- Aamodt, A.; Plaza, E. Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Commun. 1994, 7, 39â59. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ahani, A.; Nilashi, M.; Yadegaridehkordi, E.; Sanzogni, L.; Tarik, A.R.; Knox, K.; Samad, S.; Ibrahim, O. Revealing Customersâ Satisfaction and Preferences through Online Review Analysis: The Case of Canary Islands Hotels. J. Retail. Consum. Serv. 2019, 51, 331â343. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ali, M.M.; Doumbouya, M.B.; Louge, T.; Rai, R.; Karray, M.H. Ontology-Based Approach to Extract Productâs Design Features from Online Customersâ Reviews. Comput. Ind. 2020, 116, 103175. [CrossRef]
Paper not yet in RePEc: Add citation now
- Angelova, B.; Zeqiri, C. Measuring Customer Satisfaction with Service Quality Using American Customer Satisfaction Model (ACSI Model). Int. J. Acad. Res. Bus. Soc. Sci. 2011, 1, 232â258. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cavanaugh, J.E.; Neath, A.A. The Akaike Information Criterion: Background, Derivation, Properties, Application, Interpretation, and Refinements. WIREs Comput. Stat. 2019, 11, e1460. [CrossRef]
Paper not yet in RePEc: Add citation now
- Celik, E.; Bilisik, O.N.; Erdogan, M.; Gumus, A.T.; Baracli, H. An Integrated Novel Interval Type-2 Fuzzy MCDM Method to Improve Customer Satisfaction in Public Transportation for Istanbul. Transp. Res. Part E Logist. Transp. Rev. 2013, 58, 28â51. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chen, X.; Voigt, T. Implementation of the Manufacturing Execution System in the Food and Beverage Industry. J. Food Eng. 2020, 278, 109932. [CrossRef] Mathematics 2023, 11, 4221 21 of 22
Paper not yet in RePEc: Add citation now
- Chen, Y.H. Fuzzy Ratings in Mechanical Engineering DesignâApplication to Bearing Selection. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 1996, 210, 49â53. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cronin, J.J.; Brady, M.K.; Hult, G.T.M. Assessing the Effects of Quality, Value, and Customer Satisfaction on Consumer Behavioral Intentions in Service Environments. J. Retail. 2000, 76, 193â218. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dubois, D.; Prade, H. Systems of Linear Fuzzy Constraints. Fuzzy Sets Syst. 1980, 3, 37â48. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ghenai, C.; Al-Mufti, O.A.A.; Al-Isawi, O.A.M.; Amirah, L.H.L.; Merabet, A. Short-Term Building Electrical Load Forecasting Using Adaptive Neuro-Fuzzy Inference System (ANFIS). J. Build. Eng. 2022, 52, 104323. [CrossRef]
Paper not yet in RePEc: Add citation now
- Goode, M.M.H.; Davies, F.; Moutinho, L.; Jamal, A. Determining Customer Satisfaction from Mobile Phones: A Neural Network Approach. J. Mark. Manag. 2005, 21, 755â778. [CrossRef]
Paper not yet in RePEc: Add citation now
- Green, K.; Armstrong, J.S.; Graefe, A. Methods to Elicit Forecasts from Groups: Delphi and Prediction Markets Compared. SSRN J. 2008, 1â6. [CrossRef]
Paper not yet in RePEc: Add citation now
- Grnholdt, L.; Martensen, A. Analysing Customer Satisfaction Data: A Comparison of Regression and Artificial Neural Networks. Int. J. Mark. Res. 2005, 47, 121â130. [CrossRef]
Paper not yet in RePEc: Add citation now
- Grzegorzewski, P. Distances between Intuitionistic Fuzzy Sets and/or Interval-Valued Fuzzy Sets Based on the Hausdorff Metric. Fuzzy Sets Syst. 2004, 148, 319â328. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hallencreutz, J.; Parmler, J. Important Drivers for Customer SatisfactionâFrom Product Focus to Image and Service Quality. Total Qual. Manag. Bus. Excell. 2021, 32, 501â510. [CrossRef]
Paper not yet in RePEc: Add citation now
- Harwood, W.S.; Drake, M.A. Manufacture of Milk and Whey Products: Impact of Processing on Sensory Characteristics of Milk and Dairy Products. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Oxford, UK, 2022; pp. 103â117. ISBN 978-0-12-818767-8.
Paper not yet in RePEc: Add citation now
- Jang, J.-S.R. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665â685. [CrossRef]
Paper not yet in RePEc: Add citation now
- Javed, S.; Rashidin, S.; Xiao, Y. Investigating the Impact of Digital Influencers on Consumer Decision-Making and Content Outreach: Using Dual AISAS Model. Econ. Res. Ekon. Istraž. 2022, 35, 1183â1210. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jiang, H.; Kwong, C.K.; Law, M.C.; Ip, W.H. Development of Customer Satisfaction Models for Affective Design Using Rough Set and ANFIS Approaches. Procedia Comput. Sci. 2013, 22, 104â112. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jiang, H.; Kwong, C.K.; Siu, K.W.M.; Liu, Y. Rough Set and PSO-Based ANFIS Approaches to Modeling Customer Satisfaction for Affective Product Design. Adv. Eng. Inform. 2015, 29, 727â738. [CrossRef]
Paper not yet in RePEc: Add citation now
- Jiang, H.M.; Kwong, C.K.; Ip, W.H.; Wong, T.C. Modeling Customer Satisfaction for New Product Development Using a PSO-Based ANFIS Approach. Appl. Soft Comput. 2012, 12, 726â734. [CrossRef]
Paper not yet in RePEc: Add citation now
- KalinicÌ, Z.; MarinkovicÌ, V.; KalinicÌ, L.; Liébana-Cabanillas, F. Neural Network Modeling of Consumer Satisfaction in Mobile Commerce: An Empirical Analysis. Expert Syst. Appl. 2021, 175, 114803. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kotler, P.T.; Armstrong, G. Principles of Marketing, 18th ed.; Pearson Higher Education: London, UK, 2021; ISBN 978-1-292-34113-2.
Paper not yet in RePEc: Add citation now
- Kumar, S.; Zymbler, M. A Machine Learning Approach to Analyze Customer Satisfaction from Airline Tweets. J. Big Data 2019, 6, 62. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lamrani Alaoui, Y.; Tkiouat, M. Modeling Customer Satisfaction in Microfinance Sector: A Fuzzy Bayesian Networks Approach. Int. J. Eng. Bus. Manag. 2019, 11, 1847979019869533. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lin, W.-B. The Exploration of Customer Satisfaction Model from a Comprehensive Perspective. Expert Syst. Appl. 2007, 33, 110â121. [CrossRef]
Paper not yet in RePEc: Add citation now
- Milan, S.G.; Roozbahani, A.; Arya Azar, N.; Javadi, S. Development of Adaptive Neuro Fuzzy Inference SystemâEvolutionary Algorithms Hybrid Models (ANFIS-EA) for Prediction of Optimal Groundwater Exploitation. J. Hydrol. 2021, 598, 126258. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munoz, C.; Laniado, H.; Córdoba, J. Development of a Robust Customer Satisfaction Index for Domestic Air Journeys. Res. Transp. Bus. Manag. 2020, 37, 100519. [CrossRef] Mathematics 2023, 11, 4221 22 of 22
Paper not yet in RePEc: Add citation now
NesticÌ, S.; GojkovicÌ, R.; PetrovicÌ, T.; TadicÌ, D.; MimovicÌ, P. Quality Performance Indicators Evaluation and Ranking by Using TOPSIS with the Interval-Intuitionistic Fuzzy Sets in Project-Oriented Manufacturing Companies. Mathematics 2022, 10, 4174. [CrossRef]
Otto, A.S.; Szymanski, D.M.; Varadarajan, R. Customer Satisfaction and Firm Performance: Insights from over a Quarter Century of Empirical Research. J. Acad. Mark. Sci. 2020, 48, 543â564. [CrossRef]
Pakurár, M.; Haddad, H.; Nagy, J.; Popp, J.; Oláh, J. The Service Quality Dimensions That Affect Customer Satisfaction in the Jordanian Banking Sector. Sustainability 2019, 11, 1113. [CrossRef]
- Portet, S. A Primer on Model Selection Using the Akaike Information Criterion. Infect. Dis. Model. 2020, 5, 111â128. [CrossRef] [PubMed] Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Rajan, M.S.; Dilip, G.; Kannan, N.; Namratha, M.; Majji, S.; Mohapatra, S.K.; Patnala, T.R.; Karanam, S.R. Diagnosis of Fault Node in Wireless Sensor Networks Using Adaptive Neuro-Fuzzy Inference System. Appl. Nanosci. 2023, 13, 1007â1015. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Elsevier: Amsterdam, The Netherlands, 1988; pp. 399â421.
Paper not yet in RePEc: Add citation now
- Salleh, M.N.M.; Talpur, N.; Hussain, K. Adaptive Neuro-Fuzzy Inference System: Overview, Strengths, Limitations, and Solutions. In Proceedings of the Data Mining and Big Data; Tan, Y., Takagi, H., Shi, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 527â535.
Paper not yet in RePEc: Add citation now
- Sheth, J.N. Demographics in Consumer Behavior. J. Bus. Res. 1977, 5, 129â138. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shin, D.-H. Measuring the Quality of Smartphones: Development of a Customer Satisfaction Index for Smart Services. Int. J. Mob. Commun. 2014, 12, 311â327. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tadic, D.; Aleksic, A.; Mimovic, P.; Puskaric, H.; Misita, M. A Model for Evaluation of Customer Satisfaction with Banking Service Quality in an Uncertain Environment. Total Qual. Manag. Bus. Excell. 2018, 29, 1342â1361. [CrossRef]
Paper not yet in RePEc: Add citation now
- Turkyilmaz, A.; Oztekin, A.; Zaim, S.; Fahrettin Demirel, O. Universal Structure Modeling Approach to Customer Satisfaction Index. Ind. Manag. Data Syst. 2013, 113, 932â949. [CrossRef]
Paper not yet in RePEc: Add citation now
- Udo, G.J.; Bagchi, K.K.; Kirs, P.J. An Assessment of Customersâ e-Service Quality Perception, Satisfaction and Intention. Int. J. Inf. Manag. 2010, 30, 481â492. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wisniewski, M. Using SERVQUAL to Assess Customer Satisfaction with Public Sector Services. Manag. Serv. Qual. Int. J. 2001, 11, 380â388. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wu, W.; Zhang, A.; van Klinken, R.D.; Schrobback, P.; Muller, J.M. Consumer Trust in Food and the Food System: A Critical Review. Foods 2021, 10, 2490. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Zaghloul, M.S.; Hamza, R.A.; Iorhemen, O.T.; Tay, J.H. Comparison of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and Support Vector Regression (SVR) for Data-Driven Modelling of Aerobic Granular Sludge Reactors. J. Environ. Chem. Eng. 2020, 8, 103742. [CrossRef]
Paper not yet in RePEc: Add citation now