Adelman, D. A price-directed approach to stochastic inventory/routing. Oper. Res. 2004, 52, 499â514. [CrossRef]
Adelman, D. Dynamic Bid Prices in Revenue Management. Oper. Res. 2007, 55, 647â661. [CrossRef]
- Adelman, D.; Klabjan, D. Computing Near-Optimal Policies in Generalized Joint Replenishment. INFORMS J. Comput. 2011, 24, 148â164. [CrossRef]
Paper not yet in RePEc: Add citation now
Bitran, G.R.; Dasu, S. Ordering policies in an environment of stochastic yields and substitutable demands. Oper. Res. 1992, 40, 999â1017. [CrossRef]
Bitran, G.R.; Leong, T.Y. Deterministic approximations to co-production problems with service constraints and random yields. Manag. Sci. 1992, 38, 724â742. [CrossRef]
Cattrysse, D.; Maes, J.; Wassenhove, L. Set partitioning and column generation heuristics for capacitated dynamic lotsizing. Eur. J. Oper. Res. 1990, 46, 38â47. [CrossRef]
- Dan, Z. An Improved Dynamic Programming Decomposition Approach for Network Revenue Management. Manuf. Serv. Oper. Manag. 2011, 13, 35â52.
Paper not yet in RePEc: Add citation now
De Farias, D.P.; Van Roy, B. On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming. Math. Oper. Res. 2004, 29, 462â478. [CrossRef]
Denardo, E.V. On linear programming in a markov decision problem. Manag. Sci. 1970, 16, 281â288. [CrossRef]
- Desai, V.V.; Farias, V.F.; Moallemi, C.C. Approximate Dynamic Programming via a Smoothed Linear Program. Oper. Res. 2012, 60, 655â674. [CrossRef]
Paper not yet in RePEc: Add citation now
Diaby, M.; Bahl, H.C.; Karwan, M.H.; Zionts, S. Capacitated lot-sizing and scheduling by Lagrangean relaxation. Eur. J. Oper. Res. 1992, 59, 444â458. [CrossRef]
Drexl, A.; Kimms, A. Lot sizing and scheduling: Survey and extensions. Eur. J. Oper. Res. 1997, 99, 221â235. [CrossRef]
- Farias, D.P.D.; Roy, B.V. A Cost-Shaping Linear Program for Average-Cost Approximate Dynamic Programming with Performance Guarantees. Math. Oper. Res. 2006, 31, 597â620. [CrossRef]
Paper not yet in RePEc: Add citation now
- Farias, D.P.D.; Roy, B.V. The Linear Programming Approach to Approximate Dynamic Programming. Oper. Res. 2003, 51, 850â865. [CrossRef]
Paper not yet in RePEc: Add citation now
Fleischmann, B. The discrete lot-sizing and scheduling problem with sequence-dependent setup costs. Eur. J. Oper. Res. 1994, 75, 395â404. [CrossRef]
Gelders, L.F.; Wassenhove, L.N.V. Production planning: A review. Eur. J. Oper. Res. 1981, 7, 101â110. [CrossRef]
- Han, J.; Roy, B.V. Control of Diffusions via Linear Programming; Stochastic Programming: New York, NY, USA, 2011; pp. 329â353.
Paper not yet in RePEc: Add citation now
Karabuk, S.; Wu, S.D. Coordinating strategic capacity planning in the semiconductor industry. Oper. Res. 2003, 51, 839â849. [CrossRef]
Kelle, P.; Milne, A. The effect of (s, S) ordering policy on the supply chain. Int. J. Prod. Econ. 1999, 59, 113â122. [CrossRef]
Longstaff, F.A.; Schwartz, E.S. Valuing American Options by Simulation: A Simple Least-Squares Approach. Rev. Financ. Stud. 2001, 14, 113â147. [CrossRef] Mathematics 2024, 12, 3922 17 of 17
- Manne, A.S. Linear Programming and Sequential Decisions. Manag. Sci. 1960, 6, 259â267. [CrossRef]
Paper not yet in RePEc: Add citation now
Morrison, J.R.; Kumar, P.R. New linear program performance bounds for queueing networks. J. Optim. Theory Appl. 1999, 100, 575â597. [CrossRef]
Mula, J.; Poler, R.; GarcÃa-Sabater, J.; Lario, F.C. Models for production planning under uncertainty: A review. Int. J. Prod. Econ. 2006, 103, 271â285. [CrossRef]
- Murota, K. Discrete convex analysis. Math. Program. 1998, 83, 313â371. [CrossRef] Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Petrik, M.; Zilberstein, S. Constraint relaxation in approximate linear programs. In Proceedings of the 26th Annual Inernational Conference on Machine Learning, Montreal, QC, Canada, 14â18 June 2009; pp. 809â816.
Paper not yet in RePEc: Add citation now
Porteus, E.L. Optimal Lot Sizing, Process Quality Improvement and Setup Cost Reduction. Oper. Res. 1986, 34, 137â144. [CrossRef]
- Powell, W.B. Approximate dynamic programming: Solving the curses of dimensionality. Optim. Methods Softw. 2007, 24, 155.
Paper not yet in RePEc: Add citation now
Salomon, M.; Kroon, L.G.; Wassenhove, K.L.N.V. Some extensions of the discrete lotsizing and scheduling problem. Manag. Sci. 1991, 37, 801â812. [CrossRef]
Salomon, M.; Solomon, M.M.; Wassenhove, L.; Dumas, Y.; Dauzère-Pérès, S. Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the Travelling Salesman Problem with time windows. Eur. J. Oper. Res. 1997, 100, 494â513. [CrossRef]
- Schweitzer, P.J.; Seidmann, A. Generalized polynomial approximations in Markovian decision processes. J. Math. Anal. Appl. 1985, 110, 568â582. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sepehri, M.; Silver, E.A.; New, C. A heuristic for multiple lot sizing for an order under variable yield. IIE Trans. 1986, 18, 63â69. [CrossRef]
Paper not yet in RePEc: Add citation now
SimaO, H.P.; George, A.; Powell, W.B.; Gifford, T.; Nienow, J.; Day, J. Approximate Dynamic Programming Captures Fleet Operations for Schneider National. Interfaces 2010, 40, 342â352. [CrossRef]
- Tesauro, G. Temporal difference learning and TD-Gammon. Commun. ACM 1995, 38, 58â68. [CrossRef]
Paper not yet in RePEc: Add citation now
- Topaloglu, H. Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management. Oper. Res. 2009, 57, 637â649. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tsitsiklis, J.N.; Roy, B.V. Optimal Stopping of Markov Processes: Hilbert Space Theory, Approximation Algorithms, and an Application to Pricing High-Dimensional Financial Derivatives. IEEE Trans. Autom. Control. 1999, 44, 1840â1851. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tsitsiklis, J.N.; Roy, B.V. Regression Methods for Pricing Complex American Style Options. IEEE Trans. Neural Netw. 2001, 12, 694â703. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Uzsoy, R.; Lee, C.Y.; Martin-Vega, L.A. A review of production planning and scheduling models in the semiconductor industry Part I: System characteristics, performance evaluation and production planning. IIE Trans. 1992, 24, 47â60. [CrossRef]
Paper not yet in RePEc: Add citation now
- Van Roy, B. Neuro-Dynamic Programming: Overview and Recent Trends. In Handbook of Markov Decision Processes; Springer: Boston, MA, USA, 2002; pp. 431â459.
Paper not yet in RePEc: Add citation now
- Veatch, M.H. Approximate dynamic programming for networks: Fluid models and constraint reduction. 2004, submitted for publication.
Paper not yet in RePEc: Add citation now
Vossen, T.W.M.; Zhang, D. A Dynamic Disaggregation Approach to Approximate Linear Programs for Network Revenue Management. Prod. Oper. Manag. 2015, 24, 469â487. [CrossRef]
Wagner, H.M. Research portfolio for inventory management and production planning systems. Oper. Res. 1980, 28, 445â475. [CrossRef]
- Wen, Z.; Durlofsky, L.J.; Roy, B.V.; Aziz, K. Approximate Dynamic Programming for Optimizing Oil Production; John Wiley and Sons: Hoboken, NJ, USA, 2013.
Paper not yet in RePEc: Add citation now
- Yanasse, B. Computational Complexity of the Capacitated Lot Size Problem. Manag. Sci. 1982, 28, 1174â1186. Mathematics 2024, 12, 3922 16 of 17
Paper not yet in RePEc: Add citation now
Zhang, D.; Adelman, D. An approximate dynamic programming approach to network revenue management with customer choice. Transp. Sci. 2009, 43, 381â394. [CrossRef]
- Zijm, W. Hierarchical production planning and multi-echelon inventory management. Int. J. Prod. Econ. 1992, 26, 257â264. [CrossRef]
Paper not yet in RePEc: Add citation now