- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Alrashidi, M.; Alrashidi, M.; Rahman, S. Global solar radiation prediction: Application of novel hybrid data-driven model. Appl. Soft Comput. 2021, 112, 107768. [CrossRef] Energies 2024, 17, 5767 16 of 17
Paper not yet in RePEc: Add citation now
- Chaibi, M.; Benghoulam, E.M.; Tarik, L.; Berrada, M.; Hmaidi, A.E. An interpretable machine learning model for daily global solar radiation prediction. Energies 2021, 14, 7367. [CrossRef]
Paper not yet in RePEc: Add citation now
Deveci, M.; Pamucar, D.; Oguz, E. Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model. Appl. Energy 2022, 324, 119597. [CrossRef]
- Ehteram, M.; Shabanian, H. Unveiling the SALSTM-M5T model and its python implementation for precise solar radiation prediction. Energy Rep. 2023, 10, 3402–3417. [CrossRef]
Paper not yet in RePEc: Add citation now
- Elmousaid, R.; Drioui, N.; Elgouri, R.; Agueny, H.; Adnani, Y. Ultra-short-term global horizontal irradiance forecasting based on a novel and hybrid GRU-TCN model. Results Eng. 2024, 23, 102817. [CrossRef]
Paper not yet in RePEc: Add citation now
- Feng, T.; Li, R.; Zhang, H. Induction mechanism and optimization of tradable green certificates and carbon emission trading acting on electricity market in China. Resour. Conserv. Recycl. 2021, 169, 105487. [CrossRef]
Paper not yet in RePEc: Add citation now
Gao, Y.; Miyata, S.; Akashi, Y. Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention. Appl. Energy 2022, 321, 119288. [CrossRef]
- García-Cuesta, E.; Aler, R.; Pózo-Vázquez, D. A combination of supervised dimensionality reduction and learning methods to forecast solar radiation. Appl. Intell. 2023, 53, 13053–13066. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gaviria, J.F.; Narváez, G.; Guillen, C.; Giraldo, L.F.; Bressan, M. Machine learning in photovoltaic systems: A review. Renew. Energy 2022, 196, 298–318. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ghimire, S.; Bhandari, B.; Casillas-Perez, D.; Deo, R.C.; Salcedo-Sanz, S. Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland, Australia. Eng. Appl. Artif. Intell. 2022, 112, 104860. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ghimire, S.; Deo, R.C.; Casillas-Pérez, D.; Salcedo-Sanz, S.; Sharma, E.; Ali, M. Deep learning CNN-LSTM-MLP hybrid fusion model for feature optimizations and daily solar radiation prediction. Measurement 2022, 202, 111759. [CrossRef]
Paper not yet in RePEc: Add citation now
- Goliatt, L.; Yaseen, Z.M. Development of a hybrid computational intelligent model for daily global solar radiation prediction. Expert Syst. Appl. 2023, 212, 118295. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gupta, U.; Bhattacharjee, V.; Bishnu, P.S. StockNet—GRU based stock index prediction. Expert Syst. Appl. 2022, 207, 117986. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hao, J.; Liu, F.; Zhang, W. Multi-scale RWKV with 2-dimensional temporal convolutional network for short-term photovoltaic power forecasting. Energy 2024, 309, 133068. [CrossRef]
Paper not yet in RePEc: Add citation now
Imani, M. Electrical load-temperature CNN for residential load forecasting. Energy 2021, 227, 120480. [CrossRef]
- Irshad, K.; Islam, N.; Gari, A.A.; Algarni, S.; Algahtani, T.; Imteyaz, B. Arithmetic optimization with hybrid deep learning algorithm based solar radiation prediction model. Sustain. Energy Technol. Assess. 2023, 57, 103165. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jiang, Y.; Long, H.; Zhang, Z. Day-ahead prediction of bihourly solar radiance with a Markov switch approach. IEEE Trans. Sustain. Energy 2017, 8, 1536–1547. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kong, X.; Du, X.; Xue, G.; Xu, Z. Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism. Energy 2023, 282, 128825. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lai, C.S.; Zhong, C.; Pan, K. A deep learning based hybrid method for hourly solar radiation forecasting. Expert Syst. Appl. 2021, 177, 114941. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lee, J.A.; Dettling, S.M.; Pearson, J.; Brummet, T.; Larson, D.P. NYSolarCast: A solar power forecasting system for New York State. Sol. Energy 2024, 272, 112462. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, Q.; Guan, X.; Liu, J. A CNN-LSTM framework for flight delay prediction. Expert Syst. Appl. 2023, 227, 120287. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, Y.; Song, L.; Zhang, S.; Kraus, L.; Adcox, T.; Willardson, R.; Komandur, A.; Komandur, A.; Lu, N. A TCN-based hybrid forecasting framework for hours-ahead utility-scale PV forecasting. IEEE Trans. Smart Grid 2023, 14, 4073–4085. [CrossRef]
Paper not yet in RePEc: Add citation now
Liu, B.; Huo, X. Prediction of Photovoltaic power generation and analyzing of carbon emission reduction capacity in China. Renew. Energy 2024, 222, 119967. [CrossRef]
- Mobarakeh, J.M.; Sayyaadi, H. A novel methodology based on artificial intelligence to achieve the formost Buildings’ heating system. Energy Convers. Manag. 2023, 286, 116958. [CrossRef] Energies 2024, 17, 5767 17 of 17
Paper not yet in RePEc: Add citation now
Narvaez, G.; Giraldo, L.F.; Bressan, M. Machine learning for site-adaptation and solar radiation forecasting. Renew. Energy 2021, 167, 333–342. [CrossRef]
- National Energy Administration Releases 2022 National Electric Power Industry Statistical Data. Available online: http://www. nea.gov.cn/2023-01/18/c_1310691509.htm (accessed on 30 June 2023).
Paper not yet in RePEc: Add citation now
- Ni, S.; Jia, P.; Xu, Y.; Zeng, L.; Li, X.; Xu, M. Prediction of CO concentration in different conditions based on Gaussian-TCN. Sens. Actuators B Chem. 2023, 376, 133010. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rajasundrapandiyanleebanon, T.; Kumaresan, K.; Murugan, S.; Subathra, M.S.P.; Sivakumar, M. Solar energy forecasting using machine learning and deep learning techniques. Arch. Comput. Methods Eng. 2023, 30, 3059–3079. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sansa, I.; Boussaada, Z.; Bellaaj, N.M. Solar radiation prediction using a novel hybrid model of ARMA and NARX. Energies 2021, 14, 6920. [CrossRef]
Paper not yet in RePEc: Add citation now
- Villegas-Mier, C.G.; Rodriguez-Resendiz, J.; lvarez-Alvarado, J.M. Optimized random forest for solar radiation prediction using sunshine hours. Micromachines 2022, 13, 1406. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vural, N.M.; Ilhan, F.; Yilmaz, S.F.; Ergüt, S.; Kozat, S.S. Achieving online regression performance of LSTMs with simple RNNs. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7632–7643. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, Z.; Peng, X.; Cao, S.; Zhou, H.; Fan, S.; Li, K.; Huang, W. NOx emission prediction using a lightweight convolutional neural network for cleaner production in a down-fired boiler. J. Clean. Prod. 2023, 389, 136060. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xu, Y.; Zheng, S.; Zhu, Q.; Wong, K.C.; Wang, X.; Lin, Q. A complementary fused method using GRU and XGBoost models for long-term solar energy hourly forecasting. Expert Syst. Appl. 2024, 254, 124286. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yang, W.; Xia, K.; Fan, S. Oil logging reservoir recognition based on TCN and SA-BiLSTM deep learning method. Eng. Appl. Artif. Intell. 2023, 121, 105950. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yin, L.; Wei, X. Integrated adversarial long short-term memory deep networks for reheater tube temperature forecasting of ultra-supercritical turbo-generators. Appl. Soft Comput. 2023, 142, 110347. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yin, L.; Xie, J. Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes. Energy 2022, 238, 121657. [CrossRef]
Paper not yet in RePEc: Add citation now
Yin, L.; Zhou, H. Modal decomposition integrated model for ultra-supercritical coal-fired power plant reheater tube temperature multi-step prediction. Energy 2024, 292, 130521. [CrossRef]
- Zarzycki, K.; Ławryńczuk, M. Advanced predictive control for GRU and LSTM networks. Inf. Sci. 2022, 616, 229–254. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, C.; Li, J.; Huang, X.; Zhang, J.; Huang, H. Forecasting stock volatility and value-at-risk based on temporal convolutional networks. Expert Syst. Appl. 2022, 207, 117951. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhaowei, Q.; Haitao, L.; Zhihui, L.; Tao, Z. Short-term traffic flow forecasting method with MB-LSTM hybrid network. IEEE Trans. Intell. Transp. Syst. 2020, 23, 225–235. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhou, Y.; Liu, Y.; Wang, D.; Liu, X.; Wang, Y. A review on global solar radiation prediction with machine learning models in a comprehensive perspective. Energy Convers. Manag. 2021, 235, 113960. [CrossRef]
Paper not yet in RePEc: Add citation now