- AgÌbulut, Ã. Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms. Sustain. Prod. Consum. 2022, 29, 141â157. [CrossRef]
Paper not yet in RePEc: Add citation now
Akay, D.; Atak, M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 2007, 32, 1670â1675. [CrossRef]
Al-Musaylh, M.S.; Deo, R.C.; Li, Y.; Adamowski, J.F. Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Appl. Energy 2018, 217, 422â439. [CrossRef]
- An, N.; Zhao, W.; Wang, J.; Shang, D.; Zhao, E. Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy 2013, 49, 279â288. [CrossRef]
Paper not yet in RePEc: Add citation now
- Barman, M.; Choudhury, N.B. A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India. Sustain. Cities Soc. 2020, 61, 102311. [CrossRef]
Paper not yet in RePEc: Add citation now
Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312â1326. [CrossRef]
- Bedi, J.; Toshniwal, D. Empirical mode decomposition based deep learning for electricity demand forecasting. IEEE Access 2018, 6, 49144â49156. [CrossRef]
Paper not yet in RePEc: Add citation now
- Blood, E.A.; Krogh, B.H.; Ilic, M.D. Electric power system static state estimation through Kalman filtering and load forecasting. In Proceedings of the Power and Energy Society General MeetingâConversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20â24 July 2008.
Paper not yet in RePEc: Add citation now
- Boudraa, A.O.; Cexus, J.C. EMD-Based Signal Filtering. IEEE Trans. Instrum. Meas. 2007, 56, 2196â2202. [CrossRef]
Paper not yet in RePEc: Add citation now
- Calik, N.; Güneş, F.; Koziel, S.; Pietrenko-Dabrowska, A.; Belen, M.A.; Mahouti, P. Deep-learning-based precise characterization of microwave transistors using fully-automated regression surrogates. Sci. Rep. 2023, 13, 1445. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
Chang, Y.; Choi, Y.; Kim, C.S.; Miller, J.I.; Park, J.Y. Forecasting regional long-run energy demand: A functional coefficient panel approach. Energy Econ. 2021, 96, 105117. [CrossRef]
Chaturvedi, S.; Rajasekar, E.; Natarajan, S.; McCullen, N. A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy 2022, 168, 113097. [CrossRef] Energies 2024, 17, 4377 16 of 16
Deo, R.C.; Wen, X.; Qi, F. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy 2016, 168, 568â593. [CrossRef]
- Dluhopolskyi, O.; Kozlovskyi, S.; Popovskyi, Y.; Lutkovska, S.; Butenko, V.; Popovskyi, T.; Mazur, H.; Kozlovskyi, A. Formation of the model of sustainable economic development of renewable energy. ECONOMICS-Innov. Econ. Res. J. 2023, 11, 51â78. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gebremeskel, D.H.; Ahlgren, E.O.; Beyene, G.B. Long-term evolution of energy and electricity demand forecasting: The case of Ethiopia. Energy Strategy Rev. 2021, 36, 100671. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44â55. [CrossRef]
Paper not yet in RePEc: Add citation now
- Homod, R.Z.; Togun, H.; Abd, H.J.; Sahari, K.S. A novel hybrid modelling structure fabricated by using Takagi-Sugeno fuzzy to forecast HVAC systems energy demand in real-time for Basra city. Sustain. Cities Soc. 2020, 56, 102091. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hu, Y.-C. Energy demand forecasting using a novel remnant GM (1, 1) model. Soft Comput. 2020, 24, 13903â13912. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R Soc. Lond. Ser. A Math. Phys. Sci. 1971, 454, 903â995. [CrossRef]
Paper not yet in RePEc: Add citation now
- Karthika, S.; Margaret, V.; Balaraman, K. Hybrid short term load forecasting using ARIMA-SVM. In Proceedings of the Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21â22 April 2017.
Paper not yet in RePEc: Add citation now
- Kazemi, M.; Salehpour, S.Y.; Shahbaazy, F.; Behzadpoor, S.; Pirouzi, S.; Jafarpour, S. Participation of energy storage-based flexible hubs in day-ahead reserve regulation and energy markets based on a coordinated energy management strategy. Int. Trans. Electr. Energy Syst. 2022, 2022, 6481531. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kazemzadeh, M.-R.; Amjadian, A.; Amraee, T. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. Energy 2020, 204, 117948. [CrossRef]
Paper not yet in RePEc: Add citation now
- Khalafian, F.; Iliaee, N.; Diakina, E.; Parsa, P.; Alhaider, M.M.; Masali, M.H.; Pirouzi, S.; Zhu, M. Capabilities of compressed air energy storage in the economic design of renewable off-grid system to supply electricity and heat costumers and smart charging-based electric vehicles. J. Energy Storage 2024, 78, 109888. [CrossRef]
Paper not yet in RePEc: Add citation now
Ko, C.N.; Lee, C.M. Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy 2013, 49, 413â422. [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-term residential load forecasting based on LSTM recurrent neural network. IEEE Trans. Smart Grid 2017, 10, 841â851. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liang, H.; Pirouzi, S. Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources. Energy 2024, 293, 130745. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, Y.; Liao, S. Granularity selection for cross-validation of SVM. Inf. Sci. 2017, 378, 475â483. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, Y.; Liao, S. Kernel selection with spectral perturbation stability of kernel matrix. Sci. China Inf. Sci. 2014, 57, 1â10. [CrossRef]
Paper not yet in RePEc: Add citation now
- Maaouane, M.; Chennaif, M.; Zouggar, S.; KrajacÌicÌ, G.; DuicÌ, N.; Zahboune, H.; ElMiad, A.K. Using neural network modelling for estimation and forecasting of transport sector energy demand in developing countries. Energy Convers. Manag. 2022, 258, 115556. [CrossRef]
Paper not yet in RePEc: Add citation now
- Norouzi, M.; Aghaei, J.; Niknam, T.; Pirouzi, S.; Lehtonen, M. Bi-level fuzzy stochastic-robust model for flexibility valorizing of renewable networked microgrids. Sustain. Energy Grids Netw. 2022, 31, 100684. [CrossRef]
Paper not yet in RePEc: Add citation now
- Norouzi, M.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Fotuhi-Firuzabad, M. Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids. Energy 2022, 239, 122080. [CrossRef]
Paper not yet in RePEc: Add citation now
- Patrizi, N.; LaTouf, S.K.; Tsiropoulou, E.E.; Papavassiliou, S. Prosumer-centric self-sustained smart grid systems. IEEE Syst. J. 2022, 16, 6042â6053.
Paper not yet in RePEc: Add citation now
Peng, J.; Kimmig, A.; Niu, Z.; Wang, J.; Liu, X.; Ovtcharova, J. A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework. Appl. Energy 2021, 299, 117321. [CrossRef]
- Pirouzi, S. Transmission and Distribution, Network-constrained unit commitment-based virtual power plant model in the day-ahead market according to energy management strategy. IET Gener. Transm. Distrib. 2023, 17, 4958â4974. [CrossRef]
Paper not yet in RePEc: Add citation now
- Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A. Empirical Mode Decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 2017, 54, 246â255. [CrossRef]
Paper not yet in RePEc: Add citation now
- Qu, Z.; Xu, C.; Yang, F.; Ling, F.; Pirouzi, S. Market clearing price-based energy management of grid-connected renewable energy hubs including flexible sources according to thermal, hydrogen, and compressed air storage systems. J. Energy Storage 2023, 69,
Paper not yet in RePEc: Add citation now
Rao, C.; Zhang, Y.; Wen, J.; Xiao, X.; Goh, M. Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model. Energy 2023, 263, 125955. [CrossRef]
- Sahabuddin, M.; Khan, I. Analysis of demand, generation, and emission for long-term sustainable power system planning using LEAP: The case of Bangladesh. J. Renew. Sustain. Energy 2023, 15, 035503. [CrossRef] Energies 2024, 17, 4377 15 of 16
Paper not yet in RePEc: Add citation now
- Shao, Z.; Chao, F.; Yang, S.L.; Zhou, K.L. A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting. Renew. Sustain. Energy Rev. 2016, 75, 123â136. [CrossRef]
Paper not yet in RePEc: Add citation now
Takeda, H.; Tamura, Y.; Sato, S. Using the ensemble Kalman filter for electricity load forecasting and analysis. Energy 2016, 104, 184â198. [CrossRef]
- Wu, C.H.; Tzeng, G.H.; Goo, Y.J.; Fang, W.C. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst. Appl. 2007, 32, 397â408. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xiong, T.; Bao, Y.; Hu, Z. Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework. Int. J. Electr. Power Energy Syst. 2014, 63, 353â362. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xu, G.; Wang, W. Forecasting Chinaâ²s natural gas consumption based on a combination model. J. Nat. Gas Chem. 2010, 19, 493â496. [CrossRef]
Paper not yet in RePEc: Add citation now
Zhang, X.; Yu, X.; Ye, X.; Pirouzi, S. Economic energy managementof networked flexi-renewable energy hubs according to uncertainty modeling by the unscented transformation method. Energy 2023, 278, 128054. [CrossRef]
Zhu, S.; Wang, J.; Zhao, W.; Wang, J. A seasonal hybrid procedure for electricity demand forecasting in China. Appl. Energy 2011, 88, 3807â3815. [CrossRef]