- Abraham, E.; Kerrigan, E.C. Optimal active control and optimization of a wave energy converter. IEEE Trans. Sustain. Energy 2012, 4, 324â332. [CrossRef]
Paper not yet in RePEc: Add citation now
Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies 2018, 11, 1250. [CrossRef]
- Ahamed, R.; Howard, I.; McKee, K. Study of gravitational force effects, magnetic restoring forces and coefficients of the magnetic spring-based nonlinear oscillator system. IEEE Trans. Magn. 2022. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ahamed, R.; McKee, K.; Howard, I. Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Eng. 2020, 204, 107248. [CrossRef]
Paper not yet in RePEc: Add citation now
- Al Shami, E.; Zhang, R.; Wang, X. Point absorber wave energy harvesters: A review of recent developments. Energies 2019, 12, 47. [CrossRef]
Paper not yet in RePEc: Add citation now
- Almoraya, A.; Baker, N.; Smith, K.; Raihan, M. Development of a double-sided consequent pole linear vernier hybrid permanentmagnet machine for wave energy converters. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21â24 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1â7.
Paper not yet in RePEc: Add citation now
- Amiri, A.; Panahi, R.; Radfar, S. Parametric study of two-body floating-point wave absorber. J. Mar. Sci. Appl. 2016, 15, 41â49. [CrossRef]
Paper not yet in RePEc: Add citation now
- Amon, E.A.; Schacher, A.A.; Brekken, T.K. A novel maximum power point tracking algorithm for ocean wave energy devices. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20â24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 2635â2641.
Paper not yet in RePEc: Add citation now
- Annuar, A.; Macpherson, D.; Forehand, D.; Mueller, M. Optimum power control for arrays of direct drive wave energy converters. In Proceedings of the IET International Conference on Power Electronics, Machines and Drives 2012 (PEMD 2012), Bristol, UK, 27â29 March 2012; IET: London, UK, 2012.
Paper not yet in RePEc: Add citation now
- Antipov, V.; Grozov, A.; Ivanova, A. A linear synchronous generator with a power of 30 kW for wave-power engineering. Russ. Electr. Eng. 2017, 88, 55â60. [CrossRef]
Paper not yet in RePEc: Add citation now
- Antonio, F.D.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899â918.
Paper not yet in RePEc: Add citation now
Bachynski, E.E.; Young, Y.L.; Yeung, R.W. Analysis and optimization of a tethered wave energy converter in irregular waves. Renew. Energy 2012, 48, 133â145. [CrossRef]
- Baker, N.J.; Raihan, M.A.; Almoraya, A.A. A cylindrical linear permanent magnet Vernier hybrid machine for wave energy. IEEE Trans. Energy Convers. 2018, 34, 691â700. [CrossRef]
Paper not yet in RePEc: Add citation now
- Baker, N.J.; Spooner, E.; Mueller, M. Permanent Magnet Air-Cored Tubular Linear Generator for Marine Energy Converters; IEE Conference Publication, 2004; IET: London, UK, 2004; pp. 862â867.
Paper not yet in RePEc: Add citation now
- Bastien, S.P.; Sepe, R.B.; Grilli, A.R.; Grilli, S.T.; Spaulding, M.L. Ocean wave energy harvesting buoy for sensors. In Proceedings of the IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20â24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3718â3725.
Paper not yet in RePEc: Add citation now
- Beeby, S.P.; Wang, L.; Zhu, D.; Weddell, A.S.; Merrett, G.V.; Stark, B.; Szarka, G.; Al-Hashimi, B.M. A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data. Smart Mater. Struct. 2013, 22, 075022. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bianchi, N.; Bolognani, S.; Cappello, A. Reduction of cogging force in PM linear motors by pole-shifting. IEE Proc.-Electr. Power Appl. 2005, 152, 703â709. [CrossRef]
Paper not yet in RePEc: Add citation now
Boscaino, V.; Cipriani, G.; Di Dio, V.; Franzitta, V.; Trapanense, M. Experimental test and simulations on a linear generator-based prototype of a wave energy conversion system designed with a reliability-oriented approach. Sustainability 2017, 9, 98. [CrossRef]
- Bostrom, C.; Waters, R.; Lejerskog, E.; Svensson, O.; Stalberg, M.; Stromstedt, E.; Leijon, M. Study of a wave energy converter connected to a nonlinear load. IEEE J. Ocean. Eng. 2009, 34, 123â127. [CrossRef]
Paper not yet in RePEc: Add citation now
- Brekken, T.K. On Model Predictive Control for a Point Absorber Wave Energy Converter; 2011 IEEE Trondheim PowerTech, 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1â8.
Paper not yet in RePEc: Add citation now
- Brekken, T.K.; Von Jouanne, A.; Han, H.Y. Ocean wave energy overview and research at Oregon State University. In Proceedings of the Power Electronics and Machines in Wind Applications, 2009, PEMWA 2009, Lincoln, NE, USA, 24â26 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1â7.
Paper not yet in RePEc: Add citation now
- Brooking, P.; Mueller, M. Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. IEE Proc.-Gener. Transm. Distrib. 2005, 152, 673â681. [CrossRef]
Paper not yet in RePEc: Add citation now
Castellucci, V.; Eriksson, M.; Waters, R. Impact of tidal level variations on wave energy absorption at wave hub. Energies 2016, 9, 843. [CrossRef]
- Chatzigiannakou, M.A.; UlvgÃ¥rd, L.; Temiz, I.; Leijon, M. Offshore deployments of wave energy converters by Uppsala University, Sweden. Mar. Syst. Ocean Technol. 2019, 14, 67â74. [CrossRef]
Paper not yet in RePEc: Add citation now
- Chau, K.; Zhang, D.; Jiang, J.; Jian, L. Transient analysis of coaxial magnetic gears using finite element comodeling. J. Appl. Phys. 2008, 103, 07F101. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cheng, Z.; Yang, J.; Hu, Z.; Xiao, L. Frequency/time domain modeling of a direct drive point absorber wave energy converter. Sci. China Phys. Mech. Astron. 2014, 57, 311â320. [CrossRef]
Paper not yet in RePEc: Add citation now
- Cheung, J.T. Frictionless Linear Electrical Generator for Harvesting Motion Energy; Rockwell International: Thousand Oaks, CA, USA, 2004.
Paper not yet in RePEc: Add citation now
- Chiu, M.-C.; Chang, Y.-C.; Yeh, L.-J.; Chung, C.-H. Optimal design of a vibration-based electromagnetic energy harvester using a simulated annealing algorithm. J. Mech. 2012, 28, 691â700. [CrossRef]
Paper not yet in RePEc: Add citation now
- Clément, A.; McCullen, P.; Falcão, A.; Fiorentino, A.; Gardner, F.; Hammarlund, K.; Lemonis, G.; Lewis, T.; Nielsen, K.; Petroncini, S. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405â431. [CrossRef]
Paper not yet in RePEc: Add citation now
- Clifton, P.; McMahon, R.; Kelly, H. Design and commissioning of a 30 kW direct drive wave generator. In Proceedings of the 5th IET International Conference on Power Electronics, Machines and Drives (PEMD 2010), Brighton, UK, 19â21 April 2010; IET: London, UK, 2010; pp. 1â6.
Paper not yet in RePEc: Add citation now
- Cretel, J.A.; Lightbody, G.; Thomas, G.P.; Lewis, A.W. Maximisation of energy capture by a wave-energy point absorber using model predictive control. IFAC Proc. Vol. 2011, 44, 3714â3721. [CrossRef]
Paper not yet in RePEc: Add citation now
- Crozier, R.; Bailey, H.; Mueller, M.; Spooner, E.; McKeever, P. Analysis, design and testing of a novel direct-drive wave energy converter system. IET Renew. Power Gener. 2013, 7, 565â573. [CrossRef]
Paper not yet in RePEc: Add citation now
- Curto, D.; Viola, A.; Franzitta, V.; Trapanese, M.; Cardona, F. A New Solution for Sea Wave Energy Harvesting, the Proposal of an Ironless Linear Generator. J. Mar. Sci. Eng. 2020, 8, 93. [CrossRef]
Paper not yet in RePEc: Add citation now
- Czech, B.; Bauer, P. Wave energy converter concepts: Design challenges and classification. IEEE Ind. Electron. Mag. 2012, 6, 4â16. [CrossRef]
Paper not yet in RePEc: Add citation now
- Danielsson, O.; Leijon, M. Flux distribution in linear permanent-magnet synchronous machines including longitudinal end effects. IEEE Trans. Magn. 2007, 43, 3197â3201. [CrossRef]
Paper not yet in RePEc: Add citation now
- Danielsson, O.; Leijon, M.; Sjostedt, E. Detailed study of the magnetic circuit in a longitudinal flux permanent-magnet synchronous linear generator. IEEE Trans. Magn. 2005, 41, 2490â2495. [CrossRef]
Paper not yet in RePEc: Add citation now
- Day, A.; Babarit, A.; Fontaine, A.; He, Y.-P.; Kraskowski, M.; Murai, M.; Penesis, I.; Salvatore, F.; Shin, H.-K. Hydrodynamic modelling of marine renewable energy devices: A state of the art review. Ocean Eng. 2015, 108, 46â69. [CrossRef]
Paper not yet in RePEc: Add citation now
- de la Villa Jaén, A.; GarcÃa-Santana, A.; Montoya-Andrade, D.E. Maximizing output power of linear generators for wave energy conversion. Int. Trans. Electr. Energy Syst. 2014, 24, 875â890. [CrossRef]
Paper not yet in RePEc: Add citation now
- de la Villa Jaén, A.; Santana, A.G. Considering linear generator copper losses on model predictive control for a point absorber wave energy converter. Energy Convers. Manag. 2014, 78, 173â183.
Paper not yet in RePEc: Add citation now
- de Sousa Prado, M.G.; Gardner, F.; Damen, M.; Polinder, H. Modelling and test results of the Archimedes wave swing. Proc. Inst. Mech. Eng. A J. Power Energy 2006, 220, 855â868. [CrossRef]
Paper not yet in RePEc: Add citation now
- Demenko, A.; Kulig, S.; Nowak, L.; Zawirski, K.; Parel, T.S.; Rotaru, M.D.; Sykulski, J.K.; Hearn, G.E. Optimisation of a tubular linear machine with permanent magnets for wave energy extraction. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2011, 30, 1056â1068. [CrossRef]
Paper not yet in RePEc: Add citation now
- Di Dio, V.; Franzitta, V.; Milone, D.; Pitruzzella, S.; Trapanese, M.; Viola, A. Design of Bilateral Switched Reluctance Linear Generator to Convert Wave Energy: Case Study in Sicily; Advanced Materials Research; Trans Tech Publications: Zurich, Switzerland, 2014; pp. 1694â1698.
Paper not yet in RePEc: Add citation now
- Drew, B.; Plummer, A.R.; Sahinkaya, M.N. A review of wave energy converter technology. In Sage Publications; Sage UK: London, UK, 2009.
Paper not yet in RePEc: Add citation now
- Du, Y.; Cheng, M.; Chau, K.T.; Liu, X.; Xiao, F.; Zhao, W. Linear primary permanent magnet vernier machine for wave energy conversion. IET Electr. Power Appl. 2015, 9, 203â212. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ekergård, B. Full scale applications of permanent magnet electromagnetic energy converters: From Nd2Fe14B to ferrite. Ph.D. Thesis, Boel Ekergård, Uppsala University, Uppsala, Sweden, 2013.
Paper not yet in RePEc: Add citation now
Ekergård, B.; Leijon, M. Longitudinal End Effects in a Linear Wave Power Generator. Energies 2020, 13, 327. [CrossRef]
- Ekström, R.; EkergÃ¥rd, B.; Leijon, M. Electrical damping of linear generators for wave energy convertersâA review. Renew. Sustain. Energy Rev. 2015, 42, 116â128. [CrossRef]
Paper not yet in RePEc: Add citation now
- Elwood, D.; Schacher, A.; Rhinefrank, K.; Prudell, J.; Yim, S.; Amon, E.; Brekken, T.; von Jouanne, A. Numerical modeling and ocean testing of a direct-drive wave energy device utilizing a permanent magnet linear generator for power take-off. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Honolulu, HI, USA, 31 Mayâ5 June 2009; pp. 817â824.
Paper not yet in RePEc: Add citation now
Elwood, D.; Yim, S.C.; Prudell, J.; Stillinger, C.; Von Jouanne, A.; Brekken, T.; Brown, A.; Paasch, R. Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renew. Energy 2010, 35, 348â354. [CrossRef]
- Engström, J.; Kurupath, V.; Isberg, J.; Leijon, M. A resonant two body system for a point absorbing wave energy converter with direct-driven linear generator. J. Appl. Phys. 2011, 110, 124904. [CrossRef]
Paper not yet in RePEc: Add citation now
- Eriksson, M.; Isberg, J.; Leijon, M. Hydrodynamic modelling of a direct drive wave energy converter. Int. J. Eng. Sci. 2005, 43, 1377â1387. [CrossRef]
Paper not yet in RePEc: Add citation now
Eriksson, S. Design of permanent-magnet linear generators with constant-torque-angle control for wave power. Energies 2019, 12, 1312. [CrossRef]
- Faiz, J.; Ebrahimi-Salari, M.; Shahgholian, G. Reduction of cogging force in linear permanent-magnet generators. IEEE Trans. Magn. 2009, 46, 135â140. [CrossRef]
Paper not yet in RePEc: Add citation now
- Faiz, J.; Nematsaberi, A. Linear electrical generator topologies for direct-drive marine wave energy conversion-an overview. IET Renew. Power Gener. 2017, 11, 1163â1176. [CrossRef]
Paper not yet in RePEc: Add citation now
- Faiz, J.; Nematsaberi, A. Linear permanent magnet generator concepts for direct-drive wave energy converters: A comprehensive review. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18â20 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 618â623.
Paper not yet in RePEc: Add citation now
Fang, H.-w.; Song, R.-n.; Xiao, Z.-x. Optimal design of permanent magnet linear generator and its application in a wave energy conversion system. Energies 2018, 11, 3109. [CrossRef]
- Farrok, O.; Islam, M.R.; Muttaqi, K.M.; Sutanto, D.; Zhu, J. Design and Optimization of a Novel Dual-Port Linear Generator for Oceanic Wave Energy Conversion. IEEE Trans. Ind. Electron. 2019, 67, 3409â3418. [CrossRef]
Paper not yet in RePEc: Add citation now
- Farrok, O.; Islam, M.R.; Sheikh, M.R.I.; Guo, Y.; Zhu, J.; Lei, G. A novel method to avoid degradation due to demagnetization of PM linear generators for oceanic wave energy extraction. In Proceedings of the 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11â14 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1â6.
Paper not yet in RePEc: Add citation now
- Farrok, O.; Islam, M.R.; Sheikh, M.R.I.; Guo, Y.; Zhu, J.G. A Split Translator Secondary Stator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion. IEEE Trans. Ind. Electron. 2018, 65, 7600â7608. [CrossRef]
Paper not yet in RePEc: Add citation now
- Farrok, O.; Islam, M.R.; Sheikh, M.R.I.; Guo, Y.; Zhu, J.G. Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans. Magn. 2017, 53, 1â4. [CrossRef] Sustainability 2022, 14, 9936 41 of 42
Paper not yet in RePEc: Add citation now
- Farrok, O.; Kiran, M.R.; Islam, M.R.; Xu, W.; Zhu, J. Core loss minimization of the linear generator by using high graded magnetic materials for harvesting oceanic wave energy. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12â15 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1762â1765. Sustainability 2022, 14, 9936 39 of 42
Paper not yet in RePEc: Add citation now
Feng, N.; Yu, H.; Hu, M.; Liu, C.; Huang, L.; Shi, Z. A study on a linear magnetic-geared interior permanent magnet generator for direct-drive wave energy conversion. Energies 2016, 9, 487. [CrossRef]
- Feng, N.; Yu, H.; Zhao, M.; Zhang, P.; Hou, D. Magnetic field-modulated linear permanent-magnet generator for direct-drive wave energy conversion. IET Electr. Power Appl. 2020, 14, 742â750. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ferri, F. Wave-to-wire modelling of wave energy converters: Critical assessment, developments and applicability for economical optimisation; River Publishers: Aalborg, Denmark, 2014.
Paper not yet in RePEc: Add citation now
Gao, M.; Wang, Y.; Wang, Y.; Wang, P. Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation. Appl. Energy 2018, 220, 856â875. [CrossRef]
Gao, Y.; Shao, S.; Zou, H.; Tang, M.; Xu, H.; Tian, C. A fully floating system for a wave energy converter with direct-driven linear generator. Energy 2016, 95, 99â109. [CrossRef]
- Gargov, N.; Zobaa, A. Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters. IET Renew. Power Gener. 2012, 6, 171â176. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gargov, N.; Zobaa, A.; Pisica, I. Separated magnet yoke for permanent magnet linear generator for marine wave energy converters. Electr. Power Syst. Res. 2014, 109, 63â70. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gieske, P. Model Predictive Control of a Wave Energy Converter: Archimedes Wave Swing; Delft University of Technology: Delft, The Netherlands, 2007.
Paper not yet in RePEc: Add citation now
Goggins, J.; Finnegan, W. Shape optimisation of floating wave energy converters for a specified wave energy spectrum. Renew. Energy 2014, 71, 208â220. [CrossRef]
- Guo, R.; Yu, H.; Xia, T.; Shi, Z.; Zhong, W.; Liu, X. A simplified subdomain analytical model for the design and analysis of a tubular linear permanent magnet oscillation generator. IEEE Access 2018, 6, 42355â42367. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hals, J.; Falnes, J.; Moan, T. A comparison of selected strategies for adaptive control of wave energy converters. J. Offshore Mech. Arct. Eng. 2011, 133, 031101. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hals, J.; Falnes, J.; Moan, T. Constrained optimal control of a heaving buoy wave-energy converter. J. Offshore Mech. Arct. Eng. 2011, 133, 011401. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hodgins, N.; Keysan, O.; McDonald, A.S.; Mueller, M.A. Design and testing of a linear generator for wave-energy applications. IEEE Trans. Ind. Electron. 2011, 59, 2094â2103. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hong, Y.; Eriksson, M.; Castellucci, V.; Boström, C.; Waters, R. Linear generator-based wave energy converter model with experimental verification and three loading strategies. IET Renew. Power Gener. 2016, 10, 349â359. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hong, Y.; Waters, R.; Boström, C.; Eriksson, M.; Engström, J.; Leijon, M. Review on electrical control strategies for wave energy converting systems. Renew. Sustain. Energy Rev. 2014, 31, 329â342. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, L.; Chen, M.; Wang, L.; Yue, F.; Guo, R.; Fu, X. Analysis of a hybrid field-modulated linear generator for wave energy conversion. IEEE Trans. Appl. Supercond. 2018, 28, 1â5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, L.; Hu, B.; Hu, M.; Liu, C.; Zhu, H. Research on primary excitation fully superconducting linear generators for wave energy conversion. IEEE Trans. Appl. Supercond. 2019, 29, 1â5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, L.; Hu, M.; Yu, H.; Liu, C.; Chen, Z. Design and experiment of a direct-drive wave energy converter using outer-PM linear tubular generator. IET Renew. Power Gener. 2016, 11, 353â360. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, L.; Liu, J.; Yu, H.; Qu, R.; Chen, H.; Fang, H. Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator. IEEE Trans. Appl. Supercond. 2014, 25, 1â5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, L.; Yu, H.; Hu, M.; Liu, C.; Yuan, B. Research on a tubular primary permanent-magnet linear generator for wave energy conversions. IEEE Trans. Magn. 2013, 49, 1917â1920. [CrossRef]
Paper not yet in RePEc: Add citation now
- Huang, L.; Yu, H.; Hu, M.; Zhao, J.; Cheng, Z. A novel flux-switching permanent-magnet linear generator for wave energy extraction application. IEEE Trans. Magn. 2011, 47, 1034â1037. [CrossRef]
Paper not yet in RePEc: Add citation now
Ibrahim, H.; Ilinca, A.; Perron, J. Energy storage systemsâCharacteristics and comparisons. Renew. Sustain. Energy Rev. 2008, 12, 1221â1250. [CrossRef]
- Jama, M.; Wahyudie, A.; Assi, A.; Noura, H. In Controlling heaving wave energy converter using function-based model predictive control technique. In Proceedings of the 2013 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25â27 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2705â2710.
Paper not yet in RePEc: Add citation now
- Jin, C.; Kang, H.; Kim, M.; Bakti, F.P. Performance evaluation of surface riding wave energy converter with linear electric generator. Ocean Eng. 2020, 218, 108141. [CrossRef]
Paper not yet in RePEc: Add citation now
- Joseph, D.M.; Cronje, W.A. Design and analysis of a double-sided tubular linear synchronous generator with particular application to wave-energy conversion. In Proceedings of the 2007 IEEE Power Engineering Society Conference and Exposition in AfricaPowerAfrica, Johannesburg, South Africa, 16â20 July 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1â8.
Paper not yet in RePEc: Add citation now
- Joubert, J.R.; van Niekerk, J.L.; Reinecke, J.; Meyer, I. Wave Energy Converters (WECs); CRSES: Matieland, South Africa, 2013.
Paper not yet in RePEc: Add citation now
- Khatri, P.; Wang, X. Comprehensive review of a linear electrical generator for ocean wave energy conversion. IET Renew. Power Gener. 2019, 14, 949â958. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kim, J.; Koh, H.; Cho, I.; Kim, M.; Kweon, H. Experimental study of wave energy extraction by a dual-buoy heaving system. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 25â34. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kimoulakis, N.M.; Kladas, A.G.; Tegopoulos, J.A. Cogging force minimization in a coupled permanent magnet linear generator for sea wave energy extraction applications. IEEE Trans. Magn. 2009, 45, 1246â1249. [CrossRef] Sustainability 2022, 14, 9936 38 of 42
Paper not yet in RePEc: Add citation now
- Korde, U.A. Control system applications in wave energy conversion. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition. Conference Proceedings (Cat. No. 00CH37158), Providence, RI, USA, 11â14 September 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 1817â1824.
Paper not yet in RePEc: Add citation now
- Kracht, P.; Perez-Becker, S.; Richard, J.-B.; Fischer, B. Performance improvement of a point absorber wave energy converter by application of an observer-based control: Results from wave tank testing. IEEE Trans. Ind. Appl. 2015, 51, 3426â3434. [CrossRef]
Paper not yet in RePEc: Add citation now
López, I.; Andreu, J.; Ceballos, S.; De AlegrÃa, I.M.; Kortabarria, I. Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energy Rev. 2013, 27, 413â434. [CrossRef]
- Le Méhauté, B. An Introduction to Hydrodynamics and Water Waves; Springer: Berlin/Heidelberg, Germany, 2013.
Paper not yet in RePEc: Add citation now
- Leijon, M.; Bernhoff, H.; Agren, O.; Isberg, J.; Sundberg, J.; Berg, M.; Karlsson, K.E.; Wolfbrandt, A. Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator. IEEE Trans. Energy Convers. 2005, 20, 219â224. [CrossRef] Sustainability 2022, 14, 9936 42 of 42
Paper not yet in RePEc: Add citation now
- Leijon, M.; Boström, C.; Danielsson, O.; Gustafsson, S.; Haikonen, K.; Langhamer, O.; Strömstedt, E.; StÃ¥lberg, M.; Sundberg, J.; Svensson, O. Wave energy from the North Sea: Experiences from the Lysekil research site. Surv. Geophys. 2008, 29, 221â240. [CrossRef]
Paper not yet in RePEc: Add citation now
Lejerskog, E.; Boström, C.; Hai, L.; Waters, R.; Leijon, M. Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site. Renew. Energy 2015, 77, 9â14. [CrossRef]
- Lejerskog, E.; Leijon, M. Detailed study of closed stator slots for a direct-driven synchronous permanent magnet linear wave energy converter. Machines 2014, 2, 73â86. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, B.; Macpherson, D.; Shek, J. Direct Drive Wave Energy Converter Control in Irregular Waves; IET: London, UK, 2011.
Paper not yet in RePEc: Add citation now
Li, G.; Belmont, M.R. Model predictive control of sea wave energy convertersâPart I: A convex approach for the case of a single device. Renew. Energy 2014, 69, 453â463. [CrossRef]
Li, W.; Chau, K.; Lee, C.H.; Ching, T.; Chen, M.; Jiang, J. A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction. Renew. Energy 2017, 105, 199â208. [CrossRef]
- Liu, C.-T.; Lin, C.-L.; Hwang, C.-C.; Tu, C.-H. Compact model of a slotless tubular linear generator for renewable energy performance assessments. IEEE Trans. Magn. 2010, 46, 1467â1470. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, C.; Yu, H.; Hu, M.; Liu, Q.; Zhou, S. Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion. IEEE Trans. Magn. 2013, 49, 1913â1916. [CrossRef]
Paper not yet in RePEc: Add citation now
- Liu, C.; Yu, H.; Hu, M.; Liu, Q.; Zhou, S.; Huang, L. Research on a permanent magnet tubular linear generator for direct drive wave energy conversion. IET Renew. Power Gener. 2013, 8, 281â288. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mann, B.; Owens, B. Investigations of a nonlinear energy harvester with a bistable potential well. J. Sound Vib. 2010, 329, 1215â1226. [CrossRef]
Paper not yet in RePEc: Add citation now
Marei, M.I.; Mokhtar, M.; El-Sattar, A.A. MPPT strategy based on speed control for AWS-based wave energy conversion system. Renew. Energy 2015, 83, 305â317. [CrossRef]
- Masoumi, M.; Wang, Y. Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment. J. Sound Vib. 2016, 381, 192â205. [CrossRef]
Paper not yet in RePEc: Add citation now
- McDonald, A.; Mueller, M.; Jeffrey, J. Development of a novel permanent magnet linear generator topology for direct-drive wave energy converters. In Proceedings of the 2008 4th IET Conference on Power Electronics, Machines and Drives, York, UK, 2â4 April 2008; IET: London, UK, 2008; pp. 81â85.
Paper not yet in RePEc: Add citation now
- Memon, A.H.; bin Ibrahim, T.; Nallagowden, P. Design optimization of linear permanent magnet generator for wave energy conversion. In Proceedings of the 2015 IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, 19â20 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 315â319.
Paper not yet in RePEc: Add citation now
- Mendes, R.; Calado, M.; Mariano, S. Electromagnetic design method for a TLSRG with application in ocean wave energy conversion. Int. J. Electr. Power Energy Syst. 2020, 121, 106097. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mendes, R.; Calado, M.; Mariano, S. Particle swarm and Boxâs complex optimization methods to design linear tubular switched reluctance generators for wave energy conversion. Swarm Evol. Comput. 2016, 28, 29â41. [CrossRef]
Paper not yet in RePEc: Add citation now
- Molla, S.; Farrok, O. Vitroperm 500F and supermendur ferromagnetic cores used in a linear generator for oceanic wave energy conversion. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10â12 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 602â605.
Paper not yet in RePEc: Add citation now
- Molla, S.; Farrok, O.; Islam, M.R.; Muttaqi, K.M. Application of iron nitride compound as alternative permanent magnet for designing linear generators to harvest oceanic wave energy. IET Electr. Power Appl. 2020, 14, 762â770. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mueller, M. Electrical generators for direct drive wave energy converters. IEE Proc.-Gener. Transm. Distrib. 2002, 149, 446â456. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mueller, M.; Baker, N.; Ran, L.; Chong, N.; Wei, H.; Tavner, P.; McKeever, P. Experimental Tests of an Air-Cored PM Tubular Generator for Direct Drive Wave Energy Converters; IET: Auburn Hills, MI, USA, 2008.
Paper not yet in RePEc: Add citation now
- Nilsson, K.; Danielsson, O.; Leijon, M. Electromagnetic forces in the air gap of a permanent magnet linear generator at no load. J. Appl. Phys. 2006, 99, 034505. [CrossRef]
Paper not yet in RePEc: Add citation now
- Niu, X. Modeling and Design Analysis of a Permanent Magnet Linear Synchronous Generator; University of Illinois at UrbanaChampaign: Champaign, IL, USA, 2013.
Paper not yet in RePEc: Add citation now
- Oh, Y.J.; Park, J.S.; Hyon, B.J.; Lee, J. Novel Control Strategy of Wave Energy Converter Using Linear Permanent Magnet Synchronous Generator. IEEE Trans. Appl. Supercond. 2018, 28, 1â5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Owens, B.A.; Mann, B.P. Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J. Sound Vib. 2012, 331, 922â937. [CrossRef]
Paper not yet in RePEc: Add citation now
Ozkop, E.; Altas, I.H. Control, power and electrical components in wave energy conversion systems: A review of the technologies. Renew. Sustain. Energy Rev. 2017, 67, 106â115. [CrossRef]
- Pan, J.; Li, Q.; Wu, X.; Cheung, N.; Qiu, L. Complementary power generation of double linear switched reluctance generators for wave power exploitation. Int. J. Electr. Power Energy Syst. 2019, 106, 33â44. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pan, J.; Zou, Y.; Cheung, N.; Cao, G.-z. On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization. IEEE Trans. Power Electron. 2013, 29, 5298â5307. [CrossRef]
Paper not yet in RePEc: Add citation now
- Panicker, P. The Vertical Axis Oscillating Wave Power Generator. Available online: https://contest.techbriefs.com/2012/entries/ sustainable-technologies/2496 (accessed on 10 June 2022).
Paper not yet in RePEc: Add citation now
- Pecher, A.; Peter Kofoed, J. Handbook of Ocean Wave Energy; Springer: Berlin/Heidelberg, Germany, 2017.
Paper not yet in RePEc: Add citation now
Penalba, M.; Davidson, J.; Windt, C.; Ringwood, J.V. A high-fidelity wave-to-wire simulation platform for wave energy converters: Coupled numerical wave tank and power take-off models. Appl. Energy 2018, 226, 655â669. [CrossRef]
- Pirisi, A.; Mussetta, M.; Gruosso, G.; Zich, R.E. An Optimized Three Phase TPM-LiG for Marine Applications; SPEEDAM 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1712â1717.
Paper not yet in RePEc: Add citation now
- Pirisi, A.; Mussetta, M.; Gruosso, G.; Zich, R.E. Optimization of a linear generator for sea-wave energy conversion by means of a hybrid evolutionary algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18â23 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1â6.
Paper not yet in RePEc: Add citation now
Piscopo, V.; Benassai, G.; Della Morte, R.; Scamardella, A. Cost-based design and selection of point absorber devices for the mediterranean sea. Energies 2018, 11, 946. [CrossRef]
- Polinder, H.; Damen, M.; Gardner, F. Design, modelling and test results of the AWS PM linear generator. Eur. Trans. Electr. Power 2005, 15, 245â256. [CrossRef]
Paper not yet in RePEc: Add citation now
- Polinder, H.; Mecrow, B.C.; Jack, A.G.; Dickinson, P.G.; Mueller, M.A. Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans. Energy Convers. 2005, 20, 260â267. [CrossRef]
Paper not yet in RePEc: Add citation now
- Polinder, H.; Mueller, M.; Scuotto, M.; Goden de Sousa Prado, M. Linear generator systems for wave energy conversion. In Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal, 11â13 September 2007; IDMEC-Institute de Engenharia Mecânica: Lisbon, Portugal, 2007.
Paper not yet in RePEc: Add citation now
- Prado, M.; Polinder, H. Direct Drive in Wave Energy ConversionâAWS Full Scale Prototype Case Study. In Proceedings of the IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24â28 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1â7.
Paper not yet in RePEc: Add citation now
- Prudell, J.; Stoddard, M.; Amon, E.; Brekken, T.K.; Von Jouanne, A. A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans. Ind. Appl. 2010, 46, 2392â2400. [CrossRef]
Paper not yet in RePEc: Add citation now
- Prudell, J.; Stoddard, M.; Brekken, T.K.; von Jouanne, A. A novel permanent magnet tubular linear generator for ocean wave energy. In Proceedings of the Energy Conversion Congress and Exposition, ECCE 2009, San Jose, CA, USA, 20â24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3641â3646.
Paper not yet in RePEc: Add citation now
Qiao, D.; Haider, R.; Yan, J.; Ning, D.; Li, B. Review of Wave Energy Converter and Design of Mooring System. Sustainability 2020, 12, 8251. [CrossRef]
- Rahman, A.; Farrok, O.; Islam, M.R.; Xu, W. Recent Progress in Electrical Generators for Oceanic Wave Energy Conversion. IEEE Access 2020, 8, 138595â138615. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ran, L.; Mueller, M.; Ng, C.; Tavner, P.; Zhao, H.; Baker, N.; McDonald, S.; McKeever, P. Power conversion and control for a linear direct drive permanent magnet generator for wave energy. IET Renew. Power Gener. 2011, 5, 1â9. [CrossRef]
Paper not yet in RePEc: Add citation now
Rao, K.R.; Sunderan, T.; Adiris, M.R.A. Performance and design optimization of two model based wave energy permanent magnet linear generators. Renew. Energy 2017, 101, 196â203. [CrossRef]
Rhinefrank, K.; Agamloh, E.; von Jouanne, A.; Wallace, A.; Prudell, J.; Kimble, K.; Aills, J.; Schmidt, E.; Chan, P.; Sweeny, B. Novel ocean energy permanent magnet linear generator buoy. Renew. Energy 2006, 31, 1279â1298. [CrossRef]
- Richter, M. Different Model Predictive Control Approaches for Controlling Point Absorber Wave Energy Converters. Diploma Thesis, University Stuttgart, Stuttgart, Germany, 2011.
Paper not yet in RePEc: Add citation now
- Richter, M.; Magana, M.E.; Sawodny, O.; Brekken, T.K. Nonlinear model predictive control of a point absorber wave energy converter. IEEE Trans. Sustain. Energy 2012, 4, 118â126. [CrossRef]
Paper not yet in RePEc: Add citation now
- Rossiter, J.A. Model-Based Predictive Control: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2003.
Paper not yet in RePEc: Add citation now
Rusu, E.; Venugopal, V. Offshore Renewable Energy: Ocean Waves, Tides and Offshore Wind; MDPI: Basel, Switzerland, 2019.
- Saeed, O.; Wahyudie, A.; Susilo, T.B.; Shareef, H. Simple resonance circuit to improve electrical power conversion in a two-sided planar permanent magnet linear generator for wave energy converters. IEEE Access 2017, 5, 18654â18664. [CrossRef]
Paper not yet in RePEc: Add citation now
- Salter, S.H.; Taylor, J.; Caldwell, N. Power conversion mechanisms for wave energy. Proc. Inst. Mech. Eng. M J. Eng. Marit. Environ. 2002, 216, 1â27. [CrossRef]
Paper not yet in RePEc: Add citation now
- Santana, A.G.; Andrade, D.E.M.; Jaén, A. Control of Hydrodynamic Parameters of Wave Energy Point Absorbers Using Linear Generators and VSC-Based Power Converters Connected to the Grid. In Proceedings of the International 1st Conference on Renewable Energies and Power Quality, Granada, Spain, 23â25 March 2010.
Paper not yet in RePEc: Add citation now
- Seo, S.-W.; Shin, K.-H.; Koo, M.-M.; Hong, K.; Yoon, I.-J.; Choi, J.-Y. Experimentally Verifying the Generation Characteristics of a Double-Sided Linear Permanent Magnet Synchronous Generator for Ocean Wave Energy Conversion. IEEE Trans. Appl. Supercond. 2020, 30, 1â4. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shek, J.; Macpherson, D.; Mueller, M. Experimental verification of linear generator control for direct drive wave energy conversion. IET Renew. Power Gener. 2010, 4, 395â403. [CrossRef]
Paper not yet in RePEc: Add citation now
- Son, D.; Yeung, R.W. Real-time implementation and validation of optimal damping control for a permanent-magnet linear generator in wave energy extraction. Appl. Energy 2017, 208, 571â579. [CrossRef]
Paper not yet in RePEc: Add citation now
- Stålberg, M.; Waters, R.; Danielsson, O.; Leijon, M. Influence of generator damping on peak power and variance of power for a direct drive wave energy converter. J. Offshore Mech. Arct. Eng. 2008, 130, 031003. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sun, Z.; Cheung, N.; Zhao, S.; Lu, Y.; Shi, Z. Design and simulation of a linear switched reluctance generator for wave energy conversion. In Proceedings of the 4th International Conference on Power Electronics Systems and Applications, Hong Kong, China, 8â10 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1â5.
Paper not yet in RePEc: Add citation now
- Szabo, L.; Oprea, C. Wave energy plants for the black sea possible energy converter structures. In Proceedings of the 2007 International Conference on Clean Electrical Power, Capri, Italy, 21â23 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 306â311.
Paper not yet in RePEc: Add citation now
- Szabo, L.; Oprea, C.; Viorel, I.-A.; Biró, K.. Novel permanent magnet tubular linear generator for wave energy converters. In Proceedings of the 2007 IEEE International Electric Machines & Drives Conference, Antalya, Turkey, 3â5 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 983â987.
Paper not yet in RePEc: Add citation now
- Tan, Y.; Lin, K.; Zu, J.W. Analytical modelling of Halbach linear generator incorporating pole shifting and piece-wise spring for ocean wave energy harvesting. AIP Adv. 2018, 8, 056615. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tom, N.; Yeung, R.W. Experimental confirmation of nonlinear-model-predictive control applied offline to a permanent magnet linear generator for ocean-wave energy conversion. IEEE J. Ocean. Eng. 2015, 41, 281â295.
Paper not yet in RePEc: Add citation now
- Tom, N.; Yeung, R.W. Nonlinear model predictive control applied to a generic ocean-wave energy extractor. J. Offshore Mech. Arct. Eng. 2014, 136, 041901. [CrossRef]
Paper not yet in RePEc: Add citation now
- Trapanese, M.; Boscaino, V.; Cipriani, G.; Curto, D.; Di Dio, V.; Franzitta, V. A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system. IEEE Trans. Ind. Electron. 2018, 66, 4934â4944. [CrossRef] Sustainability 2022, 14, 9936 36 of 42
Paper not yet in RePEc: Add citation now
- Vermaak, R.; Kamper, M.J. Design aspects of a novel topology air-cored permanent magnet linear generator for direct drive wave energy converters. IEEE Trans. Ind. Electron. 2011, 59, 2104â2115. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vermaak, R.; Kamper, M.J. Experimental evaluation and predictive control of an air-cored linear generator for direct-drive wave energy converters. IEEE Trans. Ind. Appl. 2012, 48, 1817â1826. [CrossRef]
Paper not yet in RePEc: Add citation now
- Vining, J.; Lipo, T.; Venkataramanan, G. Design and optimization of a novel hybrid transverse/longitudinal flux, wound-field linear machine for ocean wave energy conversion. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20â24 September 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 3726â3733.
Paper not yet in RePEc: Add citation now
- Vining, J.; Mundon, T.; Nair, B. Electromechanical design and experimental evaluation of a double-sided, dual airgap linear vernier generator for wave energy conversion. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1â5 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 5557â5564.
Paper not yet in RePEc: Add citation now
- Viola, A.; Franzitta, V.; Curto, D.; Trapanese, M.; Di Dio, V.; Cipriani, G.; Boscaino, V.; Corpora, M.; Raimondi, F.M. Design of Wave Energy Converter (WEC): A Prototype Installed in Sicily; OCEANS 2015-Genova, 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1â5.
Paper not yet in RePEc: Add citation now
- Wahyudie, A.; Jama, M.; Susilo, T.; Saeed, O.; Nandar, C.; Harib, K. Simple bottom-up hierarchical control strategy for heaving wave energy converters. Int. J. Electr. Power Energy Syst. 2017, 87, 211â221. [CrossRef] Sustainability 2022, 14, 9936 40 of 42
Paper not yet in RePEc: Add citation now
- Wahyudie, A.; Jama, M.; Susilo, T.B.; Mon, B.F.; Shaaref, H.; Noura, H. Design and testing of a laboratory scale test rig for wave energy converters using a double-sided permanent magnet linear generator. IET Renew. Power Gener. 2017, 11, 922â930. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wahyudie, A.; Susilo, T.B.; Jama, M.; Mon, B.F.; Shaaref, H. Design of a Double-Sided Permanent Magnet Linear Generator for Laboratory Scale Ocean Wave Energy Converter; OCEANS 2017-Anchorage; IEEE: Piscataway, NJ, USA, 2017; pp. 1â5. Sustainability 2022, 14, 9936 37 of 42
Paper not yet in RePEc: Add citation now
- Wang, D.; Shao, C.; Wang, X. Design and performance evaluation of a tubular linear switched reluctance generator with low cost and high thrust density. IEEE Trans. Appl. Supercond. 2016, 26, 1â5. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, J.; Howe, D. Design optimization of radially magnetized, iron-cored, tubular permanent-magnet machines and drive systems. IEEE Trans. Magn. 2004, 40, 3262â3277. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, L.; Engström, J.; Göteman, M.; Isberg, J. Constrained optimal control of a point absorber wave energy converter with linear generator. J. Renew. Sustain. Energy 2015, 7, 043127. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, L.; Isberg, J.; Tedeschi, E. Review of control strategies for wave energy conversion systems and their validation: The wave-to-wire approach. Renew. Sustain. Energy Rev. 2018, 81, 366â379. [CrossRef]
Paper not yet in RePEc: Add citation now
Wang, L.; Lin, M.; Tedeschi, E.; Engstrm, J.; Isberg, J. Improving electric power generation of a standalone wave energy converter via optimal electric load control. Energy 2020, 211, 118945. [CrossRef]
- Wang, W.; Cao, J.; Zhang, N.; Lin, J.; Liao, W.-H. Magnetic-spring based energy harvesting from human motions: Design, modeling and experiments. Energy Convers. Manag. 2017, 132, 189â197. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, X. Frequency Analysis of Vibration Energy Harvesting Systems; Academic Press: Cambridge, MA, USA, 2016.
Paper not yet in RePEc: Add citation now
- Waters, R.; Stålberg, M.; Danielsson, O.; Svensson, O.; Gustafsson, S.; Strömstedt, E.; Eriksson, M.; Sundberg, J.; Leijon, M. Experimental results from sea trials of an offshore wave energy system. Appl. Phys. Lett. 2007, 90, 034105. [CrossRef]
Paper not yet in RePEc: Add citation now
- Williams, C.; Yates, R.B. Analysis of a micro-electric generator for microsystems. Sens. Actuators A Phys. 1996, 52, 8â11. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xia, T.; Yu, H.; Chen, Z.; Huang, L.; Liu, X.; Hu, M. Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Trans. Magn. 2017, 53, 1â4. [CrossRef]
Paper not yet in RePEc: Add citation now
- Xia, T.; Yu, H.; Guo, R.; Liu, X. Research on the field-modulated tubular linear generator with quasi-halbach magnetization for ocean wave energy conversion. IEEE Trans. Appl. Supercond. 2018, 28, 1â5. [CrossRef]
Paper not yet in RePEc: Add citation now
Xiao, X.; Xiao, L.; Peng, T. Comparative study on power capture performance of oscillating-body wave energy converters with three novel power take-off systems. Renew. Energy 2017, 103, 94â105. [CrossRef]
Xu, S.; Wang, S.; Soares, C.G. Review of mooring design for floating wave energy converters. Renew. Sustain. Energy Rev. 2019, 111, 595â621. [CrossRef]
- Youn, S.W.; Lee, J.J.; Yoon, H.S.; Koh, C.S. A new cogging-free permanent-magnet linear motor. IEEE Trans. Magn. 2008, 44, 1785â1790. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, H.; Liu, C.; Yuan, B.; Hu, M.; Huang, L.; Zhou, S. A permanent magnet tubular linear generator for wave energy conversion. J. Appl. Phys. 2012, 111, 07A741. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yu, Y.-H.; Tom, N.; Jenne, D. Numerical analysis on hydraulic power take-off for wave energy converter and power smoothing methods. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Madrid, Spain, 17â22 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018; p. V010T09A043.
Paper not yet in RePEc: Add citation now
- Zhang, J.; Yu, H.; Chen, Q.; Hu, M.; Huang, L.; Liu, Q. Design and experimental analysis of AC linear generator with Halbach PM arrays for direct-drive wave energy conversion. IEEE Trans. Appl. Supercond. 2013, 24, 1â4. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhang, J.; Yu, H.; Hu, M.; Huang, L.; Xia, T. Research on a PM Slotless Linear Generator Based on Magnet Field Analysis Model for Wave Energy Conversion. IEEE Trans. Magn. 2017, 53, 1â4. [CrossRef]
Paper not yet in RePEc: Add citation now
Zhang, J.; Yu, H.; Shi, Z. Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator. Energies 2018, 11, 735. [CrossRef]
- Zhang, Q.; Wang, Y.; Kim, E.S. Power generation from human body motion through magnet and coil arrays with magnetic spring. J. Appl. Phys. 2014, 115, 064908. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zheng, Z.-Q.; Huang, P.; Gao, D.-X.; Chang, Z.-Y. Analysis of electromagnetic force of the linear generator in point absorber wave energy converters. J. Mar. Sci. Technol. 2015, 23, 475â480.
Paper not yet in RePEc: Add citation now
- Zurkinden, A.S.; Ferri, F.; Beatty, S.; Kofoed, J.P.; Kramer, M. Non-linear numerical modeling and experimental testing of a point absorber wave energy converter. Ocean Eng. 2014, 78, 11â21. [CrossRef]
Paper not yet in RePEc: Add citation now