create a website

A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems. (2022). Ahamed, Raju ; McKee, Kristoffer ; Howard, Ian.
In: Sustainability.
RePEc:gam:jsusta:v:14:y:2022:i:16:p:9936-:d:885747.

Full description at Econpapers || Download paper

Cited: 7

Citations received by this document

Cites: 187

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Advanced wave energy conversion technologies for sustainable and smart sea: A comprehensive review. (2025). Kong, Lingji ; Yan, Jinyue ; Hu, Yongli ; Wu, Xiaoping ; Pan, Hongye ; Zhang, Zutao ; Li, Hai ; Shi, Xiaodan.
    In: Renewable Energy.
    RePEc:eee:renene:v:238:y:2025:i:c:s0960148124020482.

    Full description at Econpapers || Download paper

  2. Sequential design optimization with Bayesian approach for cost-competitive levelized cost of energy of a wave energy converter with adaptive resonance. (2025). Kang, Heonyong ; Meduri, Aghamarshana.
    In: Applied Energy.
    RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025509.

    Full description at Econpapers || Download paper

  3. Wave energy evolution: Knowledge structure, advancements, challenges and future opportunities. (2024). Yi, Minyi ; Abdelrahman, Mansour ; Qi, Lingfei ; Ali, Asif ; Ahmed, Ammar ; Azam, Ali ; Zhang, Zutao ; Aslam, Touqeer ; Mugheri, Shoukat Ali.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:205:y:2024:i:c:s1364032124006063.

    Full description at Econpapers || Download paper

  4. An Improved Hydraulic Energy Storage Wave Power-Generation System Based on QPR Control. (2023). Liu, Zhigang ; Yang, YI ; Wu, Xiaomei ; Huang, Wei ; Lai, Chun Sing.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:2:p:647-:d:1025955.

    Full description at Econpapers || Download paper

  5. Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven Methods: A Sustainable Smart Grid Case Study. (2023). Rituraj, Rituraj ; Safi, Mohadeseh ; Mirshafiee, Fatemehsadat ; Shahbazi, Emad.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:1:p:502-:d:1022849.

    Full description at Econpapers || Download paper

  6. A multi-physics system integration and modeling method for piezoelectric wave energy harvester. (2023). Chen, Shao-En ; Yang, Ray-Yeng ; Pan, Fu-Ting ; Wu, Chia-Che.
    In: Applied Energy.
    RePEc:eee:appene:v:349:y:2023:i:c:s0306261923010188.

    Full description at Econpapers || Download paper

  7. Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities. (2022). Jafari, Reza ; Asef, Pedram ; Derakhshani, Mohammad Mahdi ; Ardebili, Mohammad.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:17:p:10912-:d:903731.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abraham, E.; Kerrigan, E.C. Optimal active control and optimization of a wave energy converter. IEEE Trans. Sustain. Energy 2012, 4, 324–332. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies 2018, 11, 1250. [CrossRef]

  3. Ahamed, R.; Howard, I.; McKee, K. Study of gravitational force effects, magnetic restoring forces and coefficients of the magnetic spring-based nonlinear oscillator system. IEEE Trans. Magn. 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Ahamed, R.; McKee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng. 2020, 204, 107248. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Al Shami, E.; Zhang, R.; Wang, X. Point absorber wave energy harvesters: A review of recent developments. Energies 2019, 12, 47. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Almoraya, A.; Baker, N.; Smith, K.; Raihan, M. Development of a double-sided consequent pole linear vernier hybrid permanentmagnet machine for wave energy converters. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21–24 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7.
    Paper not yet in RePEc: Add citation now
  7. Amiri, A.; Panahi, R.; Radfar, S. Parametric study of two-body floating-point wave absorber. J. Mar. Sci. Appl. 2016, 15, 41–49. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Amon, E.A.; Schacher, A.A.; Brekken, T.K. A novel maximum power point tracking algorithm for ocean wave energy devices. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2635–2641.
    Paper not yet in RePEc: Add citation now
  9. Annuar, A.; Macpherson, D.; Forehand, D.; Mueller, M. Optimum power control for arrays of direct drive wave energy converters. In Proceedings of the IET International Conference on Power Electronics, Machines and Drives 2012 (PEMD 2012), Bristol, UK, 27–29 March 2012; IET: London, UK, 2012.
    Paper not yet in RePEc: Add citation now
  10. Antipov, V.; Grozov, A.; Ivanova, A. A linear synchronous generator with a power of 30 kW for wave-power engineering. Russ. Electr. Eng. 2017, 88, 55–60. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Antonio, F.D.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918.
    Paper not yet in RePEc: Add citation now
  12. Bachynski, E.E.; Young, Y.L.; Yeung, R.W. Analysis and optimization of a tethered wave energy converter in irregular waves. Renew. Energy 2012, 48, 133–145. [CrossRef]

  13. Baker, N.J.; Raihan, M.A.; Almoraya, A.A. A cylindrical linear permanent magnet Vernier hybrid machine for wave energy. IEEE Trans. Energy Convers. 2018, 34, 691–700. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Baker, N.J.; Spooner, E.; Mueller, M. Permanent Magnet Air-Cored Tubular Linear Generator for Marine Energy Converters; IEE Conference Publication, 2004; IET: London, UK, 2004; pp. 862–867.
    Paper not yet in RePEc: Add citation now
  15. Bastien, S.P.; Sepe, R.B.; Grilli, A.R.; Grilli, S.T.; Spaulding, M.L. Ocean wave energy harvesting buoy for sensors. In Proceedings of the IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3718–3725.
    Paper not yet in RePEc: Add citation now
  16. Beeby, S.P.; Wang, L.; Zhu, D.; Weddell, A.S.; Merrett, G.V.; Stark, B.; Szarka, G.; Al-Hashimi, B.M. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data. Smart Mater. Struct. 2013, 22, 075022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  17. Bianchi, N.; Bolognani, S.; Cappello, A. Reduction of cogging force in PM linear motors by pole-shifting. IEE Proc.-Electr. Power Appl. 2005, 152, 703–709. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Boscaino, V.; Cipriani, G.; Di Dio, V.; Franzitta, V.; Trapanense, M. Experimental test and simulations on a linear generator-based prototype of a wave energy conversion system designed with a reliability-oriented approach. Sustainability 2017, 9, 98. [CrossRef]

  19. Bostrom, C.; Waters, R.; Lejerskog, E.; Svensson, O.; Stalberg, M.; Stromstedt, E.; Leijon, M. Study of a wave energy converter connected to a nonlinear load. IEEE J. Ocean. Eng. 2009, 34, 123–127. [CrossRef]
    Paper not yet in RePEc: Add citation now
  20. Brekken, T.K. On Model Predictive Control for a Point Absorber Wave Energy Converter; 2011 IEEE Trondheim PowerTech, 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–8.
    Paper not yet in RePEc: Add citation now
  21. Brekken, T.K.; Von Jouanne, A.; Han, H.Y. Ocean wave energy overview and research at Oregon State University. In Proceedings of the Power Electronics and Machines in Wind Applications, 2009, PEMWA 2009, Lincoln, NE, USA, 24–26 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–7.
    Paper not yet in RePEc: Add citation now
  22. Brooking, P.; Mueller, M. Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. IEE Proc.-Gener. Transm. Distrib. 2005, 152, 673–681. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Castellucci, V.; Eriksson, M.; Waters, R. Impact of tidal level variations on wave energy absorption at wave hub. Energies 2016, 9, 843. [CrossRef]

  24. Chatzigiannakou, M.A.; Ulvgård, L.; Temiz, I.; Leijon, M. Offshore deployments of wave energy converters by Uppsala University, Sweden. Mar. Syst. Ocean Technol. 2019, 14, 67–74. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Chau, K.; Zhang, D.; Jiang, J.; Jian, L. Transient analysis of coaxial magnetic gears using finite element comodeling. J. Appl. Phys. 2008, 103, 07F101. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Cheng, Z.; Yang, J.; Hu, Z.; Xiao, L. Frequency/time domain modeling of a direct drive point absorber wave energy converter. Sci. China Phys. Mech. Astron. 2014, 57, 311–320. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Cheung, J.T. Frictionless Linear Electrical Generator for Harvesting Motion Energy; Rockwell International: Thousand Oaks, CA, USA, 2004.
    Paper not yet in RePEc: Add citation now
  28. Chiu, M.-C.; Chang, Y.-C.; Yeh, L.-J.; Chung, C.-H. Optimal design of a vibration-based electromagnetic energy harvester using a simulated annealing algorithm. J. Mech. 2012, 28, 691–700. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [CrossRef]
    Paper not yet in RePEc: Add citation now
  30. Clifton, P.; McMahon, R.; Kelly, H. Design and commissioning of a 30 kW direct drive wave generator. In Proceedings of the 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), Brighton, UK, 19–21 April 2010; IET: London, UK, 2010; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  31. Cretel, J.A.; Lightbody, G.; Thomas, G.P.; Lewis, A.W. Maximisation of energy capture by a wave-energy point absorber using model predictive control. IFAC Proc. Vol. 2011, 44, 3714–3721. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Crozier, R.; Bailey, H.; Mueller, M.; Spooner, E.; McKeever, P. Analysis, design and testing of a novel direct-drive wave energy converter system. IET Renew. Power Gener. 2013, 7, 565–573. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Curto, D.; Viola, A.; Franzitta, V.; Trapanese, M.; Cardona, F. A New Solution for Sea Wave Energy Harvesting, the Proposal of an Ironless Linear Generator. J. Mar. Sci. Eng. 2020, 8, 93. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Czech, B.; Bauer, P. Wave energy converter concepts: Design challenges and classification. IEEE Ind. Electron. Mag. 2012, 6, 4–16. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Danielsson, O.; Leijon, M. Flux distribution in linear permanent-magnet synchronous machines including longitudinal end effects. IEEE Trans. Magn. 2007, 43, 3197–3201. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Danielsson, O.; Leijon, M.; Sjostedt, E. Detailed study of the magnetic circuit in a longitudinal flux permanent-magnet synchronous linear generator. IEEE Trans. Magn. 2005, 41, 2490–2495. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Day, A.; Babarit, A.; Fontaine, A.; He, Y.-P.; Kraskowski, M.; Murai, M.; Penesis, I.; Salvatore, F.; Shin, H.-K. Hydrodynamic modelling of marine renewable energy devices: A state of the art review. Ocean Eng. 2015, 108, 46–69. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. de la Villa Jaén, A.; García-Santana, A.; Montoya-Andrade, D.E. Maximizing output power of linear generators for wave energy conversion. Int. Trans. Electr. Energy Syst. 2014, 24, 875–890. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. de la Villa Jaén, A.; Santana, A.G. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter. Energy Convers. Manag. 2014, 78, 173–183.
    Paper not yet in RePEc: Add citation now
  40. de Sousa Prado, M.G.; Gardner, F.; Damen, M.; Polinder, H. Modelling and test results of the Archimedes wave swing. Proc. Inst. Mech. Eng. A J. Power Energy 2006, 220, 855–868. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Demenko, A.; Kulig, S.; Nowak, L.; Zawirski, K.; Parel, T.S.; Rotaru, M.D.; Sykulski, J.K.; Hearn, G.E. Optimisation of a tubular linear machine with permanent magnets for wave energy extraction. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 1056–1068. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Di Dio, V.; Franzitta, V.; Milone, D.; Pitruzzella, S.; Trapanese, M.; Viola, A. Design of Bilateral Switched Reluctance Linear Generator to Convert Wave Energy: Case Study in Sicily; Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2014; pp. 1694–1698.
    Paper not yet in RePEc: Add citation now
  43. Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. In Sage Publications; Sage UK: London, UK, 2009.
    Paper not yet in RePEc: Add citation now
  44. Du, Y.; Cheng, M.; Chau, K.T.; Liu, X.; Xiao, F.; Zhao, W. Linear primary permanent magnet vernier machine for wave energy conversion. IET Electr. Power Appl. 2015, 9, 203–212. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Ekergård, B. Full scale applications of permanent magnet electromagnetic energy converters: From Nd2Fe14B to ferrite. Ph.D. Thesis, Boel Ekergård, Uppsala University, Uppsala, Sweden, 2013.
    Paper not yet in RePEc: Add citation now
  46. Ekergård, B.; Leijon, M. Longitudinal End Effects in a Linear Wave Power Generator. Energies 2020, 13, 327. [CrossRef]

  47. Ekström, R.; Ekergård, B.; Leijon, M. Electrical damping of linear generators for wave energy converters—A review. Renew. Sustain. Energy Rev. 2015, 42, 116–128. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Elwood, D.; Schacher, A.; Rhinefrank, K.; Prudell, J.; Yim, S.; Amon, E.; Brekken, T.; von Jouanne, A. Numerical modeling and ocean testing of a direct-drive wave energy device utilizing a permanent magnet linear generator for power take-off. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Honolulu, HI, USA, 31 May–5 June 2009; pp. 817–824.
    Paper not yet in RePEc: Add citation now
  49. Elwood, D.; Yim, S.C.; Prudell, J.; Stillinger, C.; Von Jouanne, A.; Brekken, T.; Brown, A.; Paasch, R. Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renew. Energy 2010, 35, 348–354. [CrossRef]

  50. Engström, J.; Kurupath, V.; Isberg, J.; Leijon, M. A resonant two body system for a point absorbing wave energy converter with direct-driven linear generator. J. Appl. Phys. 2011, 110, 124904. [CrossRef]
    Paper not yet in RePEc: Add citation now
  51. Eriksson, M.; Isberg, J.; Leijon, M. Hydrodynamic modelling of a direct drive wave energy converter. Int. J. Eng. Sci. 2005, 43, 1377–1387. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Eriksson, S. Design of permanent-magnet linear generators with constant-torque-angle control for wave power. Energies 2019, 12, 1312. [CrossRef]

  53. Faiz, J.; Ebrahimi-Salari, M.; Shahgholian, G. Reduction of cogging force in linear permanent-magnet generators. IEEE Trans. Magn. 2009, 46, 135–140. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Faiz, J.; Nematsaberi, A. Linear electrical generator topologies for direct-drive marine wave energy conversion-an overview. IET Renew. Power Gener. 2017, 11, 1163–1176. [CrossRef]
    Paper not yet in RePEc: Add citation now
  55. Faiz, J.; Nematsaberi, A. Linear permanent magnet generator concepts for direct-drive wave energy converters: A comprehensive review. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 618–623.
    Paper not yet in RePEc: Add citation now
  56. Fang, H.-w.; Song, R.-n.; Xiao, Z.-x. Optimal design of permanent magnet linear generator and its application in a wave energy conversion system. Energies 2018, 11, 3109. [CrossRef]

  57. Farrok, O.; Islam, M.R.; Muttaqi, K.M.; Sutanto, D.; Zhu, J. Design and Optimization of a Novel Dual-Port Linear Generator for Oceanic Wave Energy Conversion. IEEE Trans. Ind. Electron. 2019, 67, 3409–3418. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Farrok, O.; Islam, M.R.; Sheikh, M.R.I.; Guo, Y.; Zhu, J.; Lei, G. A novel method to avoid degradation due to demagnetization of PM linear generators for oceanic wave energy extraction. In Proceedings of the 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  59. Farrok, O.; Islam, M.R.; Sheikh, M.R.I.; Guo, Y.; Zhu, J.G. A Split Translator Secondary Stator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion. IEEE Trans. Ind. Electron. 2018, 65, 7600–7608. [CrossRef]
    Paper not yet in RePEc: Add citation now
  60. Farrok, O.; Islam, M.R.; Sheikh, M.R.I.; Guo, Y.; Zhu, J.G. Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Magn. 2017, 53, 1–4. [CrossRef] Sustainability 2022, 14, 9936 41 of 42
    Paper not yet in RePEc: Add citation now
  61. Farrok, O.; Kiran, M.R.; Islam, M.R.; Xu, W.; Zhu, J. Core loss minimization of the linear generator by using high graded magnetic materials for harvesting oceanic wave energy. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1762–1765. Sustainability 2022, 14, 9936 39 of 42
    Paper not yet in RePEc: Add citation now
  62. Feng, N.; Yu, H.; Hu, M.; Liu, C.; Huang, L.; Shi, Z. A study on a linear magnetic-geared interior permanent magnet generator for direct-drive wave energy conversion. Energies 2016, 9, 487. [CrossRef]

  63. Feng, N.; Yu, H.; Zhao, M.; Zhang, P.; Hou, D. Magnetic field-modulated linear permanent-magnet generator for direct-drive wave energy conversion. IET Electr. Power Appl. 2020, 14, 742–750. [CrossRef]
    Paper not yet in RePEc: Add citation now
  64. Ferri, F. Wave-to-wire modelling of wave energy converters: Critical assessment, developments and applicability for economical optimisation; River Publishers: Aalborg, Denmark, 2014.
    Paper not yet in RePEc: Add citation now
  65. Gao, M.; Wang, Y.; Wang, Y.; Wang, P. Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation. Appl. Energy 2018, 220, 856–875. [CrossRef]

  66. Gao, Y.; Shao, S.; Zou, H.; Tang, M.; Xu, H.; Tian, C. A fully floating system for a wave energy converter with direct-driven linear generator. Energy 2016, 95, 99–109. [CrossRef]

  67. Gargov, N.; Zobaa, A. Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters. IET Renew. Power Gener. 2012, 6, 171–176. [CrossRef]
    Paper not yet in RePEc: Add citation now
  68. Gargov, N.; Zobaa, A.; Pisica, I. Separated magnet yoke for permanent magnet linear generator for marine wave energy converters. Electr. Power Syst. Res. 2014, 109, 63–70. [CrossRef]
    Paper not yet in RePEc: Add citation now
  69. Gieske, P. Model Predictive Control of a Wave Energy Converter: Archimedes Wave Swing; Delft University of Technology: Delft, The Netherlands, 2007.
    Paper not yet in RePEc: Add citation now
  70. Goggins, J.; Finnegan, W. Shape optimisation of floating wave energy converters for a specified wave energy spectrum. Renew. Energy 2014, 71, 208–220. [CrossRef]

  71. Guo, R.; Yu, H.; Xia, T.; Shi, Z.; Zhong, W.; Liu, X. A simplified subdomain analytical model for the design and analysis of a tubular linear permanent magnet oscillation generator. IEEE Access 2018, 6, 42355–42367. [CrossRef]
    Paper not yet in RePEc: Add citation now
  72. Hals, J.; Falnes, J.; Moan, T. A comparison of selected strategies for adaptive control of wave energy converters. J. Offshore Mech. Arct. Eng. 2011, 133, 031101. [CrossRef]
    Paper not yet in RePEc: Add citation now
  73. Hals, J.; Falnes, J.; Moan, T. Constrained optimal control of a heaving buoy wave-energy converter. J. Offshore Mech. Arct. Eng. 2011, 133, 011401. [CrossRef]
    Paper not yet in RePEc: Add citation now
  74. Hodgins, N.; Keysan, O.; McDonald, A.S.; Mueller, M.A. Design and testing of a linear generator for wave-energy applications. IEEE Trans. Ind. Electron. 2011, 59, 2094–2103. [CrossRef]
    Paper not yet in RePEc: Add citation now
  75. Hong, Y.; Eriksson, M.; Castellucci, V.; Boström, C.; Waters, R. Linear generator-based wave energy converter model with experimental verification and three loading strategies. IET Renew. Power Gener. 2016, 10, 349–359. [CrossRef]
    Paper not yet in RePEc: Add citation now
  76. Hong, Y.; Waters, R.; Boström, C.; Eriksson, M.; Engström, J.; Leijon, M. Review on electrical control strategies for wave energy converting systems. Renew. Sustain. Energy Rev. 2014, 31, 329–342. [CrossRef]
    Paper not yet in RePEc: Add citation now
  77. Huang, L.; Chen, M.; Wang, L.; Yue, F.; Guo, R.; Fu, X. Analysis of a hybrid field-modulated linear generator for wave energy conversion. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [CrossRef]
    Paper not yet in RePEc: Add citation now
  78. Huang, L.; Hu, B.; Hu, M.; Liu, C.; Zhu, H. Research on primary excitation fully superconducting linear generators for wave energy conversion. IEEE Trans. Appl. Supercond. 2019, 29, 1–5. [CrossRef]
    Paper not yet in RePEc: Add citation now
  79. Huang, L.; Hu, M.; Yu, H.; Liu, C.; Chen, Z. Design and experiment of a direct-drive wave energy converter using outer-PM linear tubular generator. IET Renew. Power Gener. 2016, 11, 353–360. [CrossRef]
    Paper not yet in RePEc: Add citation now
  80. Huang, L.; Liu, J.; Yu, H.; Qu, R.; Chen, H.; Fang, H. Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator. IEEE Trans. Appl. Supercond. 2014, 25, 1–5. [CrossRef]
    Paper not yet in RePEc: Add citation now
  81. Huang, L.; Yu, H.; Hu, M.; Liu, C.; Yuan, B. Research on a tubular primary permanent-magnet linear generator for wave energy conversions. IEEE Trans. Magn. 2013, 49, 1917–1920. [CrossRef]
    Paper not yet in RePEc: Add citation now
  82. Huang, L.; Yu, H.; Hu, M.; Zhao, J.; Cheng, Z. A novel flux-switching permanent-magnet linear generator for wave energy extraction application. IEEE Trans. Magn. 2011, 47, 1034–1037. [CrossRef]
    Paper not yet in RePEc: Add citation now
  83. Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systems—Characteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221–1250. [CrossRef]

  84. Jama, M.; Wahyudie, A.; Assi, A.; Noura, H. In Controlling heaving wave energy converter using function-based model predictive control technique. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2705–2710.
    Paper not yet in RePEc: Add citation now
  85. Jin, C.; Kang, H.; Kim, M.; Bakti, F.P. Performance evaluation of surface riding wave energy converter with linear electric generator. Ocean Eng. 2020, 218, 108141. [CrossRef]
    Paper not yet in RePEc: Add citation now
  86. Joseph, D.M.; Cronje, W.A. Design and analysis of a double-sided tubular linear synchronous generator with particular application to wave-energy conversion. In Proceedings of the 2007 IEEE Power Engineering Society Conference and Exposition in AfricaPowerAfrica, Johannesburg, South Africa, 16–20 July 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–8.
    Paper not yet in RePEc: Add citation now
  87. Joubert, J.R.; van Niekerk, J.L.; Reinecke, J.; Meyer, I. Wave Energy Converters (WECs); CRSES: Matieland, South Africa, 2013.
    Paper not yet in RePEc: Add citation now
  88. Khatri, P.; Wang, X. Comprehensive review of a linear electrical generator for ocean wave energy conversion. IET Renew. Power Gener. 2019, 14, 949–958. [CrossRef]
    Paper not yet in RePEc: Add citation now
  89. Kim, J.; Koh, H.; Cho, I.; Kim, M.; Kweon, H. Experimental study of wave energy extraction by a dual-buoy heaving system. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 25–34. [CrossRef]
    Paper not yet in RePEc: Add citation now
  90. Kimoulakis, N.M.; Kladas, A.G.; Tegopoulos, J.A. Cogging force minimization in a coupled permanent magnet linear generator for sea wave energy extraction applications. IEEE Trans. Magn. 2009, 45, 1246–1249. [CrossRef] Sustainability 2022, 14, 9936 38 of 42
    Paper not yet in RePEc: Add citation now
  91. Korde, U.A. Control system applications in wave energy conversion. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158), Providence, RI, USA, 11–14 September 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 1817–1824.
    Paper not yet in RePEc: Add citation now
  92. Kracht, P.; Perez-Becker, S.; Richard, J.-B.; Fischer, B. Performance improvement of a point absorber wave energy converter by application of an observer-based control: Results from wave tank testing. IEEE Trans. Ind. Appl. 2015, 51, 3426–3434. [CrossRef]
    Paper not yet in RePEc: Add citation now
  93. López, I.; Andreu, J.; Ceballos, S.; De Alegría, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413–434. [CrossRef]

  94. Le Méhauté, B. An Introduction to Hydrodynamics and Water Waves; Springer: Berlin/Heidelberg, Germany, 2013.
    Paper not yet in RePEc: Add citation now
  95. Leijon, M.; Bernhoff, H.; Agren, O.; Isberg, J.; Sundberg, J.; Berg, M.; Karlsson, K.E.; Wolfbrandt, A. Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator. IEEE Trans. Energy Convers. 2005, 20, 219–224. [CrossRef] Sustainability 2022, 14, 9936 42 of 42
    Paper not yet in RePEc: Add citation now
  96. Leijon, M.; Boström, C.; Danielsson, O.; Gustafsson, S.; Haikonen, K.; Langhamer, O.; Strömstedt, E.; Stålberg, M.; Sundberg, J.; Svensson, O. Wave energy from the North Sea: Experiences from the Lysekil research site. Surv. Geophys. 2008, 29, 221–240. [CrossRef]
    Paper not yet in RePEc: Add citation now
  97. Lejerskog, E.; Boström, C.; Hai, L.; Waters, R.; Leijon, M. Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site. Renew. Energy 2015, 77, 9–14. [CrossRef]

  98. Lejerskog, E.; Leijon, M. Detailed study of closed stator slots for a direct-driven synchronous permanent magnet linear wave energy converter. Machines 2014, 2, 73–86. [CrossRef]
    Paper not yet in RePEc: Add citation now
  99. Li, B.; Macpherson, D.; Shek, J. Direct Drive Wave Energy Converter Control in Irregular Waves; IET: London, UK, 2011.
    Paper not yet in RePEc: Add citation now
  100. Li, G.; Belmont, M.R. Model predictive control of sea wave energy converters–Part I: A convex approach for the case of a single device. Renew. Energy 2014, 69, 453–463. [CrossRef]

  101. Li, W.; Chau, K.; Lee, C.H.; Ching, T.; Chen, M.; Jiang, J. A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction. Renew. Energy 2017, 105, 199–208. [CrossRef]

  102. Liu, C.-T.; Lin, C.-L.; Hwang, C.-C.; Tu, C.-H. Compact model of a slotless tubular linear generator for renewable energy performance assessments. IEEE Trans. Magn. 2010, 46, 1467–1470. [CrossRef]
    Paper not yet in RePEc: Add citation now
  103. Liu, C.; Yu, H.; Hu, M.; Liu, Q.; Zhou, S. Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion. IEEE Trans. Magn. 2013, 49, 1913–1916. [CrossRef]
    Paper not yet in RePEc: Add citation now
  104. Liu, C.; Yu, H.; Hu, M.; Liu, Q.; Zhou, S.; Huang, L. Research on a permanent magnet tubular linear generator for direct drive wave energy conversion. IET Renew. Power Gener. 2013, 8, 281–288. [CrossRef]
    Paper not yet in RePEc: Add citation now
  105. Mann, B.; Owens, B. Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 2010, 329, 1215–1226. [CrossRef]
    Paper not yet in RePEc: Add citation now
  106. Marei, M.I.; Mokhtar, M.; El-Sattar, A.A. MPPT strategy based on speed control for AWS-based wave energy conversion system. Renew. Energy 2015, 83, 305–317. [CrossRef]

  107. Masoumi, M.; Wang, Y. Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment. J. Sound Vib. 2016, 381, 192–205. [CrossRef]
    Paper not yet in RePEc: Add citation now
  108. McDonald, A.; Mueller, M.; Jeffrey, J. Development of a novel permanent magnet linear generator topology for direct-drive wave energy converters. In Proceedings of the 2008 4th IET Conference on Power Electronics, Machines and Drives, York, UK, 2–4 April 2008; IET: London, UK, 2008; pp. 81–85.
    Paper not yet in RePEc: Add citation now
  109. Memon, A.H.; bin Ibrahim, T.; Nallagowden, P. Design optimization of linear permanent magnet generator for wave energy conversion. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19–20 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 315–319.
    Paper not yet in RePEc: Add citation now
  110. Mendes, R.; Calado, M.; Mariano, S. Electromagnetic design method for a TLSRG with application in ocean wave energy conversion. Int. J. Electr. Power Energy Syst. 2020, 121, 106097. [CrossRef]
    Paper not yet in RePEc: Add citation now
  111. Mendes, R.; Calado, M.; Mariano, S. Particle swarm and Box’s complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion. Swarm Evol. Comput. 2016, 28, 29–41. [CrossRef]
    Paper not yet in RePEc: Add citation now
  112. Molla, S.; Farrok, O. Vitroperm 500F and supermendur ferromagnetic cores used in a linear generator for oceanic wave energy conversion. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 602–605.
    Paper not yet in RePEc: Add citation now
  113. Molla, S.; Farrok, O.; Islam, M.R.; Muttaqi, K.M. Application of iron nitride compound as alternative permanent magnet for designing linear generators to harvest oceanic wave energy. IET Electr. Power Appl. 2020, 14, 762–770. [CrossRef]
    Paper not yet in RePEc: Add citation now
  114. Mueller, M. Electrical generators for direct drive wave energy converters. IEE Proc.-Gener. Transm. Distrib. 2002, 149, 446–456. [CrossRef]
    Paper not yet in RePEc: Add citation now
  115. Mueller, M.; Baker, N.; Ran, L.; Chong, N.; Wei, H.; Tavner, P.; McKeever, P. Experimental Tests of an Air-Cored PM Tubular Generator for Direct Drive Wave Energy Converters; IET: Auburn Hills, MI, USA, 2008.
    Paper not yet in RePEc: Add citation now
  116. Nilsson, K.; Danielsson, O.; Leijon, M. Electromagnetic forces in the air gap of a permanent magnet linear generator at no load. J. Appl. Phys. 2006, 99, 034505. [CrossRef]
    Paper not yet in RePEc: Add citation now
  117. Niu, X. Modeling and Design Analysis of a Permanent Magnet Linear Synchronous Generator; University of Illinois at UrbanaChampaign: Champaign, IL, USA, 2013.
    Paper not yet in RePEc: Add citation now
  118. Oh, Y.J.; Park, J.S.; Hyon, B.J.; Lee, J. Novel Control Strategy of Wave Energy Converter Using Linear Permanent Magnet Synchronous Generator. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [CrossRef]
    Paper not yet in RePEc: Add citation now
  119. Owens, B.A.; Mann, B.P. Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J. Sound Vib. 2012, 331, 922–937. [CrossRef]
    Paper not yet in RePEc: Add citation now
  120. Ozkop, E.; Altas, I.H. Control, power and electrical components in wave energy conversion systems: A review of the technologies. Renew. Sustain. Energy Rev. 2017, 67, 106–115. [CrossRef]

  121. Pan, J.; Li, Q.; Wu, X.; Cheung, N.; Qiu, L. Complementary power generation of double linear switched reluctance generators for wave power exploitation. Int. J. Electr. Power Energy Syst. 2019, 106, 33–44. [CrossRef]
    Paper not yet in RePEc: Add citation now
  122. Pan, J.; Zou, Y.; Cheung, N.; Cao, G.-z. On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization. IEEE Trans. Power Electron. 2013, 29, 5298–5307. [CrossRef]
    Paper not yet in RePEc: Add citation now
  123. Panicker, P. The Vertical Axis Oscillating Wave Power Generator. Available online: https://contest.techbriefs.com/2012/entries/ sustainable-technologies/2496 (accessed on 10 June 2022).
    Paper not yet in RePEc: Add citation now
  124. Pecher, A.; Peter Kofoed, J. Handbook of Ocean Wave Energy; Springer: Berlin/Heidelberg, Germany, 2017.
    Paper not yet in RePEc: Add citation now
  125. Penalba, M.; Davidson, J.; Windt, C.; Ringwood, J.V. A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models. Appl. Energy 2018, 226, 655–669. [CrossRef]

  126. Pirisi, A.; Mussetta, M.; Gruosso, G.; Zich, R.E. An Optimized Three Phase TPM-LiG for Marine Applications; SPEEDAM 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1712–1717.
    Paper not yet in RePEc: Add citation now
  127. Pirisi, A.; Mussetta, M.; Gruosso, G.; Zich, R.E. Optimization of a linear generator for sea-wave energy conversion by means of a hybrid evolutionary algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  128. Piscopo, V.; Benassai, G.; Della Morte, R.; Scamardella, A. Cost-based design and selection of point absorber devices for the mediterranean sea. Energies 2018, 11, 946. [CrossRef]

  129. Polinder, H.; Damen, M.; Gardner, F. Design, modelling and test results of the AWS PM linear generator. Eur. Trans. Electr. Power 2005, 15, 245–256. [CrossRef]
    Paper not yet in RePEc: Add citation now
  130. Polinder, H.; Mecrow, B.C.; Jack, A.G.; Dickinson, P.G.; Mueller, M.A. Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans. Energy Convers. 2005, 20, 260–267. [CrossRef]
    Paper not yet in RePEc: Add citation now
  131. Polinder, H.; Mueller, M.; Scuotto, M.; Goden de Sousa Prado, M. Linear generator systems for wave energy conversion. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11–13 September 2007; IDMEC-Institute de Engenharia Mecânica: Lisbon, Portugal, 2007.
    Paper not yet in RePEc: Add citation now
  132. Prado, M.; Polinder, H. Direct Drive in Wave Energy Conversion—AWS Full Scale Prototype Case Study. In Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–7.
    Paper not yet in RePEc: Add citation now
  133. Prudell, J.; Stoddard, M.; Amon, E.; Brekken, T.K.; Von Jouanne, A. A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans. Ind. Appl. 2010, 46, 2392–2400. [CrossRef]
    Paper not yet in RePEc: Add citation now
  134. Prudell, J.; Stoddard, M.; Brekken, T.K.; von Jouanne, A. A novel permanent magnet tubular linear generator for ocean wave energy. In Proceedings of the Energy Conversion Congress and Exposition, ECCE 2009, San Jose, CA, USA, 20–24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3641–3646.
    Paper not yet in RePEc: Add citation now
  135. Qiao, D.; Haider, R.; Yan, J.; Ning, D.; Li, B. Review of Wave Energy Converter and Design of Mooring System. Sustainability 2020, 12, 8251. [CrossRef]

  136. Rahman, A.; Farrok, O.; Islam, M.R.; Xu, W. Recent Progress in Electrical Generators for Oceanic Wave Energy Conversion. IEEE Access 2020, 8, 138595–138615. [CrossRef]
    Paper not yet in RePEc: Add citation now
  137. Ran, L.; Mueller, M.; Ng, C.; Tavner, P.; Zhao, H.; Baker, N.; McDonald, S.; McKeever, P. Power conversion and control for a linear direct drive permanent magnet generator for wave energy. IET Renew. Power Gener. 2011, 5, 1–9. [CrossRef]
    Paper not yet in RePEc: Add citation now
  138. Rao, K.R.; Sunderan, T.; Adiris, M.R.A. Performance and design optimization of two model based wave energy permanent magnet linear generators. Renew. Energy 2017, 101, 196–203. [CrossRef]

  139. Rhinefrank, K.; Agamloh, E.; von Jouanne, A.; Wallace, A.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Chan, P.; Sweeny, B. Novel ocean energy permanent magnet linear generator buoy. Renew. Energy 2006, 31, 1279–1298. [CrossRef]

  140. Richter, M. Different Model Predictive Control Approaches for Controlling Point Absorber Wave Energy Converters. Diploma Thesis, University Stuttgart, Stuttgart, Germany, 2011.
    Paper not yet in RePEc: Add citation now
  141. Richter, M.; Magana, M.E.; Sawodny, O.; Brekken, T.K. Nonlinear model predictive control of a point absorber wave energy converter. IEEE Trans. Sustain. Energy 2012, 4, 118–126. [CrossRef]
    Paper not yet in RePEc: Add citation now
  142. Rossiter, J.A. Model-Based Predictive Control: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2003.
    Paper not yet in RePEc: Add citation now
  143. Rusu, E.; Venugopal, V. Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind; MDPI: Basel, Switzerland, 2019.

  144. Saeed, O.; Wahyudie, A.; Susilo, T.B.; Shareef, H. Simple resonance circuit to improve electrical power conversion in a two-sided planar permanent magnet linear generator for wave energy converters. IEEE Access 2017, 5, 18654–18664. [CrossRef]
    Paper not yet in RePEc: Add citation now
  145. Salter, S.H.; Taylor, J.; Caldwell, N. Power conversion mechanisms for wave energy. Proc. Inst. Mech. Eng. M J. Eng. Marit. Environ. 2002, 216, 1–27. [CrossRef]
    Paper not yet in RePEc: Add citation now
  146. Santana, A.G.; Andrade, D.E.M.; Jaén, A. Control of Hydrodynamic Parameters of Wave Energy Point Absorbers Using Linear Generators and VSC-Based Power Converters Connected to the Grid. In Proceedings of the International 1st Conference on Renewable Energies and Power Quality, Granada, Spain, 23–25 March 2010.
    Paper not yet in RePEc: Add citation now
  147. Seo, S.-W.; Shin, K.-H.; Koo, M.-M.; Hong, K.; Yoon, I.-J.; Choi, J.-Y. Experimentally Verifying the Generation Characteristics of a Double-Sided Linear Permanent Magnet Synchronous Generator for Ocean Wave Energy Conversion. IEEE Trans. Appl. Supercond. 2020, 30, 1–4. [CrossRef]
    Paper not yet in RePEc: Add citation now
  148. Shek, J.; Macpherson, D.; Mueller, M. Experimental verification of linear generator control for direct drive wave energy conversion. IET Renew. Power Gener. 2010, 4, 395–403. [CrossRef]
    Paper not yet in RePEc: Add citation now
  149. Son, D.; Yeung, R.W. Real-time implementation and validation of optimal damping control for a permanent-magnet linear generator in wave energy extraction. Appl. Energy 2017, 208, 571–579. [CrossRef]
    Paper not yet in RePEc: Add citation now
  150. Stålberg, M.; Waters, R.; Danielsson, O.; Leijon, M. Influence of generator damping on peak power and variance of power for a direct drive wave energy converter. J. Offshore Mech. Arct. Eng. 2008, 130, 031003. [CrossRef]
    Paper not yet in RePEc: Add citation now
  151. Sun, Z.; Cheung, N.; Zhao, S.; Lu, Y.; Shi, Z. Design and simulation of a linear switched reluctance generator for wave energy conversion. In Proceedings of the 4th International Conference on Power Electronics Systems and Applications, Hong Kong, China, 8–10 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  152. Szabo, L.; Oprea, C. Wave energy plants for the black sea possible energy converter structures. In Proceedings of the 2007 International Conference on Clean Electrical Power, Capri, Italy, 21–23 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 306–311.
    Paper not yet in RePEc: Add citation now
  153. Szabo, L.; Oprea, C.; Viorel, I.-A.; Biró, K.. Novel permanent magnet tubular linear generator for wave energy converters. In Proceedings of the 2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 3–5 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 983–987.
    Paper not yet in RePEc: Add citation now
  154. Tan, Y.; Lin, K.; Zu, J.W. Analytical modelling of Halbach linear generator incorporating pole shifting and piece-wise spring for ocean wave energy harvesting. AIP Adv. 2018, 8, 056615. [CrossRef]
    Paper not yet in RePEc: Add citation now
  155. Tom, N.; Yeung, R.W. Experimental confirmation of nonlinear-model-predictive control applied offline to a permanent magnet linear generator for ocean-wave energy conversion. IEEE J. Ocean. Eng. 2015, 41, 281–295.
    Paper not yet in RePEc: Add citation now
  156. Tom, N.; Yeung, R.W. Nonlinear model predictive control applied to a generic ocean-wave energy extractor. J. Offshore Mech. Arct. Eng. 2014, 136, 041901. [CrossRef]
    Paper not yet in RePEc: Add citation now
  157. Trapanese, M.; Boscaino, V.; Cipriani, G.; Curto, D.; Di Dio, V.; Franzitta, V. A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system. IEEE Trans. Ind. Electron. 2018, 66, 4934–4944. [CrossRef] Sustainability 2022, 14, 9936 36 of 42
    Paper not yet in RePEc: Add citation now
  158. Vermaak, R.; Kamper, M.J. Design aspects of a novel topology air-cored permanent magnet linear generator for direct drive wave energy converters. IEEE Trans. Ind. Electron. 2011, 59, 2104–2115. [CrossRef]
    Paper not yet in RePEc: Add citation now
  159. Vermaak, R.; Kamper, M.J. Experimental evaluation and predictive control of an air-cored linear generator for direct-drive wave energy converters. IEEE Trans. Ind. Appl. 2012, 48, 1817–1826. [CrossRef]
    Paper not yet in RePEc: Add citation now
  160. Vining, J.; Lipo, T.; Venkataramanan, G. Design and optimization of a novel hybrid transverse/longitudinal flux, wound-field linear machine for ocean wave energy conversion. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3726–3733.
    Paper not yet in RePEc: Add citation now
  161. Vining, J.; Mundon, T.; Nair, B. Electromechanical design and experimental evaluation of a double-sided, dual airgap linear vernier generator for wave energy conversion. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5557–5564.
    Paper not yet in RePEc: Add citation now
  162. Viola, A.; Franzitta, V.; Curto, D.; Trapanese, M.; Di Dio, V.; Cipriani, G.; Boscaino, V.; Corpora, M.; Raimondi, F.M. Design of Wave Energy Converter (WEC): A Prototype Installed in Sicily; OCEANS 2015-Genova, 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  163. Wahyudie, A.; Jama, M.; Susilo, T.; Saeed, O.; Nandar, C.; Harib, K. Simple bottom-up hierarchical control strategy for heaving wave energy converters. Int. J. Electr. Power Energy Syst. 2017, 87, 211–221. [CrossRef] Sustainability 2022, 14, 9936 40 of 42
    Paper not yet in RePEc: Add citation now
  164. Wahyudie, A.; Jama, M.; Susilo, T.B.; Mon, B.F.; Shaaref, H.; Noura, H. Design and testing of a laboratory scale test rig for wave energy converters using a double-sided permanent magnet linear generator. IET Renew. Power Gener. 2017, 11, 922–930. [CrossRef]
    Paper not yet in RePEc: Add citation now
  165. Wahyudie, A.; Susilo, T.B.; Jama, M.; Mon, B.F.; Shaaref, H. Design of a Double-Sided Permanent Magnet Linear Generator for Laboratory Scale Ocean Wave Energy Converter; OCEANS 2017-Anchorage; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. Sustainability 2022, 14, 9936 37 of 42
    Paper not yet in RePEc: Add citation now
  166. Wang, D.; Shao, C.; Wang, X. Design and performance evaluation of a tubular linear switched reluctance generator with low cost and high thrust density. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [CrossRef]
    Paper not yet in RePEc: Add citation now
  167. Wang, J.; Howe, D. Design optimization of radially magnetized, iron-cored, tubular permanent-magnet machines and drive systems. IEEE Trans. Magn. 2004, 40, 3262–3277. [CrossRef]
    Paper not yet in RePEc: Add citation now
  168. Wang, L.; Engström, J.; Göteman, M.; Isberg, J. Constrained optimal control of a point absorber wave energy converter with linear generator. J. Renew. Sustain. Energy 2015, 7, 043127. [CrossRef]
    Paper not yet in RePEc: Add citation now
  169. Wang, L.; Isberg, J.; Tedeschi, E. Review of control strategies for wave energy conversion systems and their validation: The wave-to-wire approach. Renew. Sustain. Energy Rev. 2018, 81, 366–379. [CrossRef]
    Paper not yet in RePEc: Add citation now
  170. Wang, L.; Lin, M.; Tedeschi, E.; Engstrm, J.; Isberg, J. Improving electric power generation of a standalone wave energy converter via optimal electric load control. Energy 2020, 211, 118945. [CrossRef]

  171. Wang, W.; Cao, J.; Zhang, N.; Lin, J.; Liao, W.-H. Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Convers. Manag. 2017, 132, 189–197. [CrossRef]
    Paper not yet in RePEc: Add citation now
  172. Wang, X. Frequency Analysis of Vibration Energy Harvesting Systems; Academic Press: Cambridge, MA, USA, 2016.
    Paper not yet in RePEc: Add citation now
  173. Waters, R.; Stålberg, M.; Danielsson, O.; Svensson, O.; Gustafsson, S.; Strömstedt, E.; Eriksson, M.; Sundberg, J.; Leijon, M. Experimental results from sea trials of an offshore wave energy system. Appl. Phys. Lett. 2007, 90, 034105. [CrossRef]
    Paper not yet in RePEc: Add citation now
  174. Williams, C.; Yates, R.B. Analysis of a micro-electric generator for microsystems. Sens. Actuators A Phys. 1996, 52, 8–11. [CrossRef]
    Paper not yet in RePEc: Add citation now
  175. Xia, T.; Yu, H.; Chen, Z.; Huang, L.; Liu, X.; Hu, M. Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Trans. Magn. 2017, 53, 1–4. [CrossRef]
    Paper not yet in RePEc: Add citation now
  176. Xia, T.; Yu, H.; Guo, R.; Liu, X. Research on the field-modulated tubular linear generator with quasi-halbach magnetization for ocean wave energy conversion. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [CrossRef]
    Paper not yet in RePEc: Add citation now
  177. Xiao, X.; Xiao, L.; Peng, T. Comparative study on power capture performance of oscillating-body wave energy converters with three novel power take-off systems. Renew. Energy 2017, 103, 94–105. [CrossRef]

  178. Xu, S.; Wang, S.; Soares, C.G. Review of mooring design for floating wave energy converters. Renew. Sustain. Energy Rev. 2019, 111, 595–621. [CrossRef]

  179. Youn, S.W.; Lee, J.J.; Yoon, H.S.; Koh, C.S. A new cogging-free permanent-magnet linear motor. IEEE Trans. Magn. 2008, 44, 1785–1790. [CrossRef]
    Paper not yet in RePEc: Add citation now
  180. Yu, H.; Liu, C.; Yuan, B.; Hu, M.; Huang, L.; Zhou, S. A permanent magnet tubular linear generator for wave energy conversion. J. Appl. Phys. 2012, 111, 07A741. [CrossRef]
    Paper not yet in RePEc: Add citation now
  181. Yu, Y.-H.; Tom, N.; Jenne, D. Numerical analysis on hydraulic power take-off for wave energy converter and power smoothing methods. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, 17–22 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018; p. V010T09A043.
    Paper not yet in RePEc: Add citation now
  182. Zhang, J.; Yu, H.; Chen, Q.; Hu, M.; Huang, L.; Liu, Q. Design and experimental analysis of AC linear generator with Halbach PM arrays for direct-drive wave energy conversion. IEEE Trans. Appl. Supercond. 2013, 24, 1–4. [CrossRef]
    Paper not yet in RePEc: Add citation now
  183. Zhang, J.; Yu, H.; Hu, M.; Huang, L.; Xia, T. Research on a PM Slotless Linear Generator Based on Magnet Field Analysis Model for Wave Energy Conversion. IEEE Trans. Magn. 2017, 53, 1–4. [CrossRef]
    Paper not yet in RePEc: Add citation now
  184. Zhang, J.; Yu, H.; Shi, Z. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator. Energies 2018, 11, 735. [CrossRef]

  185. Zhang, Q.; Wang, Y.; Kim, E.S. Power generation from human body motion through magnet and coil arrays with magnetic spring. J. Appl. Phys. 2014, 115, 064908. [CrossRef]
    Paper not yet in RePEc: Add citation now
  186. Zheng, Z.-Q.; Huang, P.; Gao, D.-X.; Chang, Z.-Y. Analysis of electromagnetic force of the linear generator in point absorber wave energy converters. J. Mar. Sci. Technol. 2015, 23, 475–480.
    Paper not yet in RePEc: Add citation now
  187. Zurkinden, A.S.; Ferri, F.; Beatty, S.; Kofoed, J.P.; Kramer, M. Non-linear numerical modeling and experimental testing of a point absorber wave energy converter. Ocean Eng. 2014, 78, 11–21. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities. (2022). Jafari, Reza ; Asef, Pedram ; Derakhshani, Mohammad Mahdi ; Ardebili, Mohammad.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:17:p:10912-:d:903731.

    Full description at Econpapers || Download paper

  2. A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems. (2022). Ahamed, Raju ; McKee, Kristoffer ; Howard, Ian.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:16:p:9936-:d:885747.

    Full description at Econpapers || Download paper

  3. The Shape Optimization and Experimental Research of Heave Plate Applied to the New Wave Energy Converter. (2022). Meng, Zhongliang ; Chen, Yun ; Li, Shizhen.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:4:p:1313-:d:747211.

    Full description at Econpapers || Download paper

  4. Development and Wave Tank Demonstration of a Fully Controlled Permanent Magnet Drive for a Heaving Wave Energy Converter. (2022). McDonald, Steve ; Baker, Nick J ; McNabb, Luke ; Almoraya, Ahmed.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:13:p:4811-:d:852936.

    Full description at Econpapers || Download paper

  5. Wave energy converters in low energy seas: Current state and opportunities. (2022). Foteinis, Spyros.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003549.

    Full description at Econpapers || Download paper

  6. Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers. (2022). Huang, Xiang ; Babaei, Reza ; Ma, Qian ; Ahmadian, Hossein ; Wang, Feng ; Xu, Chao.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027523.

    Full description at Econpapers || Download paper

  7. Optimizing Wave Overtopping Energy Converters by ANN Modelling: Evaluating the Overtopping Rate Forecasting as the First Step. (2021). Negro, Vicente ; Oliver, Jose Manuel ; Lopez-Gutierrez, Jose-Santos ; Neves, Graa M ; Esteban, Dolores M.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:3:p:1483-:d:490709.

    Full description at Econpapers || Download paper

  8. Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea. (2021). Omid, Seyed Taghi ; Asadi, Rojin ; Nezhad, Meysam Majidi ; Neshat, Mehdi ; Nasiri, Mahdieh ; Piras, Giuseppe ; Amini, Erfan ; Golbaz, Danial.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:19:p:10932-:d:648087.

    Full description at Econpapers || Download paper

  9. Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory. (2021). Mousavi, Seyed Milad ; Ghasemi, Majid ; Manshadi, Mahsa Dehghan ; Mosavi, Amir.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:8:p:871-:d:536566.

    Full description at Econpapers || Download paper

  10. Dimensioning Methodology of an Energy Storage System Based on Supercapacitors for Grid Code Compliance of a Wave Power Plant. (2021). Santos-Herran, Miguel ; Lafoz, Marcos ; Blanco, Marcos ; Torres, Jorge ; Najera, Jorge ; Navarro, Gustavo ; Ramirez, Dionisio ; Santiago, Alvaro.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:985-:d:498890.

    Full description at Econpapers || Download paper

  11. Assessment of Offshore Wave Energy Resources in Taiwan Using Long-Term Dynamically Downscaled Winds from a Third-Generation Reanalysis Product. (2021). Chen, Wei-Bo ; Chang, Tzu-Yin ; Hsiao, Shih-Chun ; Lin, Lee-Yaw ; Jang, Jiun-Huei ; Wu, Han-Lun ; Cheng, Chao-Tzuen.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:3:p:653-:d:488462.

    Full description at Econpapers || Download paper

  12. Mooring Angle Study of a Horizontal Rotor Wave Energy Converter. (2021). Meng, Zhongliang ; Liu, Yanjun ; Sun, Shumin ; Qin, Jian.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:2:p:344-:d:477611.

    Full description at Econpapers || Download paper

  13. Sea Wave Energy. A Review of the Current Technologies and Perspectives. (2021). Franzitta, Vincenzo ; Curto, Domenico ; Guercio, Andrea.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:20:p:6604-:d:655480.

    Full description at Econpapers || Download paper

  14. Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects. (2021). Tsoutsos, Theocharis ; Dialyna, Evangelia.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:16:p:4764-:d:609178.

    Full description at Econpapers || Download paper

  15. Sizing Procedure for System Hybridization Based on Experimental Source Modeling in Grid Application. (2021). Amar, Nissim ; Coletti, Michael ; Aharon, Ilan ; Shmaryahu, Aaron.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:15:p:4685-:d:606939.

    Full description at Econpapers || Download paper

  16. Optimization of Low Head Axial-Flow Turbines for an Overtopping BReakwater for Energy Conversion: A Case Study. (2021). Contestabile, Pasquale ; Crispino, Gaetano ; Cascetta, Furio ; Vicinanza, Diego ; Gisonni, Corrado ; Mariani, Antonio ; Unich, Andrea.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:15:p:4618-:d:604957.

    Full description at Econpapers || Download paper

  17. Multi-Mode Wave Energy Converter Design Optimisation Using an Improved Moth Flame Optimisation Algorithm. (2021). Mirjalili, Seyedali ; Sergiienko, Nataliia Y ; Nezhad, Meysam Majidi ; Neshat, Mehdi ; Piras, Giuseppe ; Garcia, Davide Astiaso.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:13:p:3737-:d:579845.

    Full description at Econpapers || Download paper

  18. Availability-Based Selection of Electricity Delivery Network in Marine Conversion Systems Using Bayesian Network. (2021). Yang, YI ; Nielsen, Jannie Sonderkar.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:12:p:3574-:d:575726.

    Full description at Econpapers || Download paper

  19. Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches. (2021). Dettmer, Wulf ; Hossain, Mokarram ; Collins, Ieuan ; Masters, Ian.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121007590.

    Full description at Econpapers || Download paper

  20. Ocean wave energy converters: Technical principle, device realization, and performance evaluation. (2021). Zhang, Yongxing ; Zhao, Yongjie ; Sun, Wei ; Li, Jiaxuan.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000605.

    Full description at Econpapers || Download paper

  21. On the potential synergies and applications of wave energy converters: A review. (2021). Rosa-Santos, P ; Taveira-Pinto, F ; Clemente, D.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120304536.

    Full description at Econpapers || Download paper

  22. Wave power assessment in Faroese waters using an oceanic to nearshore scale spectral wave model. (2021). Bingham, Harry B ; Joensen, Barur ; Niclasen, Barur A.
    In: Energy.
    RePEc:eee:energy:v:235:y:2021:i:c:s0360544221016522.

    Full description at Econpapers || Download paper

  23. Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica. (2021). Henriques, J. C. C., ; Malara, G ; Gato, L. M. C., ; Arena, F ; Falcão, A. F. O., ; Scialo, A.
    In: Energy.
    RePEc:eee:energy:v:215:y:2021:i:pa:s0360544220321927.

    Full description at Econpapers || Download paper

  24. Electrical Power Generation from the Oceanic Wave for Sustainable Advancement in Renewable Energy Technologies. (2020). Farrok, Omar ; Farah, Mohamud Mohamed ; Islam, Md Rabiul ; Kiran, Mahbubur Rahman ; Ahmed, Koushik ; Tahlil, Abdirazak Dahir.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:6:p:2178-:d:331354.

    Full description at Econpapers || Download paper

  25. Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber. (2020). Aderinto, Tunde ; Li, Hua.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:22:p:9532-:d:445861.

    Full description at Econpapers || Download paper

  26. Review of Wave Energy Converter and Design of Mooring System. (2020). Haider, Rizwan ; Yan, Jun ; Qiao, Dongsheng ; Ning, Dezhi ; Li, Binbin.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:19:p:8251-:d:424561.

    Full description at Econpapers || Download paper

  27. Mathematical Modeling and Experimental Verification of a New Wave Energy Converter. (2020). Meng, Zhongliang ; Chen, Yun ; Liu, Yanjun ; Qin, Jian.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2020:i:1:p:177-:d:473214.

    Full description at Econpapers || Download paper

  28. Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter. (2020). Aderinto, Tunde ; Li, Hua.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:8:p:1997-:d:347039.

    Full description at Econpapers || Download paper

  29. Wave Power Absorption by Arrays of Wave Energy Converters in Front of a Vertical Breakwater: A Theoretical Study. (2020). Mavrakos, Spyridon A ; Konispoliatis, Dimitrios N.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:8:p:1985-:d:346681.

    Full description at Econpapers || Download paper

  30. Hydrodynamic Performance of a Pitching Float Wave Energy Converter. (2020). Ma, Yong ; Ai, Shan ; Liu, Sen ; Yang, Lele ; Zhou, Binghao ; Zhang, Aiming.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:7:p:1801-:d:342931.

    Full description at Econpapers || Download paper

  31. On the Development of an Offshore Version of the CECO Wave Energy Converter. (2020). Ramos, Victor ; Rosa-Santos, Paulo ; Giannini, Gianmaria ; Taveira-Pinto, Francisco.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:5:p:1036-:d:325396.

    Full description at Econpapers || Download paper

  32. Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots. (2020). Ciappi, Lorenzo ; Cappietti, Lorenzo ; Cheli, Lapo ; Simonetti, Irene ; Manfrida, Giampaolo ; Bianchini, Alessandro.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5582-:d:434866.

    Full description at Econpapers || Download paper

  33. A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea. (2020). Sergiienko, Nataliia Y ; Nezhad, Meysam Majidi ; Neshat, Mehdi ; Wagner, Markus ; Amini, Erfan ; Garcia, Davide Astiaso ; Alexander, Bradley.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:20:p:5498-:d:431953.

    Full description at Econpapers || Download paper

  34. Hydrodynamic optimisation of an axisymmetric floating Oscillating Water Column type wave energy converter with an enlarged inner tube. (2020). Gradowski, M ; Alves, M ; Gomes, R. P. F., .
    In: Renewable Energy.
    RePEc:eee:renene:v:162:y:2020:i:c:p:1519-1532.

    Full description at Econpapers || Download paper

  35. Performance assessment of a two-body wave energy converter based on the Persian Gulf wave climate. (2020). Mahmoodi, Kumars ; Ghassemi, Hassan ; Razminia, Abolhassan.
    In: Renewable Energy.
    RePEc:eee:renene:v:159:y:2020:i:c:p:519-537.

    Full description at Econpapers || Download paper

  36. Feature engineering and forecasting via derivative-free optimization and ensemble of sequence-to-sequence networks with applications in renewable energy. (2020). Pirhooshyaran, Mohammad ; Snyder, Lawrence V ; Scheinberg, Katya.
    In: Energy.
    RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302437.

    Full description at Econpapers || Download paper

  37. Changes in Wave Energy in the Shelf Seas of India during the Last 40 Years Based on ERA5 Reanalysis Data. (2019). Kumar, Sanil V ; Amrutha, M M.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2019:i:1:p:115-:d:301802.

    Full description at Econpapers || Download paper

  38. Review on Power Performance and Efficiency of Wave Energy Converters. (2019). Aderinto, Tunde ; Li, Hua.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:22:p:4329-:d:286543.

    Full description at Econpapers || Download paper

  39. Advection-Based Coordinated Control for Wave-Energy Converter Array. (2019). Chen, Shiyu ; Qiu, LI ; Yuan, Jianping ; Luo, Jianjun ; Li, Hong ; Zhang, BO.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:18:p:3567-:d:268261.

    Full description at Econpapers || Download paper

  40. Wave-to-Wire Power Maximization Control for All-Electric Wave Energy Converters with Non-Ideal Power Take-Off. (2019). Sousounis, Marios Charilaos ; Shek, Jonathan.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:15:p:2948-:d:253582.

    Full description at Econpapers || Download paper

  41. A framework to evaluate the environmental impact of OCEAN energy devices. (2019). Simas, Teresa ; Silva, Rodolfo ; Flores, Pamela ; Mendoza, Edgar ; Lithgow, Debora ; Felix, Angelica.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:112:y:2019:i:c:p:440-449.

    Full description at Econpapers || Download paper

  42. Energy cost minimization for net zero energy homes through optimal sizing of battery storage system. (2019). Sharma, Vanika ; Aziz, Syed Mahfuzul ; Haque, Mohammed H.
    In: Renewable Energy.
    RePEc:eee:renene:v:141:y:2019:i:c:p:278-286.

    Full description at Econpapers || Download paper

  43. A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells. (2019). Jensen, Soren Hojgaard ; Clausen, Lasse Rongaard ; Butera, Giacomo.
    In: Energy.
    RePEc:eee:energy:v:166:y:2019:i:c:p:738-754.

    Full description at Econpapers || Download paper

  44. Maximum Power Point Tracking for a Point Absorber Device with a Tubular Linear Switched Reluctance Generator. (2018). Mariano, Silvio ; Mendes, Rui ; Do, Maria.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:9:p:2192-:d:165083.

    Full description at Econpapers || Download paper

  45. Grid Integration and Power Smoothing of an Oscillating Water Column Wave Energy Converter. (2018). Jayasinghe, Shantha ; Negnevitsky, Michael ; Rajapakse, Gimara ; Fleming, Alan.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:7:p:1871-:d:158579.

    Full description at Econpapers || Download paper

  46. Energy Efficiency Analysis of Multi-Type Floating Bodies for a Novel Heaving Point Absorber with Application to Low-Power Unmanned Ocean Device. (2018). Luo, Zirong ; Wu, Wei ; Shang, Jianzhong ; Cong, Dongsheng ; Sun, Chongfei.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3282-:d:185373.

    Full description at Econpapers || Download paper

  47. Improvement of Tubular Permanent Magnet Machine Performance Using Dual-Segment Halbach Array. (2018). Chun, Yon-Do ; Duong, Minh-Trung ; Bang, Deok-Je.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:11:p:3132-:d:182371.

    Full description at Econpapers || Download paper

  48. Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System. (2018). Barambones, Oscar ; Gonzalez, Jose M ; Calvo, Isidro.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:11:p:2939-:d:178745.

    Full description at Econpapers || Download paper

  49. A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea. (2018). Wen, Yadong ; Wang, Wenqiang ; Mao, Longbo ; Liu, Hua ; Mi, Hongju ; Zhang, Guoping.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:10:p:2645-:d:173585.

    Full description at Econpapers || Download paper

  50. Sustainability of non-residential buildings and relevance of main environmental impact contributors variability. A case study of food retail stores buildings. (2018). Mainar-Toledo, Maria Dolores ; Zabalza-Bribian, Ignacio ; Zambrana-Vasquez, David ; Gimeno-Frontera, Beatriz ; de Guinoa, Aitana Saez.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:94:y:2018:i:c:p:669-681.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 23:48:34 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.