- Akram, J.; Javed, A.; Khan, S.; Akram, A.; Munawar, H.S.; Ahmad, W. Swarm intelligence based localization in wireless sensor networks. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, New York, NY, USA, 22â26 March 2021; pp. 1906â1914.
Paper not yet in RePEc: Add citation now
- Akram, J.; Munawar, H.S.; Kouzani, A.Z.; Mahmud, M.A.P. Using Adaptive Sensors for Optimised Target Coverage in Wireless Sensor Networks. Sensors 2022, 22, 1083. [CrossRef]
Paper not yet in RePEc: Add citation now
- Akram, J.; Tahir, A.; Munawar, H.S.; Akram, A.; Kouzani, A.Z.; Mahmud, M.A.P. Cloud-and Fog-Integrated Smart Grid Model for Efficient Resource Utilisation. Sensors 2021, 21, 7846. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alipour, M.; Harris, D.K.; Miller, G.R. Robust pixel-level crack detection using deep fully convolutional neural networks. J. Comput. Civ. Eng. 2019, 33, 04019040. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ãzgenel, Ã.F. Concrete crack images for classification. Mendeley Data 2018, 1.
Paper not yet in RePEc: Add citation now
- Ãzgenel, Ã.F.; Sorguç, A.G. Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Proceedings of the International Symposium on Automation and Robotics in Construction, Berlin, Germany, 20â25 July 2018.
Paper not yet in RePEc: Add citation now
- Bui, H.M.; Lech, M.; Cheng, E.; Neville, K.; Burnett, I.S. Using Grayscale Images for Object Recognition with Convolutional-Recursive Neural Network; IEEE: Piscataway, NJ, USA, 2016.
Paper not yet in RePEc: Add citation now
- Chen, F.-C.; Jahanshahi, M.R. NB-CNN: Deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion. IEEE Trans. Ind. Electron. 2017, 65, 4392â4400. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [CrossRef]
Paper not yet in RePEc: Add citation now
- De Maio, U.; Greco, F.; Leonetti, L.; Blasi, P.N.; Pranno, A. A cohesive fracture model for predicting crack spacing and crack width in reinforced concrete structures. Eng. Fail. Anal. 2022, 139, 106452. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dorafshan, S.; Maguire, M.; Chang, M. Comparing automated image-based crack detection techniques in the spatial and frequency domains. In Proceedings of the 26th ASNT Research Symposium, Jacksonville, FL, USA, 13â16 March 2017.
Paper not yet in RePEc: Add citation now
- Dorafshan, S.; Thomas, R.J.; Maguire, M. Benchmarking image processing algorithms for unmanned aerial system-assisted crack detection in concrete structures. Infrastructures 2019, 4, 19. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dung, C.V. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019, 99, 52â58. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fan, Z.; Wu, Y.; Lu, J.; Li, W. Automatic pavement crack detection based on structured prediction with the convolutional neural network. arXiv 2018, arXiv:Preprint/1802.02208.
Paper not yet in RePEc: Add citation now
- Fang, F.; Li, L.; Gu, Y.; Zhu, H.; Lim, J.-H. A novel hybrid approach for crack detection. Pattern Recognit. 2020, 107, 107474. [CrossRef]
Paper not yet in RePEc: Add citation now
- Fawcett, T. ROC graphs: Notes and practical considerations for researchers. Mach. Learn. 2004, 31, 1â38.
Paper not yet in RePEc: Add citation now
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
Paper not yet in RePEc: Add citation now
- Hsieh, Y.-A.; Tsai, Y.J. Machine learning for crack detection: Review and model performance comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ke, L.; Liu, Z.; Yu, H. Characterization of a Patch Antenna Sensorâs Resonant Frequency Response in Identifying the Notch-Shaped Cracks on Metal Structure. Sensors 2018, 19, 110. [CrossRef]
Paper not yet in RePEc: Add citation now
- Khan, S.I.; Qadir, Z.; Munawar, H.S.; Nayak, S.R.; Budati, A.K.; Verma, K.; Prakash, D. UAVs path planning architecture for effective medical emergency response in future networks. Phys. Commun. 2021, 47, 101337. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kim, H.; Ahn, E.; Cho, S.; Shin, M.; Sim, S.-H. Comparative analysis of image binarization methods for crack identification in concrete structures. Cem. Concr. Res. 2017, 99, 53â61. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kim, I.-H.; Jeon, H.; Baetk, S.-C.; Hong, W.-H.; Jung, H.-J. Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors 2018, 18, 1881. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Kumar, N. Gradient Based Techniques for the Avoidance of Oversegmentation. In Proceedings of the BEATS 2010, Jalandhar, India, 7â9 June 2010.
Paper not yet in RePEc: Add citation now
Liaquat, M.U.; Munawar, H.S.; Rahman, A.; Qadir, Z.; Kouzani, A.Z.; Mahmud, M.A.P. Sound localization for ad-hoc microphone arrays. Energies 2021, 14, 3446. [CrossRef]
- Lins, R.G.; Givigi, S.N. Automatic crack detection and measurement based on image analysis. IEEE Trans. Instrum. Meas. 2016, 65, 583â590. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, Z.; Cao, Y.; Wang, Y.; Wang, W. Computer vision-based concrete crack detection using U-net fully convolutional networks. Autom. Constr. 2019, 104, 129â139. [CrossRef]
Paper not yet in RePEc: Add citation now
- Luo, Q.; Ge, B.; Tian, Q. A fast adaptive crack detection algorithm based on a double-edge extraction operator of FSM. Constr. Build. Mater. 2019, 204, 244â254. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787â798. [CrossRef]
Paper not yet in RePEc: Add citation now
- Moosavi, R.; Grunwald, M.; Redmer, B. Crack detection in reinforced concrete. NDT E Int. 2020, 109, 102190. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munawar, H.S.; Aggarwal, R.; Qadir, Z.; Khan, S.; Kouzani, A.; Malhmud, M. A gabor filter-based protocol for automated image-based building detection. Buildings 2021, 11, 302. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munawar, H.S.; Awan, A.A.; Khalid, U.; Maqsood, A. Revolutionizing Telemedicine by Instilling H. 265. Int. J. Image Graph. Signal Processing 2017, 9, 20â27. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munawar, H.S.; Hammad, A.; Waller, S.; Thaheem, M.; Shrestha, A. An integrated approach for post-disaster flood management via the use of cutting-edge technologies and UAVs: A review. Sustainability 2021, 13, 7925. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munawar, H.S.; Hammad, A.W.; Waller, S.T. Disaster Region Coverage Using Drones: Maximum Area Coverage and Minimum Resource Utilisation. Drones 2022, 6, 96. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munawar, H.S.; Hammad, A.W.; Waller, S.T. Remote Sensing Methods for Flood Prediction: A Review. Sensors 2022, 22, 960. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munawar, H.S.; Hammad, A.W.A.; Haddad, A.; Soares, C.A.P.; Waller, S.T. Image-based crack detection methods: A review. Infrastructures 2021, 6, 115. [CrossRef] Sustainability 2022, 14, 8117 25 of 25
Paper not yet in RePEc: Add citation now
Munawar, H.S.; Khan, S.; Qadir, Z.; Kouzani, A.; Mahmud, M. Insight into the impact of COVID-19 on Australian transportation sector: An economic and community-based perspective. Sustainability 2021, 13, 1276. [CrossRef]
Munawar, H.S.; Khan, S.I.; Qadir, Z.; Kiani, Y.S.; Kouzani, A.Z.; Mahmud, M.A.P. Insights into the Mobility Pattern of Australians during COVID-19. Sustainability 2021, 13, 9611. [CrossRef]
- Munawar, H.S.; Maqsood, A.; Mustansar, Z. Isotropic surround suppression and Hough transform based target recognition from aerial images. Int. J. Adv. Appl. Sci. 2017, 4, 37â42. [CrossRef]
Paper not yet in RePEc: Add citation now
- Munawar, H.S.; Mojtahedi, M.; Hammad, A.W.; Kouzani, A.; Mahmud, M.P. Disruptive technologies as a solution for disaster risk management: A review. Sci. Total Environ. 2022, 806, 151351. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nigam, R.; Singh, S.K. Crack Detection in a Beam Using Wavelet Transform and Photographic Measurements. Structures 2020, 25, 436â447. [CrossRef]
Paper not yet in RePEc: Add citation now
- Oliveira, H.; Correia, P.L. CrackIT An image processing toolbox for crack detection and characterization. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27â30 October 2014; pp. 798â802.
Paper not yet in RePEc: Add citation now
- Pauly, L.; Peel, H.; Luo, S.; Hogg, D.; Fuentes, R. Deeper networks for pavement crack detection. In Proceedings of the 34th ISARC, Taipei, Taiwan, 28 Juneâ1 July 2017.
Paper not yet in RePEc: Add citation now
- Poynton, C. Frequently asked questions about color. Retrieved June 1997, 19, 2004.
Paper not yet in RePEc: Add citation now
- Pranno, A.; Greco, F.; Lonetti, P.; Luciano, R.; De Maio, U. An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage. Int. J. Fatigue 2022, 163, 107032. [CrossRef]
Paper not yet in RePEc: Add citation now
- Qadir, Z.; Munir, A.; Ashfaq, T.; Munawar, H.S.; Khan, M.A.; Le, K. A prototype of an energy-efficient MAGLEV train: A step towards cleaner train transport. Clean. Eng. Technol. 2021, 4, 100217. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rimkus, A.; Podviezko, A.; Gribniak, V. Processing digital images for crack localization in reinforced concrete members. Procedia Eng. 2015, 122, 239â243. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shahriar, M.T.; Li, H. A Study of Image Pre-processing for Faster Object Recognition. arXiv 2020, arXiv:Preprint/2011.06928.
Paper not yet in RePEc: Add citation now
- Shaukat, M.A.; Shaukat, H.; Qadir, Z.; Munawar, H.; Kouzani, A.; Mahmud, M. Cluster analysis and model comparison using smart meter data. Sensors 2021, 21, 3157. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:Preprint/1409.1556.
Paper not yet in RePEc: Add citation now
- Tahir, A.; Munawar, H.S.; Akram, J.; Adil, M.; Ali, S.; Kouzani, A.Z.; Mahmud, M.A.P. Automatic Target Detection from Satellite Imagery Using Machine Learning. Sensors 2022, 22, 1147. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Talab, A.M.A.; Huang, Z.; Xi, F.; HaiMing, L. Detection crack in image using Otsu method and multiple filtering in image processing techniques. Optik 2016, 127, 1030â1033. [CrossRef]
Paper not yet in RePEc: Add citation now
- Valença, J.; Puente, I.; Júlio, E.; González-Jorge, H.; Alrias-Sánchez, P. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Constr. Build. Mater. 2017, 146, 668â678. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, Australia, 26â30 October 2015.
Paper not yet in RePEc: Add citation now
- Wang, G.; Peter, W.T.; Yuan, M. Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector. Meas. Sci. Technol. 2018, 29, 025403. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xie, Y.; Richmond, D. Pre-training on grayscale imagenet improves medical image classification. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8â14 September 2018.
Paper not yet in RePEc: Add citation now
- Yang, J.; Wang, W.; Lin, G.; Li, Q.; Sun, Y.; Sun, Y. Infrared thermal imaging-based crack detection using deep learning. IEEE Access 2019, 7, 182060â182077. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, A.; Wang, K.C.P.; Li, B.; Yang, E.; Dai, X.; Peng, Y.; Fei, Y.; Liu, Y.; Li, J.Q.; Chen, C. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 805â819. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection. IEEE Trans Image Process 2018, 28, 1498â1512. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now