy Storage System (BESS) to Track Day-Ahead Photovoltaic Output Power Schedule Based on Short-Term Photovoltaic Power Prediction. In Proceedings of the International Conference on Renewable Power Generation (RPG 2015), Beijing, China, 17–18 October 2015; Institution of Engineering and Technology: Hertfordshire, UK; pp. 1–4.
    Paper not yet in RePEc: Add citation now
  230. Yang, Z.; Al-Dahidi, S.; Baraldi, P.; Zio, E.; Montelatici, L. A Novel Concept Drift Detection Method for Incremental Learning in Nonstationary Environments. IEEE Trans. Neural. Netw. Learn. Syst. 2020, 31, 309–320. [CrossRef]
    Paper not yet in RePEc: Add citation now
  231. Yousif, J.H.; Kazem, H.A. Modeling of Daily Solar Energy System Prediction Using Soft Computing Methods for Oman. Res. J. Appl. Sci. Eng. Technol. 2016, 3, 237–244. [CrossRef]
    Paper not yet in RePEc: Add citation now
  232. Yu, D.; Lee, S.; Lee, S.; Choi, W.; Liu, L. Forecasting Photovoltaic Power Generation Using Satellite Images. Energies 2020, 13, 6603. [CrossRef] Energies 2024, 17, 4145 31 of 38
    Paper not yet in RePEc: Add citation now
  233. Yu, M.; Niu, D.; Wang, K.; Du, R.; Yu, X.; Sun, L.; Wang, F. Short-Term Photovoltaic Power Point-Interval Forecasting Based on Double-Layer Decomposition and WOA-BiLSTM-Attention and Considering Weather Classification. Energy 2023, 275, 127348. [CrossRef]

  234. Zahedi, A. Australian Renewable Energy Progress. Renew. Sustain. Energy Rev. 2010, 14, 2208–2213. [CrossRef]
    Paper not yet in RePEc: Add citation now
  235. Zeng, J.; Qiao, W. Short-Term Solar Power Prediction Using a Support Vector Machine. Renew. Energy 2013, 52, 118–127. [CrossRef]
    Paper not yet in RePEc: Add citation now
  236. Zhang, C.; Yang, T.; Gao, W.; Wang, Y. Solar PV Power Generation Forecasting and O & M Management Applications: A Review. In Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference (MSEC 2019), Erie, PA, USA, 10–14 June 2019; Volume 1.
    Paper not yet in RePEc: Add citation now
  237. Zhang, D.; Ma, Y.; Liu, J.; Jiang, S.; Chen, Y.; Wang, L.; Zhang, Y.; Li, M. Stochastic Optimization Method for Energy Storage System Configuration Considering Self-Regulation of the State of Charge. Sustainability 2022, 14, 553. [CrossRef] Energies 2024, 17, 4145 29 of 38
    Paper not yet in RePEc: Add citation now
  238. Zhang, D.; Yu, Y.; Huang, Z. Forecasting Solar Power Using Wavelet Transform Framework Based on ELM BT. In Proceedings of the ELM-2017—Proceedings in Adaptation, Learning and Optimization; Cao, J., Vong, C.M., Miche, Y., Lendasse, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 186–202.
    Paper not yet in RePEc: Add citation now
  239. Zhang, J.; Florita, A.; Hodge, B.-M.; Lu, S.; Hamann, H.F.; Banunarayanan, V.; Brockway, A.M. A Suite of Metrics for Assessing the Performance of Solar Power Forecasting. Sol. Energy 2015, 111, 157–175. [CrossRef]
    Paper not yet in RePEc: Add citation now
  240. Zhang, J.; Verschae, R.; Nobuhara, S.; Lalonde, J.-F. Deep Photovoltaic Nowcasting. Sol. Energy 2018, 176, 267–276. [CrossRef]
    Paper not yet in RePEc: Add citation now
  241. Zhang, P.; Li, W.; Li, S.; Wang, Y.; Xiao, W. Reliability Assessment of Photovoltaic Power Systems: Review of Current Status and Future Perspectives. Appl. Energy 2013, 104, 822–833. [CrossRef]

  242. Zhang, T.; Ma, F.; Peng, C.; Yu, Y.; Yue, D.; Dou, C.; O’Hare, G.M.P. A Very-Short-Term Online PV Power Prediction Model Based on RAN with Secondary Dynamic Adjustment. IEEE Trans. Artif. Intell. 2022, 4, 1214–1224. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
    Paper not yet in RePEc: Add citation now
  243. Zhang, X.; Fang, F.; Liu, J. Weather-Classification-MARS-Based Photovoltaic Power Forecasting for Energy Imbalance Market. IEEE Trans. Ind. Electron. 2019, 66, 8692–8702. [CrossRef]
    Paper not yet in RePEc: Add citation now
  244. Zhang, X.; Li, Y.; Lu, S.; Hamann, H.F.; Hodge, B.-M.; Lehman, B. A Solar Time Based Analog Ensemble Method for Regional Solar Power Forecasting. IEEE Trans. Sustain. Energy 2019, 10, 268–279. [CrossRef]
    Paper not yet in RePEc: Add citation now
  245. Zhang, Y.; Pan, Z.; Wang, H.; Wang, J.; Zhao, Z.; Wang, F. Achieving Wind Power and Photovoltaic Power Prediction: An Intelligent Prediction System Based on a Deep Learning Approach. Energy 2023, 283, 129005. [CrossRef]
    Paper not yet in RePEc: Add citation now
  246. Zhen, H.; Niu, D.; Wang, K.; Shi, Y.; Ji, Z.; Xu, X. Photovoltaic Power Forecasting Based on GA Improved Bi-LSTM in Microgrid without Meteorological Information. Energy 2021, 231, 120908. [CrossRef]

  247. Zhen, Z.; Liu, J.; Zhang, Z.; Wang, F.; Chai, H.; Yu, Y.; Lu, X.; Wang, T.; Lin, Y. Deep Learning Based Surface Irradiance Mapping Model for Solar PV Power Forecasting Using Sky Image. IEEE Trans. Ind. Appl. 2020, 56, 3385–3396. [CrossRef]
    Paper not yet in RePEc: Add citation now
  248. Zhen, Z.; Wang, F.; Sun, Y.; Mi, Z.; Liu, C.; Wang, B.; Lu, J. SVM Based Cloud Classification Model Using Total Sky Images for PV Power Forecasting. In Proceedings of the 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 18–20 February 2015; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  249. Zhen, Z.; Xuan, Z.; Wang, F.; Sun, R.; Duić, N.; Jin, T. Image Phase Shift Invariance Based Multi-Transform-Fusion Method for Cloud Motion Displacement Calculation Using Sky Images. Energy Convers. Manag. 2019, 197, 111853. [CrossRef] Energies 2024, 17, 4145 33 of 38
    Paper not yet in RePEc: Add citation now
  250. Zheng, L.; Su, R.; Sun, X.; Guo, S. Historical PV-Output Characteristic Extraction Based Weather-Type Classification Strategy and Its Forecasting Method for the Day-Ahead Prediction of PV Output. Energy 2023, 271, 127009. [CrossRef]
    Paper not yet in RePEc: Add citation now
  251. Zhou, X.; Ao, Y.; Wang, X.; Guo, X.; Dai, W. Learning with Privileged Information for Short-Term Photovoltaic Power Forecasting Using Stochastic Configuration Network. Inf. Sci. 2023, 619, 834–848. [CrossRef]
    Paper not yet in RePEc: Add citation now
  252. Zhu, H.; Sun, Y.; Jiang, T.; Zhang, X.; Zhou, H.; Hu, S.; Kang, M. An FCM Based Weather Type Classification Method Considering Photovoltaic Output and Meteorological Characteristics and Its Application in Power Interval Forecasting. IET Renew. Power Gener. 2024, 18, 238–260. [CrossRef]
    Paper not yet in RePEc: Add citation now
  253. Ziane, A.; Necaibia, A.; Sahouane, N.; Dabou, R.; Mostefaoui, M.; Bouraiou, A.; Khelifi, S.; Rouabhia, A.; Blal, M. Photovoltaic Output Power Performance Assessment and Forecasting: Impact of Meteorological Variables. Sol. Energy 2021, 220, 745–757. [CrossRef]
    Paper not yet in RePEc: Add citation now
  254. Ziel, F. Modeling the Impact of Wind and Solar Power Forecasting Errors on Intraday Electricity Prices. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework. (2024). Baraldi, Piero ; Aghaei, Mohammadreza ; Alrbai, Mohammad ; Madhiarasan, Manoharan ; Al-Ghussain, Loiy ; Alahmer, Hussein ; Zio, Enrico ; Abubaker, Ahmad M ; Ahmad, Adnan Darwish ; Al-Dahidi, Sameer.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:16:p:4145-:d:1460190.

    Full description at Econpapers || Download paper

  2. Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System. (2023). Ma, Zhonghai ; Geng, Yugang ; Nie, Songlin ; Gao, Jianhang ; Liao, Haitao.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022005130.

    Full description at Econpapers || Download paper

  3. Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. (2022). Zio, Enrico.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:218:y:2022:i:pa:s0951832021006153.

    Full description at Econpapers || Download paper

  4. Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production. (2021). Al-Dahidi, Sameer ; Baraldi, Piero ; Montelatici, Lorenzo ; Zio, Enrico.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:11:p:6417-:d:569086.

    Full description at Econpapers || Download paper

  5. Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency. (2021). Lauret, Philippe ; David, Mathieu ; Mazorra-Aguiar, Luis ; Montero, Gustavo ; Oliver, Albert.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:6:p:1679-:d:519436.

    Full description at Econpapers || Download paper

  6. Photovoltaic Power Forecasting: Assessment of the Impact of Multiple Sources of Spatio-Temporal Data on Forecast Accuracy. (2021). Agoua, Xwegnon Ghislain ; Girard, Robin ; Kariniotakis, Georges.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:5:p:1432-:d:511370.

    Full description at Econpapers || Download paper

  7. Regional Solar Irradiance Forecast for Kanto Region by Support Vector Regression Using Forecast of Meso-Ensemble Prediction System. (2021). Honda, Yuki ; Nakaegawa, Tosiyuki ; Oozeki, Takashi ; Takamatsu, Takahiro ; Kazumori, Masahiro ; Ohtake, Hideaki.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3245-:d:567341.

    Full description at Econpapers || Download paper

  8. Post-processing in solar forecasting: Ten overarching thinking tools. (2021). van der Meer, Dennis ; Yang, Dazhi.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:140:y:2021:i:c:s1364032121000307.

    Full description at Econpapers || Download paper

  9. Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model. (2021). Widen, Joakim ; Munkhammar, Joakim ; van der Meer, Dennis.
    In: Applied Energy.
    RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315816.

    Full description at Econpapers || Download paper

  10. Combining Artificial Intelligence with Physics-Based Methods for Probabilistic Renewable Energy Forecasting. (2020). Hussain, Tahani ; Dettling, Susan ; Haupt, Sue Ellen ; Alessandrini, Stefano ; Linden, Seth ; Nguyen, Nhi ; Al-Rasheedi, Majed ; Lee, Jared A ; Petzke, William ; Wiener, Gerry ; McCandless, Tyler C ; Kosovi, Branko ; Brummet, Thomas.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:8:p:1979-:d:346592.

    Full description at Econpapers || Download paper

  11. Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting. (2020). Bezas, Napoleon ; Zyglakis, Lampros ; Xanthopoulou, Georgia ; Kehagias, Dionysios ; Ioannidis, Dimosthenis ; Tzovaras, Dimitrios ; Timplalexis, Christos ; Salamanis, Athanasios I ; Tsolakis, Apostolos C ; Bintoudi, Angelina D.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:5978-:d:445829.

    Full description at Econpapers || Download paper

  12. Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review. (2020). Wang, Yanyang ; Li, Wei ; Chen, Ping ; Ren, Hui ; Qi, Hailong.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:5951-:d:445161.

    Full description at Econpapers || Download paper

  13. A Two-Step Energy Management Method Guided by Day-Ahead Quantile Solar Forecasts: Cross-Impacts on Four Services for Smart-Buildings. (2020). Bourdin, Vincent ; Badosa, Jordi ; Calderon-Obaldia, Fausto ; Migan-Dubois, Anne.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:5882-:d:443189.

    Full description at Econpapers || Download paper

  14. Hour-Ahead Photovoltaic Power Forecasting Using an Analog Plus Neural Network Ensemble Method. (2020). Qian, Zheng ; Pei, Yan ; Wang, Jingyue.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:12:p:3259-:d:375564.

    Full description at Econpapers || Download paper

  15. The Schaake Shuffle Technique to Combine Solar and Wind Power Probabilistic Forecasting. (2020). McCandless, Tyler ; Alessandrini, Stefano.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:10:p:2503-:d:358844.

    Full description at Econpapers || Download paper

  16. Added-value of ensemble prediction system on the quality of solar irradiance probabilistic forecasts. (2020). Pinson, Pierre ; Lauret, Philippe ; David, Mathieu ; le Gal, Josselin ; Badosa, Jordi.
    In: Renewable Energy.
    RePEc:eee:renene:v:162:y:2020:i:c:p:1321-1339.

    Full description at Econpapers || Download paper

  17. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. (2020). Wei, Zhinong ; Sun, LI ; Liu, Ling ; Cheng, Lilin ; Zang, Haixiang.
    In: Renewable Energy.
    RePEc:eee:renene:v:160:y:2020:i:c:p:26-41.

    Full description at Econpapers || Download paper

  18. Intra-day solar probabilistic forecasts including local short-term variability and satellite information. (2020). Branco, V ; Alonso-Suarez, R ; Lauret, P ; David, M.
    In: Renewable Energy.
    RePEc:eee:renene:v:158:y:2020:i:c:p:554-573.

    Full description at Econpapers || Download paper

  19. Residual load probabilistic forecast for reserve assessment: A real case study. (2020). Pierro, Marco ; Spada, Francesco ; Maggioni, Enrico ; Moser, David ; Cornaro, Cristina ; Perotto, Alessandro ; de Felice, Matteo.
    In: Renewable Energy.
    RePEc:eee:renene:v:149:y:2020:i:c:p:508-522.

    Full description at Econpapers || Download paper

  20. Using the analog ensemble method as a proxy measurement for wind power predictability. (2020). Shahriari, M ; delle Monache, L ; Clemente-Harding, L ; Cervone, G.
    In: Renewable Energy.
    RePEc:eee:renene:v:146:y:2020:i:c:p:789-801.

    Full description at Econpapers || Download paper

  21. Improving solar forecasting using Deep Learning and Portfolio Theory integration. (2020). , Paulo ; Anderson, Marcello ; Fernandez-Ramirez, Luis M.
    In: Energy.
    RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301237.

    Full description at Econpapers || Download paper

  22. Short-term forecasting of CO2 emission intensity in power grids by machine learning. (2020). Bacher, Peder ; Corradi, Olivier ; Leerbeck, Kenneth ; Madsen, Henrik ; Goranovi, Goran ; Tveit, Anna ; Junker, Rune Gronborg ; Ebrahimy, Razgar.
    In: Applied Energy.
    RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310394.

    Full description at Econpapers || Download paper

  23. Probabilistic solar power forecasting based on weather scenario generation. (2020). Sun, Mucun ; Zhang, Jie ; Feng, Cong.
    In: Applied Energy.
    RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303354.

    Full description at Econpapers || Download paper

  24. Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study. (2019). Hong, Sugwon ; Lee, Seung-Jae ; Aslam, Muhammad ; Kim, Hyung-Seung.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2019:i:1:p:147-:d:302641.

    Full description at Econpapers || Download paper

  25. Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data. (2019). Sigauke, Caston ; Mulaudzi, Sophie ; Mpfumali, Phathutshedzo ; Bere, Alphonce.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:18:p:3569-:d:268391.

    Full description at Econpapers || Download paper

  26. Operational solar forecasting for the real-time market. (2019). Kleissl, Jan ; Wu, Elynn ; Yang, Dazhi.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:35:y:2019:i:4:p:1499-1519.

    Full description at Econpapers || Download paper

  27. Ensemble spatiotemporal forecasting of solar irradiation using variational Bayesian convolutional gate recurrent unit network. (2019). Liu, Yongqi ; Yu, Xiang ; Pei, Shaoqian ; Zhou, Jianzhong ; Qin, Hui ; Wang, Chao ; Jiang, Zhiqiang ; Zhang, Zhendong.
    In: Applied Energy.
    RePEc:eee:appene:v:253:y:2019:i:c:101.

    Full description at Econpapers || Download paper

  28. Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression. (2019). Yin, Xingli ; Yu, Xiang ; Ye, Lei ; Li, Jie ; Qin, Hui ; Wang, Chao ; Zhang, Zhendong ; Liu, Yongqi.
    In: Applied Energy.
    RePEc:eee:appene:v:247:y:2019:i:c:p:270-284.

    Full description at Econpapers || Download paper

  29. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. (2019). Wang, Zheng ; Liu, Yong-Qian ; Qiao, Yan-Hui ; Han, Shuang ; Yan, Jie.
    In: Applied Energy.
    RePEc:eee:appene:v:239:y:2019:i:c:p:181-191.

    Full description at Econpapers || Download paper

  30. Ensembles of climate change models for risk assessment of nuclear power plants. (2018). .
    In: Journal of Risk and Reliability.
    RePEc:sae:risrel:v:232:y:2018:i:2:p:185-200.

    Full description at Econpapers || Download paper

  31. Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting. (2018). Marrocu, Marino ; Massidda, Luca.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:7:p:1763-:d:156242.

    Full description at Econpapers || Download paper

  32. How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle. (2018). , Shahrina ; Adnan, Nadia ; Ali, Murad ; Bin, Mohamad Ariff.
    In: Transportation Research Part A: Policy and Practice.
    RePEc:eee:transa:v:118:y:2018:i:c:p:819-836.

    Full description at Econpapers || Download paper

  33. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. (2018). Widen, J ; Munkhammar, J ; van der Meer, D W.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:81:y:2018:i:p1:p:1484-1512.

    Full description at Econpapers || Download paper

  34. Parametric methods for probabilistic forecasting of solar irradiance. (2018). Fatemi, Seyyed A ; Fripp, Matthias ; Kuh, Anthony.
    In: Renewable Energy.
    RePEc:eee:renene:v:129:y:2018:i:pa:p:666-676.

    Full description at Econpapers || Download paper

  35. Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts. (2018). Lauret, Philippe ; David, Mathieu.
    In: Renewable Energy.
    RePEc:eee:renene:v:123:y:2018:i:c:p:191-203.

    Full description at Econpapers || Download paper

  36. Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects. (2018). Siano, P ; Shafie-Khah, M ; di Somma, M ; Graditi, G ; Heydarian-Forushani, E.
    In: Renewable Energy.
    RePEc:eee:renene:v:116:y:2018:i:pa:p:272-287.

    Full description at Econpapers || Download paper

  37. Ensemble forecast of photovoltaic power with online CRPS learning. (2018). Mallet, V ; Thorey, J ; Chaussin, C.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:34:y:2018:i:4:p:762-773.

    Full description at Econpapers || Download paper

  38. Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data. (2018). Lauret, Philippe ; Luis, Mazorra Aguiar ; David, Mathieu.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:34:y:2018:i:3:p:529-547.

    Full description at Econpapers || Download paper

  39. Charting the course: A possible route to a fully renewable Swiss power system. (2018). Bartlett, Stuart ; Manso, Pedro ; Lehning, Michael ; Dujardin, Jerome ; Kruyt, Bert ; Kahl, Annelen.
    In: Energy.
    RePEc:eee:energy:v:163:y:2018:i:c:p:942-955.

    Full description at Econpapers || Download paper

  40. Wind power field reconstruction from a reduced set of representative measuring points. (2018). Salcedo-Sanz, S ; Garcia-Herrera, R ; Alexandre, E ; Camacho-Gomez, C ; Aybar-Ruiz, A.
    In: Applied Energy.
    RePEc:eee:appene:v:228:y:2018:i:c:p:1111-1121.

    Full description at Econpapers || Download paper

  41. Missing value imputation for short to mid-term horizontal solar irradiance data. (2018). Renwick, Zoe ; Demirhan, Haydar.
    In: Applied Energy.
    RePEc:eee:appene:v:225:y:2018:i:c:p:998-1012.

    Full description at Econpapers || Download paper

  42. Estimate and characterize PV power at demand-side hybrid system. (2018). Wu, Zhou ; Xia, Xiaohua ; Li, Qian.
    In: Applied Energy.
    RePEc:eee:appene:v:218:y:2018:i:c:p:66-77.

    Full description at Econpapers || Download paper

  43. Large-scale rooftop solar photovoltaic technical potential estimation using Random Forests. (2018). Mohajeri, Nahid ; Scartezzini, Jean-Louis ; Assouline, Dan.
    In: Applied Energy.
    RePEc:eee:appene:v:217:y:2018:i:c:p:189-211.

    Full description at Econpapers || Download paper

  44. Iterative multi-task learning for time-series modeling of solar panel PV outputs. (2018). Zhang, XI ; Shireen, Tahasin ; Li, Mingyang ; Wang, Hui ; Shao, Chenhui.
    In: Applied Energy.
    RePEc:eee:appene:v:212:y:2018:i:c:p:654-662.

    Full description at Econpapers || Download paper

  45. An integrated systemic method for supply reliability assessment of natural gas pipeline networks. (2018). Zhang, Zongjie ; Li, Xueyi ; Yang, Nan ; Su, Huai ; Zio, Enrico.
    In: Applied Energy.
    RePEc:eee:appene:v:209:y:2018:i:c:p:489-501.

    Full description at Econpapers || Download paper

  46. Probabilistic Solar Forecasting Using Quantile Regression Models. (2017). Lauret, Philippe ; David, Mathieu.
    In: Energies.
    RePEc:gam:jeners:v:10:y:2017:i:10:p:1591-:d:114807.

    Full description at Econpapers || Download paper

  47. Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble. (2017). Alessandrini, Stefano ; delle Monache, Luca ; Clemente-Harding, Laura ; Cervone, Guido .
    In: Renewable Energy.
    RePEc:eee:renene:v:108:y:2017:i:c:p:274-286.

    Full description at Econpapers || Download paper

  48. Short-term probabilistic forecasts for Direct Normal Irradiance. (2017). Chu, Yinghao.
    In: Renewable Energy.
    RePEc:eee:renene:v:101:y:2017:i:c:p:526-536.

    Full description at Econpapers || Download paper

  49. Energy prediction using spatiotemporal pattern networks. (2017). Jiang, Zhanhong ; Sarkar, Soumik ; Henze, Gregor P ; Liu, Chao ; Akintayo, Adedotun.
    In: Applied Energy.
    RePEc:eee:appene:v:206:y:2017:i:c:p:1022-1039.

    Full description at Econpapers || Download paper

  50. Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production. (2017). Ferlito, S ; Graditi, G ; Adinolfi, G.
    In: Applied Energy.
    RePEc:eee:appene:v:205:y:2017:i:c:p:116-129.

    Full description at Econpapers || Download paper

  51. Sensitivity analysis of acquisition granularity of photovoltaic output power to capacity configuration of energy storage systems. (2017). Han, Xiaojuan ; Kong, Lingda ; Liu, Jian.
    In: Applied Energy.
    RePEc:eee:appene:v:203:y:2017:i:c:p:794-807.

    Full description at Econpapers || Download paper

  52. Using ensemble weather predictions in district heating operation and load forecasting. (2017). Dahl, Magnus ; Andresen, Gorm B ; Brun, Adam.
    In: Applied Energy.
    RePEc:eee:appene:v:193:y:2017:i:c:p:455-465.

    Full description at Econpapers || Download paper

  53. Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production. (2016). delle Monache, Luca ; Cervone, Guido ; Graditi, Giorgio ; Ferruzzi, Gabriella ; Jacobone, Francesca .
    In: Energy.
    RePEc:eee:energy:v:106:y:2016:i:c:p:194-202.

    Full description at Econpapers || Download paper

  54. Forecasting the daily power output of a grid-connected photovoltaic system based on multivariate adaptive regression splines. (2016). He, Yong ; Li, Yanting ; Su, Yan ; Shu, Lianjie.
    In: Applied Energy.
    RePEc:eee:appene:v:180:y:2016:i:c:p:392-401.

    Full description at Econpapers || Download paper

  55. Generation and evaluation of space–time trajectories of photovoltaic power. (2016). Pinson, Pierre ; Gooi, Hoay Beng ; Golestaneh, Faranak .
    In: Applied Energy.
    RePEc:eee:appene:v:176:y:2016:i:c:p:80-91.

    Full description at Econpapers || Download paper

  56. Probabilistic load flow for distribution systems with uncertain PV generation. (2016). Mishra, Y ; Bansal, R C ; Kabir, M N.
    In: Applied Energy.
    RePEc:eee:appene:v:163:y:2016:i:c:p:343-351.

    Full description at Econpapers || Download paper

  57. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 21:10:16 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.