- Amar, M.N.; Ghriga, M.A.; Ouaer, H.; Ben Seghier, M.E.A.; Pham, B.T.; Andersen, P.Ø. Modeling viscosity of CO2 at high temperature and pressure conditions. J. Nat. Gas Sci. Eng. 2020, 77, 103271. [CrossRef]
Paper not yet in RePEc: Add citation now
Bandyopadhyay, A.; Kar, S. Impact of network structure on synchronization of Hindmarsh–Rose neurons coupled in structured network. Appl. Math. Comput. 2018, 333, 194–212. [CrossRef]
- Chai, Z.; Yan, Y.; Simayi, Z.; Yang, S.; Abulimiti, M.; Wang, Y. Carbon emissions index decomposition and carbon emissions prediction in Xinjiang from the perspective of population-related factors, based on the combination of STIRPAT model and neural network. Environ. Sci. Pollut. Res. 2022, 29, 31781–31796.
Paper not yet in RePEc: Add citation now
- Chen, C.; Lu, Y.; He, G. Driving mechanisms for decoupling CO2 emissions from economic development in the ten largest emission countries. Ecosyst. Health Sustain. 2022, 8, 2059016. [CrossRef]
Paper not yet in RePEc: Add citation now
Clauset, A.; Moore, C.; Newman, M.E. Hierarchical structure and the prediction of missing links in networks. Nature 2008, 453, 98–101. [CrossRef]
- de Vries, G.J.; Ferrarini, B. What accounts for the growth of carbon dioxide emissions in advanced and emerging economies? The role of consumption, technology and global supply chain participation. Ecol. Econ. 2017, 132, 213–223. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dong, G.; Wang, F.; Shekhtman, L.M.; Danziger, M.M.; Fan, J.; Du, R.; Liu, J.; Tian, L.; Stanley, H.E.; Havlin, S. Optimal resilience of modular interacting networks. Proc. Natl. Acad. Sci. USA 2021, 118, e1922831118. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Du, R.; Zhang, M.; Zhang, N.; Liu, Y.; Dong, G.; Tian, L.; Ziyang, K.; Ahsan, M. Evaluation of key node groups of embodied carbon emission transfer network in China based on complex network control theory. J. Clean. Prod. 2024, 448, 141605. [CrossRef]
Paper not yet in RePEc: Add citation now
Du, R.; Zhang, N.; Zhang, M.; Kong, Z.; Jia, Q.; Dong, G.; Tian, L.; Ahsan, M. Identifying the optimal node group of carbon emission efficiency correlation network in China based on pinning control theory. Appl. Energy 2024, 368, 123353. [CrossRef]
Feng, S.; Li, H.; Qi, Y.; Guan, Q.; Wen, S. Who will build new trade relations? Finding potential relations in international liquefied natural gas trade. Energy 2017, 141, 1226–1238. [CrossRef]
Guan, Q.; An H.; Gao, X.; Huang, S.; Li, H. Estimating potential trade links in the international crude oil trade: A link prediction approach. Energy 2016, 102, 406–415. [CrossRef]
- Huang, Y.; Zhang, Y.; Xiang, Y.; Dong, X. Has servitization reduced the embodied carbon emissions of manufacturing export trade? Evidence from 38 countries. Environ. Technol. Innov. 2022, 28, 102950. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, H.; Li, B.; Niu, D. Prediction on the Energy Consumption Structure in Liaoning Province Based on System Dynamics. Pol. J. Environ. Stud. 2021, 30, 5593–5604. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, W.; Du, L. Assessment framework of provincial carbon emission peak prediction in China: An empirical analysis of Hebei province. Pol. J. Environ. Stud. 2019, 28, 3753–3765. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liben-Nowell, D.; Kleinberg, J. The link prediction problem for social networks. In Proceedings of the 12th International Conference on Information and Knowledge Management, New Orleans, LA, USA, 3–8 November 2003; pp. 556–559.
Paper not yet in RePEc: Add citation now
Liu, S.; Dong, Z.; Ding, C.; Wang, T.; Zhang, Y. Do you need cobalt ore? Estimating potential trade relations through link prediction. Resour. Policy 2020, 66, 101632. [CrossRef]
- Lü, L.; Zhou, T. Link prediction in complex networks: A survey. Phys. A Stat. Mech. Its Appl. 2011, 390, 1150–1170. [CrossRef]
Paper not yet in RePEc: Add citation now
Lu, Q.; Fang, K.; Heijungs, R.; Feng, K.; Li, J.; Wen, Q.; Li, Y.; Huang, X. Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative. Appl. Energy 2020, 280, 115934. [CrossRef]
- Lv, K.; Feng, X.; Kelly, S.; Zhu, L.; Deng, M. A study on embodied carbon transfer at the provincial level of China from a social network perspective. J. Clean. Prod. 2019, 225, 1089–1104. [CrossRef]
Paper not yet in RePEc: Add citation now
- Malik, A.; Hussain, E.; Baig, S.; Khokhar, M.F. Forecasting CO2 emissions from energy consumption in Pakistan under different scenarios: The China–Pakistan economic corridor. Greenh. Gases Sci. Technol. 2020, 10, 380–389. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pan, X.; Wang, Y.; Shen, Z.; Song, M. Technological progress on embodied carbon emissions in G7 countries’ exports: A structural decomposition analysis. J. Clean. Prod. 2022, 372, 133800. [CrossRef]
Paper not yet in RePEc: Add citation now
- Paterson, M.; Hoffmann, M.; Betsill, M.; Bernstein, S. The micro foundations of policy diffusion toward complex global governance: An analysis of the transnational carbon emission trading network. Comp. Political Stud. 2014, 47, 420–449. [CrossRef]
Paper not yet in RePEc: Add citation now
- Peters, G.P.; Hertwich, E.G. Post-Kyoto greenhouse gas inventories: Production versus consumption. Clim. Change 2008, 86, 51–66. [CrossRef]
Paper not yet in RePEc: Add citation now
- Takahashi, Y.; Osawa, R.; Shirayama, S. A basic study of the forecast of air transportation networks using different forecasting methods. J. Data Anal. Inf. Process. 2017, 5, 49–66. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, H.; Ang, B. Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach. Appl. Energy 2018, 218, 146–158. [CrossRef] Energies 2025, 18, 2068 22 of 23
Paper not yet in RePEc: Add citation now
Wood, R.; Grubb, M.; Anger-Kraavi, A.; Pollitt, H.; Rizzo, B.; Alexandri, E.; Stadler, K.; Moran, D.; Hertwich, E.; Tukker, A. Beyond peak emission transfers: Historical impacts of globalization and future impacts of climate policies on international emission transfers. Clim. Policy 2020, 20 (Suppl. S1), S14–S27. [CrossRef]
- World Meteorological Organization. State of the Global Climate 2023. 2024. Available online: https://wmo.int/publicationseries /state-of-global-climate-2023 (accessed on 10 March 2024 ).
Paper not yet in RePEc: Add citation now
Wu, L.; Zhou, Y.; Qian, H. Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures. Energy Econ. 2022, 106, 105804. [CrossRef]
- Xu, Y.; Dietzenbacher, E. A structural decomposition analysis of the emissions embodied in trade. Ecol. Econ. 2014, 101, 10–20. [CrossRef]
Paper not yet in RePEc: Add citation now
Yang, Y.; Du, Q.; Wang, C.; Bai, Y. Research on the method of methane emission prediction using improved grey radial basis function neural network model. Energies 2020, 13, 6112. [CrossRef]
Zhang, S.; Yang, F.; Liu, C.; Chen, X.; Tan, X.; Zhou, Y.; Guo, F.; Jiang, W. Study on global industrialization and industry emission to achieve the 2 C goal based on MESSAGE model and LMDI approach. Energies 2020, 13, 825. [CrossRef]
Zhong, S.; Goh, T.; Su, B. Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies. Energy Econ. 2022, 114, 106313. [CrossRef]
Zhong, Z.; Jiang, L.; Zhou, P. Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective. Energy 2018, 147, 858–875. [CrossRef]
Zhou, T.; Lü, L.; Zhang, Y. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 623–630. [CrossRef]
Zhu, M.; Zhou, X.; Zhang, H.; Wang, L.; Sun, H. International trade evolution and competition prediction of boron ore: Based on complex network and link prediction. Resour. Policy 2023, 82, 103542. [CrossRef]