create a website

A New Machine Learning Forecasting Algorithm Based on Bivariate Copula Functions. (2021). Nieto, M ; Velez, J F ; Carrillo, J A.
In: Forecasting.
RePEc:gam:jforec:v:3:y:2021:i:2:p:23-376:d:563347.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 45

References cited by this document

Cocites: 29

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Forecasting with Machine Learning Techniques. (2021). Hussain, Walayat ; Gao, Honghao ; Alkalbani, Asma Musabah.
    In: Forecasting.
    RePEc:gam:jforec:v:3:y:2021:i:4:p:52-869:d:680651.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Bedford T.; Cooke R. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines. Ann. Math. Artif. Intell. 2001, 32, 245-268.
    Paper not yet in RePEc: Add citation now
  2. Bellini T. Detecting atypical observations in financial data: The forward search for elliptical copulas. Adv. Data Anal. Classif. 2010, 4, 287-299.

  3. Bhatti M.I.; Do H.Q. Recent development in copula and its applications to the energy, forestry and environmental sciences. Int. J. Hydrogen Energy 2019, 44, 19453-19473.
    Paper not yet in RePEc: Add citation now
  4. Brechmann E.; Czado C.; Aas K. Truncated regular vines in high dimensions with application to financial data. Can. J. Stat. 2012, 40, 68-85.
    Paper not yet in RePEc: Add citation now
  5. Breiman L. Random Forests. Mach. Learn. 2001, 45, 5-32.
    Paper not yet in RePEc: Add citation now
  6. Chang B.; Joe H. Prediction based on conditional distributions of vine copulas. Comput. Stat. Data Anal. 2019, 139, 45-63.

  7. Chiou S.; Tsay R. A copula-based approach to option pricing and risk assesment. J. Data Sci. 2008, 6, 273-301.
    Paper not yet in RePEc: Add citation now
  8. Cui M.; Krishnan V.; Hodge B.M.; Zhang J. A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps. IEEE Trans. Smart Grid 2018.
    Paper not yet in RePEc: Add citation now
  9. Czado C. Analyzing Dependent Data with Vine Copulas; Springer: Berlin/Heidelberg, Germany, 2019.
    Paper not yet in RePEc: Add citation now
  10. De Matteis R. Fitting Copulas to Data. Bachelor’s Thesis; Institute of Mathematics of the University of Zurich: Zürich, Switzerland, 2001.
    Paper not yet in RePEc: Add citation now
  11. Di Clemente A.; Romano C. Measuring and Optimizing Portfolio Credit Risk: A Copula-based Approach. Econ. Notes 2004, 33, 325-357.

  12. Domino K. Multivariate cumulants in outlier detection for financial data analysis. Phys. Stat. Mech. Appl. 2020, 558, 124995.

  13. Durante F. Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications by Jan-Frederik Mai, Matthias Scherer, with contributions by Claudia Czado, Elke Korn, Ralf Korn, Jakob Stöber. Int. Stat. Rev. 2013, 81.

  14. Elidan G. Copulas in Machine Learning. Lect. Notes Stat. Book Ser. LNS 2013, 213.
    Paper not yet in RePEc: Add citation now
  15. Faugeras O. Inference for copula modeling of discrete data: A cautionary tale and some facts. Depend. Model. 2017, 5.
    Paper not yet in RePEc: Add citation now
  16. Friedman J. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189-1232.
    Paper not yet in RePEc: Add citation now
  17. Friedman J. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367-378.

  18. Genest C.; Nešlehová J. A Primer on Copulas for Count Data. Astin Bull. 2007, 37.

  19. Gudendorf G.; Segers J. Extreme-Value Copulas. Lect. Notes Stat. Book Ser. LNS 2010, 198, 127-145.
    Paper not yet in RePEc: Add citation now
  20. Guharay S. Robust Estimation of Value-at-Risk through Distribution-Free and Parametric Approaches Using the Joint Severity and Frequency Model: Applications in Financial, Actuarial, and Natural Calamities Domains. Risks 2017, 5.

  21. Joe H. Families of m-Variate Distributions with Given Margins and m(m-1)/2 Bivariate Dependence Parameters. Lect. Notes Monogr. Ser. 1996, 28, 120-141.
    Paper not yet in RePEc: Add citation now
  22. Khedun C.P.; Mishra A.; Singh V.; Giardino R. A copula-based precipitation forecasting model: Investigating the interdecadal modulation of ENSO’s impacts on monthly precipitation. Water Resour. Res. 2014, 50.
    Paper not yet in RePEc: Add citation now
  23. Kole E.; Koedijk K.; Verbeek M. Selecting Copulas for Risk Management. J. Bank. Financ. 2006, 31, 2405-2423.

  24. Konstantelos I.; Sun M.; Tindemans S.; Samir I.; Panciatici P.; Strbac G. Using Vine Copulas to Generate Representative System States for Machine Learning. IEEE Trans. Power Syst. 2019, 34, 225-235.
    Paper not yet in RePEc: Add citation now
  25. Kresta A. Application of GARCH-Copula Model in Portfolio Optimization. Financ. Assets Invest. 2015, 6, 7-20.
    Paper not yet in RePEc: Add citation now
  26. Luo R.; Bhatti M. Co-Movement, Dependence Structure and Ethical Investment Funds under GFC. Theor. Econ. Lett. 2019, 9, 1852-1872.
    Paper not yet in RePEc: Add citation now
  27. Mansor F.; Al Rahahleh N.; Bhatti M. New evidence on fund performance in extreme events. Int. J. Manag. Financ. 2019, 15.

  28. Miller F.P.; Vandome A.F.; McBrewster J. Random, Probability distribution, Cumulative distribution function, Inverse function. Inverse Transform Sampling: Vladimir Ivanovich Smirnov (Mathematician); Alphascript Publishing: Mauricio, Spain, 2010.
    Paper not yet in RePEc: Add citation now
  29. Mung’atu J. Copula Insurance Risk Modelling. 2015.
    Paper not yet in RePEc: Add citation now
  30. Nelsen R. An Introduction to Copulas; Springer: Berlin/Heidelberg, Germany, 1999.
    Paper not yet in RePEc: Add citation now
  31. Nguyen C.; Bhatti M.; Komornikova M.; Komornik J. Gold price and stock markets nexus under mixed-copulas. Econ. Model. 2016, 58, 283-292.

  32. Nguyen-Huy T.; Deo R.; An-Vo D.A.; Mushtaq S.; Khan S. Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones. Agric. Water Manag. 2017, 191, 153-172.

  33. Ortobelli S.; Biglova A.; Svetlozar P.; Zari T.; Rachev S.; Stoyanov S. Portfolio selection based on a simulated Copula. J. Appl. Funct. Anal. 2009, 5, 177-193.
    Paper not yet in RePEc: Add citation now
  34. Patton A. Copula Methods for Forecasting Multivariate Time Series. Handb. Econ. Forecast. 2013, 2, 899-960.

  35. Patton A. Modeling Asymmetric Exchange Rate Dependence. Int. Econ. Rev. 2006, 47, 527-556.

  36. Prechelt L. Early Stopping—But When?. Lect. Notes Comput. Sci. Book Ser. LNCS 2000, 1524.
    Paper not yet in RePEc: Add citation now
  37. Rahahleh N.A.; Bhatti M. Co-movement measure of information transmission on international equity markets. Phys. Stat. Mech. Appl. 2017, 470, 119-131.

  38. Sklar A. Fonctions de Répartition à n Dimensions et Leurs Marges. Publ. Inst. Statist. Univ. Paris 1959, 8, 229-231.
    Paper not yet in RePEc: Add citation now
  39. Sokolinskiy O.; van Dijk D. Forecasting Volatility with Copula-Based Time Series Models. ERN Time Ser. Model. 2011.

  40. Velez D. Teoria de Copulas Aplicada a la Prediccion; E-Prints UCM: Madrid, Spain, 2007; pp. 111-118.
    Paper not yet in RePEc: Add citation now
  41. Venter G. Tails of Copulas; ASTIN: Washington, DC, USA, 2001; pp. 68-113.
    Paper not yet in RePEc: Add citation now
  42. Weiß G. Copula-GARCH versus dynamic conditional correlation: An empirical study on VaR and ES forecasting accuracy. Rev. Quant. Financ. Account. 2012, 41.
    Paper not yet in RePEc: Add citation now
  43. Whitt W. Bivariate Distributions with Given Marginals. Ann. Stat. 1976, 4.
    Paper not yet in RePEc: Add citation now
  44. Wu C.; Kao C.; Lee C.F. Time-Series Properties of Financial Series and Implications for Modeling. J. Account. Audit. Financ. 1996, 11, 277-303.
    Paper not yet in RePEc: Add citation now
  45. Zimmer D.; Trivedi P. Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand. J. Bus. Econ. Stat. 2006, 24, 63-76.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Vine copula based structural equation models. (2025). Czado, Claudia.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001609.

    Full description at Econpapers || Download paper

  2. Assessing copula models for mixed continuous-ordinal variables. (2024). Shenyi, Pan ; Harry, Joe.
    In: Dependence Modeling.
    RePEc:vrs:demode:v:12:y:2024:i:1:p:18:n:1001.

    Full description at Econpapers || Download paper

  3. Copula-Based Regression with Mixed Covariates. (2024). Mesfioui, Mhamed ; Aldahmani, Saeed ; Kortbi, Othmane.
    In: Mathematics.
    RePEc:gam:jmathe:v:12:y:2024:i:22:p:3525-:d:1518809.

    Full description at Econpapers || Download paper

  4. Copula-based link functions in binary regression models. (2023). Bouezmarni, T ; Mesfioui, M ; Belalia, M.
    In: Statistical Papers.
    RePEc:spr:stpapr:v:64:y:2023:i:2:d:10.1007_s00362-022-01330-y.

    Full description at Econpapers || Download paper

  5. Factor Tree Copula Models for Item Response Data. (2023). Kadhem, Sayed H ; Nikoloulopoulos, Aristidis K.
    In: Psychometrika.
    RePEc:spr:psycho:v:88:y:2023:i:3:d:10.1007_s11336-023-09917-6.

    Full description at Econpapers || Download paper

  6. Bayesian ridge regression for survival data based on a vine copula-based prior. (2023). Emura, Takeshi ; Michimae, Hirofumi.
    In: AStA Advances in Statistical Analysis.
    RePEc:spr:alstar:v:107:y:2023:i:4:d:10.1007_s10182-022-00466-4.

    Full description at Econpapers || Download paper

  7. Modelling credit card exposure at default using vine copula quantile regression. (2023). Choudhry, Taufiq ; Wattanawongwan, Suttisak ; Okhrati, Ramin ; So, Mee Chi ; Mues, Christophe.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:311:y:2023:i:1:p:387-399.

    Full description at Econpapers || Download paper

  8. Nonparametric C- and D-vine-based quantile regression. (2022). Jing, Zhou ; Marija, Tepegjozova ; Claudia, Czado ; Gerda, Claeskens.
    In: Dependence Modeling.
    RePEc:vrs:demode:v:10:y:2022:i:1:p:1-21:n:1.

    Full description at Econpapers || Download paper

  9. Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients. (2022). Emura, Takeshi ; Michimae, Hirofumi.
    In: Computational Statistics.
    RePEc:spr:compst:v:37:y:2022:i:5:d:10.1007_s00180-022-01213-8.

    Full description at Econpapers || Download paper

  10. Predicting times to event based on vine copula models. (2022). Pan, Shenyi ; Joe, Harry.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:175:y:2022:i:c:s0167947322001268.

    Full description at Econpapers || Download paper

  11. Explaining predictive models using Shapley values and non-parametric vine copulas. (2021). Thomas, Nagler ; Anders, Loland ; Martin, Jullum ; Kjersti, Aas.
    In: Dependence Modeling.
    RePEc:vrs:demode:v:9:y:2021:i:1:p:62-81:n:1.

    Full description at Econpapers || Download paper

  12. A New Machine Learning Forecasting Algorithm Based on Bivariate Copula Functions. (2021). Nieto, M ; Velez, J F ; Carrillo, J A.
    In: Forecasting.
    RePEc:gam:jforec:v:3:y:2021:i:2:p:23-376:d:563347.

    Full description at Econpapers || Download paper

  13. Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression. (2021). Li, Heng ; Wang, Fan ; Dong, Chao.
    In: Reliability Engineering and System Safety.
    RePEc:eee:reensy:v:213:y:2021:i:c:s0951832021002258.

    Full description at Econpapers || Download paper

  14. On the copula correlation ratio and its generalization. (2021). Emura, Takeshi ; Shih, Jia-Han.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:182:y:2021:i:c:s0047259x2030289x.

    Full description at Econpapers || Download paper

  15. Simplified R-vine based forward regression. (2021). Zhu, Kailun ; Nane, Gabriela F ; Kurowicka, Dorota.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:155:y:2021:i:c:s0167947320301821.

    Full description at Econpapers || Download paper

  16. Vine copula regression for observational studies. (2020). Cooke, Roger ; Joe, Harry ; Chang, BO.
    In: AStA Advances in Statistical Analysis.
    RePEc:spr:alstar:v:104:y:2020:i:2:d:10.1007_s10182-019-00353-5.

    Full description at Econpapers || Download paper

  17. Copula-based regression models with data missing at random. (2020). Hamori, Shigeyuki ; Zhang, Zheng ; Motegi, Kaiji.
    In: Journal of Multivariate Analysis.
    RePEc:eee:jmvana:v:180:y:2020:i:c:s0047259x20302359.

    Full description at Econpapers || Download paper

  18. Distillation of News Flow into Analysis of Stock Reactions. (2020). Hardle, Wolfgang Karl ; Zhang, Junni L ; Bommes, Elisabeth ; Chen, Cathy Y.
    In: Papers.
    RePEc:arx:papers:2009.10392.

    Full description at Econpapers || Download paper

  19. Market-Risk Optimization among the Developed and Emerging Markets with CVaR Measure and Copula Simulation. (2019). Tiwari, Aviral ; Trabelsi, Nader.
    In: Risks.
    RePEc:gam:jrisks:v:7:y:2019:i:3:p:78-:d:246399.

    Full description at Econpapers || Download paper

  20. On the robustness of portfolio allocation under copula misspecification. (2018). Prigent, Jean-Luc ; ben Saida, Abdallah.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:262:y:2018:i:2:d:10.1007_s10479-016-2137-0.

    Full description at Econpapers || Download paper

  21. Dependence structure of market states. (2015). Schafer, Rudi ; Chetalova, Desislava.
    In: Papers.
    RePEc:arx:papers:1503.09004.

    Full description at Econpapers || Download paper

  22. Robust portfolio optimization with copulas. (2014). Kakouris, Iakovos ; Rustem, Ber.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:235:y:2014:i:1:p:28-37.

    Full description at Econpapers || Download paper

  23. Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach. (2013). Sghaier, Nadia ; Boubaker, Heni.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:2:p:361-377.

    Full description at Econpapers || Download paper

  24. Integrated bank risk modeling: A bottom-up statistical framework. (2013). bellini, tiziano.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:230:y:2013:i:2:p:385-398.

    Full description at Econpapers || Download paper

  25. Forward search outlier detection in data envelopment analysis. (2012). bellini, tiziano.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:216:y:2012:i:1:p:200-207.

    Full description at Econpapers || Download paper

  26. Checking for asymmetric default dependence in a credit card portfolio: A copula approach. (2011). Crook, Jonathan ; Moreira, Fernando.
    In: Journal of Empirical Finance.
    RePEc:eee:empfin:v:18:y:2011:i:4:p:728-742.

    Full description at Econpapers || Download paper

  27. Copula‐Based Formulas to Estimate Unexpected Credit Losses (The Future of Basel Accords?). (2010). Moreira, Fernando F.
    In: Financial Markets, Institutions & Instruments.
    RePEc:wly:finmar:v:19:y:2010:i:5:p:381-404.

    Full description at Econpapers || Download paper

  28. Quantifizierung von Abhängigkeitsstrukturen zwischen Risiken in Versicherungsunternehmen. (2009). Nguyen, Tristan ; Molinari, Robert Danilo .
    In: German Risk and Insurance Review (GRIR).
    RePEc:zbw:grirej:68730.

    Full description at Econpapers || Download paper

  29. Nuevas Herramientas para la Administración del Riesgo Crediticio: El caso de una Cartera Crediticia Ecuatoriana. (2008). Pazmio, Mariela ; Maldonado, Diego.
    In: MPRA Paper.
    RePEc:pra:mprapa:17163.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-20 11:58:11 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.