create a website

Selected Issues, Methods, and Trends in the Energy Consumption of Industrial Robots. (2024). Blaszczyk, Tomasz ; Foit, Krzysztof ; Kost, Gabriel ; Skala, Agnieszka.
In: Energies.
RePEc:gam:jeners:v:17:y:2024:i:3:p:641-:d:1328790.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 72

References cited by this document

Cocites: 20

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. 3 Trends in Robotics Energy Consumption. Robotics Tomorrow. Available online: https://roboticstomorrow.com/story/2021/0 3/3-trends-in-robotics-energy-consumption/16385/ (accessed on 3 October 2023).
    Paper not yet in RePEc: Add citation now
  2. Alcácer, V.; Cruz-Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Eng. Sci. Technol. Int. J. 2019, 22, 899–919. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Aoun, A.; Ilinca, A.; Ghandour, M.; Ibrahim, H. A Review of Industry 4.0 Characteristics and Challenges, with Potential Improvements Using Blockchain Technology. Computers 2021, 162, 107746. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Barnett, N.; Costenaro, D.; Rohmund, I. Direct and indirect impacts of robots on future electricity load. In Proceedings of the ACEEE Summer Study on Energy Efficiency in Industry, Denver, CO, USA, 15–18 August 2017; pp. 1–9. Available online: https://www.aceee.org/files/proceedings/2017/data/polopoly_fs/1.3687904.1501159084!/fileserver/file/790278 /filename/0036_0053_000029.pdf (accessed on 17 October 2023).
    Paper not yet in RePEc: Add citation now
  5. Barreto, J.P.; Schöler, F.J.-F.; Corves, B. The Concept of Natural Motion for Pick and Place Operations. In New Advances in Mechanisms, Mechanical Transmissions and Robotics; Corves, B., Lovasz, E.-C., Hüsing, M., Maniu, I., Gruescu, C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 46, pp. 89–98, ISBN 9783319454498.
    Paper not yet in RePEc: Add citation now
  6. Benotsmane, R.; Kovács, G. Optimization of Energy Consumption of Industrial Robots Using Classical PID and MPC Controllers. Energies 2023, 16, 3499. [CrossRef]

  7. Borys, S.; Kaczmarek, W.; Laskowski, D.; Polak, R. Experimental Study of the Vibration of the Spot Welding Gun at a Robotic Station. Appl. Sci. 2022, 12, 12209. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Boscariol, P.; Scalera, L.; Gasparetto, A. Task-Dependent Energetic Analysis of a 3 dof Industrial Manipulator. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Kaiserslautern, Germany, 19–21 June 2019; pp. 162–169. Available online: https://www.academia.edu/39317276/Task_dependent_energetic_analysis_of_a_3_d_o_f_industrial_manipulator (accessed on 17 October 2023).
    Paper not yet in RePEc: Add citation now
  9. Cañizares, E.; Valero, F.A. Analyzing the Effects of Applying IoT to a Metal-Mechanical Company. J. Ind. Eng. Manag. 2018, 11, 308–317. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Carabin, G.; Wehrle, E.; Vidoni, R. A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems. Robotics 2017, 6, 39. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Chemnitz, M.; Schreck, G.; Krüger, J. Analyzing Energy Consumption of Industrial Robots. In Proceedings of the IEEE Conference on Emerging Technologies & Factory Automation, Toulouse, France, 5–9 September 2011; pp. 1–4. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Chen, Y. Challenges and opportunities of internet of things. In Proceedings of the 17th Asia and South Pacific Design Automation Conference, Sydney, Australia, 30 January–2 February 2012; pp. 383–388.
    Paper not yet in RePEc: Add citation now
  13. Cropp, C. Technological Trends Driving Advances in the Mining Industry. 2021. Available online: https://info.vercator.com/ blog/technological-advancements-in-mining-industry (accessed on 3 July 2023).
    Paper not yet in RePEc: Add citation now
  14. Elahi, H.; Munir, K.; Eugeni, M.; Atek, S.; Gaudenzi, P. Energy Harvesting towards Self-Powered IoT Devices. Energies 2020, 13,
    Paper not yet in RePEc: Add citation now
  15. European Parliament. Available online: https://www.europarl.europa.eu/ (accessed on 8 September 2023).
    Paper not yet in RePEc: Add citation now
  16. Evjemo, L.D.; Gjerstad, T.; Grøtli, E.I.; Sziebig, G. Trends in Smart Manufacturing: Role of Humans and Industrial Robots in Smart Factories. Curr. Robot. Rep. 2020, 1, 35–41. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Farhan, L.; Shukur, S.T.; Alissa, A.E.; Alrweg, M.; Raza, U.; Kharel, R. A survey on the challenges and opportunities of the Internet of Things (IoT). In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, Australia, 4–6 December 2017; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  18. Farnell. Amazon—A Prime Example of an IoT Implementation; Farnell: Chicago, IL, USA, 2017. Available online: https://pl.farnell. com/amazon-a-prime-example-of-an-iot-implementation (accessed on 16 October 2023).
    Paper not yet in RePEc: Add citation now
  19. Gadaleta, M.; Berselli, G.; Pellicciari, M.; Grassia, F. Extensive Experimental Investigation for the Optimization of the Energy Consumption of a High Payload Industrial Robot with Open Research Dataset. Robot. Comput. Integr. Manuf. 2021, 68, 102046. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Gadaleta, M.; Pellicciari, M.; Berselli, G. Optimization of the Energy Consumption of Industrial Robots for Automatic Code Generation. Robot. Comput. Integr. Manuf. 2019, 57, 452–464. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Garcia, R.R.; Bittencourt, A.C.; Villani, E. Relevant Factors for the Energy Consumption of Industrial Robots. J Braz. Soc. Mech. Sci. Eng. 2018, 40, 464. [CrossRef] Energies 2024, 17, 641 22 of 23
    Paper not yet in RePEc: Add citation now
  22. Garriz, C.; Domingo, R. Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry. Sensors 2022, 22, 7538. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  23. Guo, Q.; Su, Z. The Application of Industrial Robot and the High-Quality Development of Manufacturing Industry: From a Sustainability Perspective. Sustainability 2023, 15, 12621. [CrossRef]

  24. Heredia, J.; Schlette, C.; Kjargaard, M.B. Sizing up Energy Consumption in Lightweight Robots: A Comprehensive Assessment. In Proceedings of the 2023 7th International Conference on Automation, Control and Robots (ICACR), Kuala Lumpur, Malaysia, 4–6 August 2023; pp. 31–38.
    Paper not yet in RePEc: Add citation now
  25. Heredia, J.; Schlette, C.; Kjærgaard, M.B. Breaking Down the Energy Consumption of Industrial and Collaborative Robots: A Comparative Study. In Proceedings of the 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA), Sinaia, Romania, 12–15 September 2023; pp. 1–8.
    Paper not yet in RePEc: Add citation now
  26. Herrmann, C.; Thiede, S.; Zein, A.; Ihlenfeldt, S.; Blau, P. Energy Efficiency of Machine Tools: Extending the Perspective. In Proceedings of the 42nd CIRP International Conference on Manufacturing Systems, Grenoble, France, 3–5 June 2009.
    Paper not yet in RePEc: Add citation now
  27. Hovgard, M.; Lennartson, B.; Bengtsson, K. Energy reduction of stochastic time-constrained robot stations. Robot. Comput. Integr. Manuf. 2023, 81, 102511. [CrossRef]
    Paper not yet in RePEc: Add citation now
  28. International Federation of Robotics. Executive Summary World Robotics 2023 Industrial Robots. IFR 2023. Available online: https://ifr.org/free-downloads/ (accessed on 16 October 2023).
    Paper not yet in RePEc: Add citation now
  29. Izagirre, U.; Arcin, G.; Andonegui, I.; Eciolaza, L.; Zurutuza, U. Torque-Based Methodology and Experimental Implementation for Industrial Robot Standby Pose Optimization. Int. J. Adv. Manuf. Technol. 2020, 111, 2065–2072. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Krejčí, J.; Babiuch, M.; Babjak, J.; Suder, J.; Wierbica, R. Implementation of an Embedded System into the Internet of Robotic Things. Micromachines 2023, 14, 113. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Kumar, N.M.; Chand, A.A.; Malvoni, M.; Prasad, K.A.; Mamun, K.A.; Islam, F.; Chopra, S.S. Distributed energy resources and the application of AI, IoT, and blockchain in smart grids. Energies 2020, 13, 5739. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Liu, A.; Liu, H.; Yao, B.; Xu, W.; Yang, M. Energy consumption modeling of industrial robot based on simulated power data and parameter identification. Adv. Mech. Eng. 2018, 10, 1–11. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Liu, S.; Wang, Y.; Wang, X.V.; Wang, L. Energy-Efficient Trajectory Planning for an Industrial Robot Using a Multi-Objective Optimization Approach. Procedia Manuf. 2018, 25, 517–525. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Lv, H.; Shi, B.; Li, N.; Kang, R. Intelligent Manufacturing and Carbon Emissions Reduction: Evidence from the Use of Industrial Robots in China. Int. J. Environ. Res. Public Health 2022, 19, 15538. [CrossRef] [PubMed]

  35. Meike, D.; Pellicciari, M.; Berselli, G. Energy Efficient Use of Multirobot Production Lines in the Automotive Industry: Detailed System Modeling and Optimization. IEEE Trans. Automat. Sci. Eng. 2014, 11, 798–809. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Meike, D.; Pellicciari, M.; Berselli, G.; Vergnano, A.; Ribickis, L. Increasing the Energy Efficiency of Multi-Robot Production Lines in the Automotive Industry. In Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE), Seoul, Republic of Korea, 20–24 August 2012; pp. 700–705.
    Paper not yet in RePEc: Add citation now
  37. Meike, D.; Ribickis, L. Energy Efficient Use of Robotics in the Automobile Industry. In Proceedings of the 2011 15th International Conference on Advanced Robotics (ICAR), Tallinn, Estonia, 20–23 June 2011; pp. 507–511.
    Paper not yet in RePEc: Add citation now
  38. Mohammed, A.; Schmidt, B.; Wang, L.; Gao, L. Minimizing Energy Consumption for Robot Arm Movement. Procedia CIRP 2015, 29, 354–359. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Ogbemhe, J.; Mpofu, K.; Tlale, N.S. Achieving Sustainability in Manufacturing Using Robotic Methodologies. Procedia Manuf. 2017, 8, 440–446. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Otani, T.; Nakamura, M.; Kimura, K.; Takanishi, A. Energy Efficient Path and Trajectory Optimization of Manipulators with Task Deadline Constraints. IEEE Access 2023, 11, 107441–107450. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Paes, K.; Dewulf, W.; Vander Elst, K.; Kellens, K.; Slaets, P. Energy Efficient Trajectories for an Industrial ABB Robot. Procedia CIRP 2014, 15, 105–110. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Palomba, I.; Wehrle, E.; Carabin, G.; Vidoni, R. Minimization of the Energy Consumption in Industrial Robots through Regenerative Drives and Optimally Designed Compliant Elements. Appl. Sci. 2020, 10, 7475. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Paryanto, P.M.B.; Kohl, J.; Merhof, J.; Spreng, S.; Franke, J. Energy Consumption and Dynamic Behavior Analysis of a Six-Axis Industrial Robot in an Assembly System. Procedia CIRP 2014, 23, 131–136. [CrossRef]
    Paper not yet in RePEc: Add citation now
  44. Paryanto; Brossog, M.; Bornschlegl, M.; Franke, J. Reducing the Energy Consumption of Industrial Robots in Manufacturing Systems. Int. J. Adv. Manuf. Technol. 2015, 78, 1315–1328. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Pellegrinelli, S.; Borgia, S.; Pedrocchi, N.; Villagrossi, E.; Bianchi, G.; Tosatti, L.M. Minimization of the Energy Consumption in Motion Planning for Single-Robot Tasks. Procedia CIRP 2015, 29, 354–359. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Pellicciari, M.; Berselli, G.; Leali, F.; Vergnano, A. A Method for Reducing the Energy Consumption of Pick-and-Place Industrial Robots. Mechatronics 2013, 23, 326–334. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Peng, C.; Peng, T.; Liu, Y.; Geissdoerfer, M.; Evans, S.; Tang, R. Industrial Internet of Things enabled supply-side energy modelling for refined energy management in aluminium extrusions manufacturing. J. Clean. Prod. 2021, 301, 126882. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Peta, K.; Wlodarczyk, J.; Maniak, M. Analysis of Trajectory and Motion Parameters of an Industrial Robot Cooperating with Numerically Controlled Machine Tools. J. Manuf. Process. 2023, 101, 1332–1342. [CrossRef] Energies 2024, 17, 641 21 of 23
    Paper not yet in RePEc: Add citation now
  49. Pollak, A.; Temich, S.; Ptasiński, W.; Kucharczyk, J.; G ˛ asiorek, D. Prediction of Belt Drive Faults in Case of Predictive Maintenance in Industry 4.0 Platform. Appl. Sci. 2021, 11, 10307. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Rassõlkin, A.; Hõimoja, H.; Teemets, R. Energy Saving Possibilities in the Industrial Robot IRB 1600 Control. In Proceedings of the 2011 7th International Conference-Workshop Compatibility and Power Electronics (CPE), Tallinn, Estonia, 1–3 June 2011; pp. 226–229.
    Paper not yet in RePEc: Add citation now
  51. Ray, P.P. Internet of Robotic Things: Concept, Technologies, and Challenges. IEEE Access 2017, 4, 9489–9500. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Riazi, S.; Bengtsson, K.; Wigström, O.; Vidarsson, E.; Lennartson, B. Energy Optimization of Multi-Robot Systems. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 1345–1350.
    Paper not yet in RePEc: Add citation now
  53. Scalera, L.; Boscariol, P.; Carabin, G.; Vidoni, R.; Gasparetto, A. Enhancing Energy Efficiency of a 4-DOF Parallel Robot Through Task-Related Analysis. Machines 2020, 8, 10. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Sekala, A.; Kost, G.; Banas, W.; Gwiazda, A.; Grabowik, C. Modelling and Simulation of Robotic Production Systems. J. Phys. Conf. Ser. 2022, 2198, 012065. [CrossRef]
    Paper not yet in RePEc: Add citation now
  55. Singh, G.; Banga, V.K. Robots and Its Types for Industrial Applications. Mater. Today Proc. 2022, 60, 1779–1786. [CrossRef]
    Paper not yet in RePEc: Add citation now
  56. Stan, L.; Nicolescu, A.F.; Pupăză, C.; Jiga, G. Digital Twin and Web Services for Robotic Deburring in Intelligent Manufacturing. J. Intell. Manuf. 2023, 34, 2765–2781. [CrossRef]
    Paper not yet in RePEc: Add citation now
  57. Stuhlenmiller, F.; Jungblut, J.; Clever, D.; Rinderknecht, S. Combined Analysis of Energy Consumption and Expected Service Life of a Robotic System. In Proceedings of the 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE), Barcelona, Spain, 12–15 February 2020; pp. 53–57.
    Paper not yet in RePEc: Add citation now
  58. Stuhlenmiller, F.; Weyand, S.; Jungblut, J.; Schebek, L.; Clever, D.; Rinderknecht, S. Impact of Cycle Time and Payload of an Industrial Robot on Resource Efficiency. Robotics 2021, 10, 33. [CrossRef]
    Paper not yet in RePEc: Add citation now
  59. Tabaa, M.; Monteiro, F.; Bensag, H.; Dandache, A. Green Industrial Internet of Things from a smart industry perspectives. Energy Rep. 2020, 6, 430–446. [CrossRef]
    Paper not yet in RePEc: Add citation now
  60. Uhlmann, E.; Reinkober, S.; Hollerbach, T. Energy Efficient Usage of Industrial Robots for Machining Processes. Procedia CIRP 2016, 48, 206–211. [CrossRef]
    Paper not yet in RePEc: Add citation now
  61. Vatankhah Barenji, A.; Liu, X.; Guo, H.; Li, Z. A Digital Twin-Driven Approach towards Smart Manufacturing: Reduced Energy Consumption for a Robotic Cell. Int. J. Comput. Integr. Manuf. 2021, 34, 844–859. [CrossRef]
    Paper not yet in RePEc: Add citation now
  62. Vavra, C. Five Robot Trends for 2023. Available online: https://www.controleng.com/articles/five-robot-trends-for-2023/ (accessed on 25 October 2023).
    Paper not yet in RePEc: Add citation now
  63. Vergnano, A.; Thorstensson, C.; Lennartson, B.; Falkman, P.; Pellicciari, M.; Yuan, C.; Biller, S.; Leali, F. Embedding Detailed Robot Energy Optimization into High-Level Scheduling. In Proceedings of the 2010 IEEE International Conference on Automation Science and Engineering, Auckland, New Zealand, 26–30 August 2010; pp. 386–392.
    Paper not yet in RePEc: Add citation now
  64. Vodovozov, V.; Raud, Z.; Petlenkov, E. Intelligent Control of Robots with Minimal Power Consumption in Pick-and-Place Operations. Energies 2023, 16, 7418. [CrossRef]
    Paper not yet in RePEc: Add citation now
  65. Wang, E.-Z.; Lee, C.-C.; Li, Y. Assessing the Impact of Industrial Robots on Manufacturing Energy Intensity in 38 Countries. Energy Econ. 2022, 105, 105748. [CrossRef]

  66. Waters, M.; Waszczuk, P.; Ayre, R.; Dreze, A.; McGlinchey, D.; Alkali, B.; Morison, G. Open Source IIoT Solution for Gas Waste Monitoring in Smart Factory. Sensors 2022, 22, 2972. [CrossRef]
    Paper not yet in RePEc: Add citation now
  67. Wójcicki, K.; Biegańska, M.; Paliwoda, B.; Górna, J. Internet of Things in Industry: Research Profiling, Application, Challenges and Opportunities—A Review. Energies 2022, 15, 1806. [CrossRef]
    Paper not yet in RePEc: Add citation now
  68. Yan, K.; Xu, W.; Yao, B.; Zhou, Z.; Pham, D.T. Digital Twin-Based Energy Modeling of Industrial Robots. In Methods and Applications for Modeling and Simulation of Complex Systems; Li, L., Hasegawa, K., Tanaka, S., Eds.; Springer: Singapore, 2018; pp. 333–348. Energies 2024, 17, 641 23 of 23
    Paper not yet in RePEc: Add citation now
  69. Yao, M.; Shao, Z.; Zhao, Y. Review on Energy Consumption Optimization Methods of Typical Discrete Manufacturing Equipment. In Intelligent Robotics and Applications; Liu, X.-J., Nie, Z., Yu, J., Xie, F., Song, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 48–58.
    Paper not yet in RePEc: Add citation now
  70. Yaskawa Robotics. Available online: https://www.yaskawa.eu.com/products/robot (accessed on 3 November 2023).
    Paper not yet in RePEc: Add citation now
  71. Yu, L.; Wang, Y.; Wei, X.; Zeng, C. Towards Low-Carbon Development: The Role of Industrial Robots in Decarbonization in Chinese Cities. J. Environ. Manag. 2023, 330, 117216. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  72. Zhang, M.; Yan, J. A data-driven method for optimizing the energy consumption of industrial robots. J. Clean. Prod. 2021, 285,
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Industrial Digitalization and High-Quality Development of Manufacturing Industry: Synchronizing Growth in the Yangtze River Economic Belt. (2025). Li, QI ; Hou, Jingyi.
    In: Journal of the Knowledge Economy.
    RePEc:spr:jknowl:v:16:y:2025:i:1:d:10.1007_s13132-024-02157-8.

    Full description at Econpapers || Download paper

  2. Artificial Intelligence Development and Carbon Emission Intensity: Evidence from Industrial Robot Application. (2025). Yan, Xinlin ; Sun, Tao.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:9:p:3867-:d:1642162.

    Full description at Econpapers || Download paper

  3. Towards Sustainable Development: Can Industrial Intelligence Promote Carbon Emission Reduction. (2025). Han, Dongqing ; Cao, Zhengxu ; Xu, Hanqing.
    In: Sustainability.
    RePEc:gam:jsusta:v:17:y:2025:i:1:p:370-:d:1561264.

    Full description at Econpapers || Download paper

  4. The impact of artificial intelligence development on embodied carbon emissions: Perspectives from the production and consumption sides. (2025). Wang, Jingyuan ; Luo, Qingfeng.
    In: Energy Policy.
    RePEc:eee:enepol:v:199:y:2025:i:c:s0301421525000424.

    Full description at Econpapers || Download paper

  5. Artificial intelligence and enterprise pollution emissions: From the perspective of energy transition. (2025). Niu, Xiaotong ; Lin, Changao ; Yang, Youcai ; He, Shanshan.
    In: Energy Economics.
    RePEc:eee:eneeco:v:144:y:2025:i:c:s0140988325001732.

    Full description at Econpapers || Download paper

  6. Sustainable Evolution of China’s Provincial New Quality Productivity Based on Three Dimensions of Multi-Period Development and Combination Weights. (2024). Liu, Zhichao.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:24:p:11259-:d:1550002.

    Full description at Econpapers || Download paper

  7. Unlocking ESG Performance Through Intelligent Manufacturing: The Roles of Transparency, Green Innovation, and Supply Chain Collaboration. (2024). Ren, Changman ; Yang, Jing ; Huang, Hui.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:23:p:10724-:d:1538362.

    Full description at Econpapers || Download paper

  8. The Digital Economy’s Impact on the High-Quality Development of the Manufacturing Industry in China’s Yangtze River Economic Belt. (2024). Yang, Yuxuan ; Pan, Haiying.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:16:p:6840-:d:1453215.

    Full description at Econpapers || Download paper

  9. Selected Issues, Methods, and Trends in the Energy Consumption of Industrial Robots. (2024). Blaszczyk, Tomasz ; Foit, Krzysztof ; Kost, Gabriel ; Skala, Agnieszka.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:3:p:641-:d:1328790.

    Full description at Econpapers || Download paper

  10. Generalized Predictive Control with Added Zeros and Poles in Its Augmented Model for Power Electronics Applications. (2024). Cordero, Raymundo ; Caramalac, Matheus ; Ali, Wisam.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:23:p:6037-:d:1534248.

    Full description at Econpapers || Download paper

  11. The impact of industrial robots on low-carbon green performance: Evidence from the belt and road initiative countries. (2024). Duan, Dingyun ; Wang, Hua ; Chen, Shaojian ; Long, Guoren.
    In: Technology in Society.
    RePEc:eee:teinso:v:79:y:2024:i:c:s0160791x24002604.

    Full description at Econpapers || Download paper

  12. Robots for sustainability: Evaluating ecological footprints in leading AI-driven industrial nations. (2024). Rasool, Zeeshan ; Ali, Sajid ; Nazar, Raima ; Liu, Lei ; Wang, Canghong.
    In: Technology in Society.
    RePEc:eee:teinso:v:76:y:2024:i:c:s0160791x24000083.

    Full description at Econpapers || Download paper

  13. The Road to corporate sustainability: The importance of artificial intelligence. (2024). Chu, Zhongzhu ; Chen, Pengyu ; Zhao, Miao.
    In: Technology in Society.
    RePEc:eee:teinso:v:76:y:2024:i:c:s0160791x23002452.

    Full description at Econpapers || Download paper

  14. Has green innovation been improved by intelligent manufacturing?—Evidence from listed Chinese manufacturing enterprises. (2024). Chen, Yang ; Jin, Minghui.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:205:y:2024:i:c:s004016252400283x.

    Full description at Econpapers || Download paper

  15. The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification. (2024). Lin, Boqiang ; Xu, Chongchong.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:203:y:2024:i:c:s0040162524001690.

    Full description at Econpapers || Download paper

  16. Carbon reduction effect of industrial robots: Breaking the impasse for carbon emissions and development. (2024). Zhang, Yi-Ming.
    In: Innovation and Green Development.
    RePEc:eee:ingrde:v:3:y:2024:i:3:s2949753124000353.

    Full description at Econpapers || Download paper

  17. How can intelligent manufacturing lead enterprise low-carbon transformation? Based on Chinas intelligent manufacturing demonstration projects. (2024). Yu, Guojun ; Bao, Weiping ; Zhu, Huayou.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s0360544224038106.

    Full description at Econpapers || Download paper

  18. Chasing Green: The Synergistic Effect of Industrial Intelligence on Pollution Control and Carbon Reduction and Its Mechanisms. (2023). Yang, Zhihong ; Shen, Yang.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:8:p:6401-:d:1118968.

    Full description at Econpapers || Download paper

  19. Antecedent configurations and performance of business models of intelligent manufacturing enterprises. (2023). Wang, Zhong ; Li, Zhongshun ; Xie, Weihong ; Huang, Danyu.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:193:y:2023:i:c:s0040162523002354.

    Full description at Econpapers || Download paper

  20. Is artificial intelligence associated with carbon emissions reduction? Case of China. (2023). Chen, YA ; Li, Xuhui ; Shi, Xing ; Ding, Tao.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006037.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-22 13:14:01 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.