create a website

TCN-GRU Based on Attention Mechanism for Solar Irradiance Prediction. (2024). Wei, Zhichu ; Rao, Zhi ; Li, Jiaming ; Yang, Xiongping ; Meng, Wenchuan.
In: Energies.
RePEc:gam:jeners:v:17:y:2024:i:22:p:5767-:d:1523808.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 42

References cited by this document

Cocites: 23

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
    Paper not yet in RePEc: Add citation now
  2. Alrashidi, M.; Alrashidi, M.; Rahman, S. Global solar radiation prediction: Application of novel hybrid data-driven model. Appl. Soft Comput. 2021, 112, 107768. [CrossRef] Energies 2024, 17, 5767 16 of 17
    Paper not yet in RePEc: Add citation now
  3. Chaibi, M.; Benghoulam, E.M.; Tarik, L.; Berrada, M.; Hmaidi, A.E. An interpretable machine learning model for daily global solar radiation prediction. Energies 2021, 14, 7367. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Deveci, M.; Pamucar, D.; Oguz, E. Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model. Appl. Energy 2022, 324, 119597. [CrossRef]

  5. Ehteram, M.; Shabanian, H. Unveiling the SALSTM-M5T model and its python implementation for precise solar radiation prediction. Energy Rep. 2023, 10, 3402–3417. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Elmousaid, R.; Drioui, N.; Elgouri, R.; Agueny, H.; Adnani, Y. Ultra-short-term global horizontal irradiance forecasting based on a novel and hybrid GRU-TCN model. Results Eng. 2024, 23, 102817. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Feng, T.; Li, R.; Zhang, H. Induction mechanism and optimization of tradable green certificates and carbon emission trading acting on electricity market in China. Resour. Conserv. Recycl. 2021, 169, 105487. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Gao, Y.; Miyata, S.; Akashi, Y. Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention. Appl. Energy 2022, 321, 119288. [CrossRef]

  9. García-Cuesta, E.; Aler, R.; Pózo-Vázquez, D. A combination of supervised dimensionality reduction and learning methods to forecast solar radiation. Appl. Intell. 2023, 53, 13053–13066. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Gaviria, J.F.; Narváez, G.; Guillen, C.; Giraldo, L.F.; Bressan, M. Machine learning in photovoltaic systems: A review. Renew. Energy 2022, 196, 298–318. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Ghimire, S.; Bhandari, B.; Casillas-Perez, D.; Deo, R.C.; Salcedo-Sanz, S. Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland, Australia. Eng. Appl. Artif. Intell. 2022, 112, 104860. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Ghimire, S.; Deo, R.C.; Casillas-Pérez, D.; Salcedo-Sanz, S.; Sharma, E.; Ali, M. Deep learning CNN-LSTM-MLP hybrid fusion model for feature optimizations and daily solar radiation prediction. Measurement 2022, 202, 111759. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Goliatt, L.; Yaseen, Z.M. Development of a hybrid computational intelligent model for daily global solar radiation prediction. Expert Syst. Appl. 2023, 212, 118295. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Gupta, U.; Bhattacharjee, V.; Bishnu, P.S. StockNet—GRU based stock index prediction. Expert Syst. Appl. 2022, 207, 117986. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Hao, J.; Liu, F.; Zhang, W. Multi-scale RWKV with 2-dimensional temporal convolutional network for short-term photovoltaic power forecasting. Energy 2024, 309, 133068. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Imani, M. Electrical load-temperature CNN for residential load forecasting. Energy 2021, 227, 120480. [CrossRef]

  17. Irshad, K.; Islam, N.; Gari, A.A.; Algarni, S.; Algahtani, T.; Imteyaz, B. Arithmetic optimization with hybrid deep learning algorithm based solar radiation prediction model. Sustain. Energy Technol. Assess. 2023, 57, 103165. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Jiang, Y.; Long, H.; Zhang, Z. Day-ahead prediction of bihourly solar radiance with a Markov switch approach. IEEE Trans. Sustain. Energy 2017, 8, 1536–1547. [CrossRef]
    Paper not yet in RePEc: Add citation now
  19. Kong, X.; Du, X.; Xue, G.; Xu, Z. Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism. Energy 2023, 282, 128825. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Lai, C.S.; Zhong, C.; Pan, K. A deep learning based hybrid method for hourly solar radiation forecasting. Expert Syst. Appl. 2021, 177, 114941. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Lee, J.A.; Dettling, S.M.; Pearson, J.; Brummet, T.; Larson, D.P. NYSolarCast: A solar power forecasting system for New York State. Sol. Energy 2024, 272, 112462. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Li, Q.; Guan, X.; Liu, J. A CNN-LSTM framework for flight delay prediction. Expert Syst. Appl. 2023, 227, 120287. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Li, Y.; Song, L.; Zhang, S.; Kraus, L.; Adcox, T.; Willardson, R.; Komandur, A.; Komandur, A.; Lu, N. A TCN-based hybrid forecasting framework for hours-ahead utility-scale PV forecasting. IEEE Trans. Smart Grid 2023, 14, 4073–4085. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Liu, B.; Huo, X. Prediction of Photovoltaic power generation and analyzing of carbon emission reduction capacity in China. Renew. Energy 2024, 222, 119967. [CrossRef]

  25. Mobarakeh, J.M.; Sayyaadi, H. A novel methodology based on artificial intelligence to achieve the formost Buildings’ heating system. Energy Convers. Manag. 2023, 286, 116958. [CrossRef] Energies 2024, 17, 5767 17 of 17
    Paper not yet in RePEc: Add citation now
  26. Narvaez, G.; Giraldo, L.F.; Bressan, M. Machine learning for site-adaptation and solar radiation forecasting. Renew. Energy 2021, 167, 333–342. [CrossRef]

  27. National Energy Administration Releases 2022 National Electric Power Industry Statistical Data. Available online: http://www. nea.gov.cn/2023-01/18/c_1310691509.htm (accessed on 30 June 2023).
    Paper not yet in RePEc: Add citation now
  28. Ni, S.; Jia, P.; Xu, Y.; Zeng, L.; Li, X.; Xu, M. Prediction of CO concentration in different conditions based on Gaussian-TCN. Sens. Actuators B Chem. 2023, 376, 133010. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Rajasundrapandiyanleebanon, T.; Kumaresan, K.; Murugan, S.; Subathra, M.S.P.; Sivakumar, M. Solar energy forecasting using machine learning and deep learning techniques. Arch. Comput. Methods Eng. 2023, 30, 3059–3079. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Sansa, I.; Boussaada, Z.; Bellaaj, N.M. Solar radiation prediction using a novel hybrid model of ARMA and NARX. Energies 2021, 14, 6920. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Villegas-Mier, C.G.; Rodriguez-Resendiz, J.; lvarez-Alvarado, J.M. Optimized random forest for solar radiation prediction using sunshine hours. Micromachines 2022, 13, 1406. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Vural, N.M.; Ilhan, F.; Yilmaz, S.F.; Ergüt, S.; Kozat, S.S. Achieving online regression performance of LSTMs with simple RNNs. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7632–7643. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Wang, Z.; Peng, X.; Cao, S.; Zhou, H.; Fan, S.; Li, K.; Huang, W. NOx emission prediction using a lightweight convolutional neural network for cleaner production in a down-fired boiler. J. Clean. Prod. 2023, 389, 136060. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Xu, Y.; Zheng, S.; Zhu, Q.; Wong, K.C.; Wang, X.; Lin, Q. A complementary fused method using GRU and XGBoost models for long-term solar energy hourly forecasting. Expert Syst. Appl. 2024, 254, 124286. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Yang, W.; Xia, K.; Fan, S. Oil logging reservoir recognition based on TCN and SA-BiLSTM deep learning method. Eng. Appl. Artif. Intell. 2023, 121, 105950. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Yin, L.; Wei, X. Integrated adversarial long short-term memory deep networks for reheater tube temperature forecasting of ultra-supercritical turbo-generators. Appl. Soft Comput. 2023, 142, 110347. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Yin, L.; Xie, J. Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes. Energy 2022, 238, 121657. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Yin, L.; Zhou, H. Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction. Energy 2024, 292, 130521. [CrossRef]

  39. Zarzycki, K.; Ławryńczuk, M. Advanced predictive control for GRU and LSTM networks. Inf. Sci. 2022, 616, 229–254. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Zhang, C.; Li, J.; Huang, X.; Zhang, J.; Huang, H. Forecasting stock volatility and value-at-risk based on temporal convolutional networks. Expert Syst. Appl. 2022, 207, 117951. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Zhaowei, Q.; Haitao, L.; Zhihui, L.; Tao, Z. Short-term traffic flow forecasting method with MB-LSTM hybrid network. IEEE Trans. Intell. Transp. Syst. 2020, 23, 225–235. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Zhou, Y.; Liu, Y.; Wang, D.; Liu, X.; Wang, Y. A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Convers. Manag. 2021, 235, 113960. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Floating photovoltaic system based electrical power generation study in Indian context. (2025). Nkenyereye, Lewis ; Kuchhal, Piyush ; Pachauri, Rupendra Kumar ; Kumar, Nitin.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125001157.

    Full description at Econpapers || Download paper

  2. A novel approach for photovoltaic plant site selection in megacities utilizing power load forecasting and fuzzy inference system. (2025). Jalalifar, Rasoul ; Delavar, Mahmoud Reza ; Ghaderi, Seyed Farid.
    In: Renewable Energy.
    RePEc:eee:renene:v:243:y:2025:i:c:s0960148125001892.

    Full description at Econpapers || Download paper

  3. Feature engineering and selection for prosumer electricity consumption and production forecasting: A comprehensive framework. (2025). Liu, Yang ; Wen, Qianyun.
    In: Applied Energy.
    RePEc:eee:appene:v:381:y:2025:i:c:s0306261924025601.

    Full description at Econpapers || Download paper

  4. Interpreting LASSO regression model by feature space matching analysis for spatio-temporal correlation based wind power forecasting. (2025). Zhao, Yongning ; Liao, Haohan ; Pan, Shiji ; Zheng, Yingying.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023377.

    Full description at Econpapers || Download paper

  5. A revolutionary neural network architecture with interpretability and flexibility based on Kolmogorov–Arnold for solar radiation and temperature forecasting. (2025). Ruan, Yingjun ; Liu, Mingzhe ; Chen, Wei-An ; Hu, Zehuan ; Gao, Yuan.
    In: Applied Energy.
    RePEc:eee:appene:v:378:y:2025:i:pa:s030626192402227x.

    Full description at Econpapers || Download paper

  6. Interpretable deep learning framework for hourly solar radiation forecasting based on decomposing multi-scale variations. (2025). Gao, Weijun ; Yao, Wanxiang ; Miao, Sheng ; Wang, Yafei ; Zhou, Weisheng ; Li, You.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017926.

    Full description at Econpapers || Download paper

  7. Multiple operational strategies investigations of the PV/T collectors based on 3 days ahead hourly radiation prediction. (2025). Gao, Yafeng ; Fan, Zhixuan ; Long, HE ; Han, Lijun ; Wang, Yingming ; Guan, Jingxuan ; Dong, Shiqian ; Di, Yanqiang.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924017665.

    Full description at Econpapers || Download paper

  8. TCN-GRU Based on Attention Mechanism for Solar Irradiance Prediction. (2024). Wei, Zhichu ; Rao, Zhi ; Li, Jiaming ; Yang, Xiongping ; Meng, Wenchuan.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:22:p:5767-:d:1523808.

    Full description at Econpapers || Download paper

  9. Towards Sustainable Energy Solutions: Evaluating the Impact of Floating PV Systems in Reducing Water Evaporation and Enhancing Energy Production in Northern Cyprus. (2024). Gkeku, Rifat ; Kassem, Youssef.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:21:p:5300-:d:1506250.

    Full description at Econpapers || Download paper

  10. Site selection of floating photovoltaic systems on hydropower reservoirs using fuzzy sine trigonometric decision-making model: Turkey as a case study. (2024). Haspolat, Emre ; Oguz, Elif ; Deveci, Muhammet ; Melek, Abiddin Berhan ; Gokmener, Serkan ; Cicek, Doga Derman.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005562.

    Full description at Econpapers || Download paper

  11. Solutions to the insufficiency of label data in renewable energy forecasting: A comparative and integrative analysis of domain adaptation and fine-tuning. (2024). Hu, Zehuan ; Gao, Yuan ; Chen, Wei-An ; Liu, Mingzhe.
    In: Energy.
    RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016360.

    Full description at Econpapers || Download paper

  12. Offshore solar photovoltaic potential in the seas around China. (2024). Wen, YI ; Lin, Pengzhi.
    In: Applied Energy.
    RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016623.

    Full description at Econpapers || Download paper

  13. A novel domain adaptation method with physical constraints for shale gas production forecasting. (2024). Yang, Zhaozhong ; Li, Xiaogang ; Gou, Liangjie ; Yi, Duo ; Min, Chao ; Kong, Bing.
    In: Applied Energy.
    RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010560.

    Full description at Econpapers || Download paper

  14. Self-learning dynamic graph neural network with self-attention based on historical data and future data for multi-task multivariate residential air conditioning forecasting. (2024). Hu, Zehuan ; Gao, Yuan ; Imaizumi, Taiji ; Mae, Masayuki ; Sun, Luning.
    In: Applied Energy.
    RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005397.

    Full description at Econpapers || Download paper

  15. Unveiling the implementation barriers to the digital transformation in the energy sector using the Fermatean cubic fuzzy method. (2024). Chen, YU ; Wang, YI ; Moslem, Sarbast ; Deveci, Muhammet ; Coffman, D'Maris.
    In: Applied Energy.
    RePEc:eee:appene:v:360:y:2024:i:c:s0306261924001399.

    Full description at Econpapers || Download paper

  16. Adversarial discriminative domain adaptation for solar radiation prediction: A cross-regional study for zero-label transfer learning in Japan. (2024). Hu, Zehuan ; Gao, Yuan ; Chen, Wei-An ; Shi, Shanrui ; Liu, Mingzhe.
    In: Applied Energy.
    RePEc:eee:appene:v:359:y:2024:i:c:s0306261924000680.

    Full description at Econpapers || Download paper

  17. A Comprehensive Review of Shipboard Power Systems with New Energy Sources. (2023). Wang, Zhuangwei ; Hong, Ying-Yi ; Cheng, Peng ; Yin, HE ; Lan, Hai ; Guo, Dong ; Li, Dan.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:5:p:2307-:d:1082567.

    Full description at Econpapers || Download paper

  18. Mapping global water-surface photovoltaics with satellite images. (2023). Li, Yingjie ; Zhang, Wei ; Guo, Shanchuan ; Chen, Ruishan ; Du, Peijun ; Xia, Zilong.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006172.

    Full description at Econpapers || Download paper

  19. Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting. (2023). Wei, Zhinong ; Ding, Tao ; Cheng, Lilin ; Liu, Jingxuan ; Zang, Haixiang ; Sun, Guoqiang.
    In: Renewable Energy.
    RePEc:eee:renene:v:209:y:2023:i:c:p:619-631.

    Full description at Econpapers || Download paper

  20. A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network. (2023). Xue, Minggao ; Cheng, LI ; Zhao, Geya.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006670.

    Full description at Econpapers || Download paper

  21. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants. (2023). Stefenon, Stefano Frizzo ; Aquino, Luiza Scapinello ; Santos, Leandro Dos ; Seman, Laio Oriel.
    In: Energy.
    RePEc:eee:energy:v:274:y:2023:i:c:s0360544223007442.

    Full description at Econpapers || Download paper

  22. A global evaluation model applied to wind power plant site selection. (2023). Ramezanzade, Mohsen ; Asadi, Meysam ; Pourhossein, Kazem.
    In: Applied Energy.
    RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002040.

    Full description at Econpapers || Download paper

  23. Series-wise attention network for wind power forecasting considering temporal lag of numerical weather prediction. (2023). Zhang, Xuemin ; Mei, Shengwei ; Zhou, Qingyu ; Fan, Hang ; Liu, Chenyu.
    In: Applied Energy.
    RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001794.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-30 05:49:16 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.