create a website

Time Series Data Modeling Using Advanced Machine Learning and AutoML. (2022). , Sonia ; Kumar, Karan ; Iwendi, Celestine ; Alsharef, Ahmad.
In: Sustainability.
RePEc:gam:jsusta:v:14:y:2022:i:22:p:15292-:d:976087.

Full description at Econpapers || Download paper

Cited: 1

Citations received by this document

Cites: 73

References cited by this document

Cocites: 53

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Review of Estimating and Predicting Models of the Wind Energy Amount. (2023). Simankov, Vladimir ; Onishchenko, Stefan ; Teploukhov, Semen ; Chetyrbok, Petr ; Buchatskiy, Pavel ; Kazak, Anatoliy.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:16:p:5926-:d:1214599.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abu Bakar, N.; Rosbi, S.; Bakar, N.A.; Rosbi, S. Autoregressive integrated moving average (ARIMA) model for forecasting cryptocurrency exchange rate in high volatility environment: A new insight of bitcoin transaction. Int. J. Adv. Eng. Res. Sci. 2017, 4, 237311.
    Paper not yet in RePEc: Add citation now
  2. Abushandi, E.; Al Ajmi, M. Assessment of Hydrological Extremes for Arid Catchments: A Case Study in Wadi Al Jizzi, North-West Oman. Sustainability 2022, 14, 14028. [CrossRef]

  3. Ackerman, S.; Farchi, E.; Raz, O.; Zalmanovici, M.; Dube, P. Detection of data drift and outliers affecting machine learning model performance over time. arXiv 2020, arXiv:2012.09258.
    Paper not yet in RePEc: Add citation now
  4. Ackerman, S.; Raz, O.; Zalmanovici, M.; Zlotnick, A. Automatically detecting data drift in machine learning classifiers. arXiv 2021, arXiv:2111.05672.
    Paper not yet in RePEc: Add citation now
  5. Adhikari, R.; Agrawal, R.K. An introductory study on time series modeling and forecasting. arXiv 2013, arXiv:1302.6613.
    Paper not yet in RePEc: Add citation now
  6. Alsharef, A.; Aggarwal, K.; Kumar, M.; Mishra, A. Review of ML and AutoML Solutions to Forecast Time-Series Data. Arch. Comput. Methods Eng. 2022, 29, 5297–5311. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Alsharef, A.; Bhuyan, P.; Ray, A. Predicting Stock Market Prices Using Fine-Tuned IndRNN. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 309–315. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Alsharef, A.; Sonia; Aggarawal, K. Predicting Time-Series Data Using Linear and Deep Learning Models—An Experimental Study. In Data, Engineering and Applications; Springer: Singapore, 2022; pp. 505–516. ISBN 978-981-19-4686-8.
    Paper not yet in RePEc: Add citation now
  9. Alteryx EvalML 0.36.0 Documentation. Available online: https://evalml.alteryx.com/en/stable/ (accessed on 1 August 2022).
    Paper not yet in RePEc: Add citation now
  10. Alto, V. Neural Networks: Parameters, Hyperparameters and Optimization Strategies. Available online: https:// towardsdatascience.com/neural-networks-parameters-hyperparameters-and-optimization-strategies-3f0842fac0a5 (accessed on 1 August 2022).
    Paper not yet in RePEc: Add citation now
  11. Awoke, T.; Rout, M.; Mohanty, L.; Satapathy, S.C. Bitcoin price prediction and analysis using deep learning models. In Communication Software and Networks; Springer: Singapore, 2021; pp. 631–640.
    Paper not yet in RePEc: Add citation now
  12. Balaji, A.; Allen, A. Benchmarking automatic machine learning frameworks. arXiv 2018, arXiv:1808.06492.
    Paper not yet in RePEc: Add citation now
  13. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
    Paper not yet in RePEc: Add citation now
  14. Bhatia, R. Data Drift: An In-Depth Understanding. Available online: https://www.linkedin.com/pulse/data-drift-in-depthunderstanding -rishabh-bhatia (accessed on 1 September 2022).
    Paper not yet in RePEc: Add citation now
  15. Bhuriya, D.; Kaushal, G.; Sharma, A.; Singh, U. Stock market predication using a linear regression. In Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 20–22 April 2017; Volume 2, pp. 510–513.
    Paper not yet in RePEc: Add citation now
  16. Chakraborty, D.; Ghosh, S.; Ghosh, A. Autoencoder based Hybrid Multi-Task Predictor Network for Daily Open-High-Low-Close Prices Prediction of Indian Stocks. arXiv 2022, arXiv:2204.13422.
    Paper not yet in RePEc: Add citation now
  17. Clements, M.P.; Franses, P.H.; Swanson, N.R. Forecasting economic and financial time-series with non-linear models. Int. J. Forecast. 2004, 20, 169–183. [CrossRef] Sustainability 2022, 14, 15292 17 of 19

  18. Cowpertwait, P.S.P.; Metcalfe, A. V Introductory Time Series with R; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 0387886982.
    Paper not yet in RePEc: Add citation now
  19. Dahl, S.M.J. TSPO: An Automl Approach to Time Series Forecasting. Master’s Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2020.
    Paper not yet in RePEc: Add citation now
  20. De Gooijer, J.G.; Hyndman, R.J. 25 Years of IIF Time Series Forecasting: A Selective Review; Tinbergen Institute Discussion Paper, No. 05-068/4; Tinbergen Institute: Amsterdam, The Netherlands, 2005; pp. 5–68.

  21. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [CrossRef]

  22. Dobre-Baron, O.; Nit , escu, A.; Nit , ă, D.; Mitran, C. Romania’s Perspectives on the Transition to the Circular Economy in an EU Context. Sustainability 2022, 14, 5324. [CrossRef]

  23. Du, S.; Li, T.; Yang, Y.; Horng, S.-J. Multivariate time series forecasting via attention-based encoder–decoder framework. Neurocomputing 2020, 388, 269–279. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Durand, D.; Aguilar, J.; R-Moreno, M.D. An Analysis of the Energy Consumption Forecasting Problem in Smart Buildings Using LSTM. Sustainability 2022, 14, 13358. [CrossRef] Sustainability 2022, 14, 15292 18 of 19
    Paper not yet in RePEc: Add citation now
  25. Ekambaram, V.; Manglik, K.; Mukherjee, S.; Sajja, S.S.K.; Dwivedi, S.; Raykar, V. Attention based multi-modal new product sales time-series forecasting. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 3110–3118.
    Paper not yet in RePEc: Add citation now
  26. Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. Autogluon-tabular: Robust and accurate automl for structured data. arXiv 2020, arXiv:2003.06505.
    Paper not yet in RePEc: Add citation now
  27. Eurostat. Available online: https://ec.europa.eu/eurostat/cache/metadata/en/cei_pc033_esmsip2.htm (accessed on 5 October 2021).
    Paper not yet in RePEc: Add citation now
  28. EvalML Data Checks. Available online: https://evalml.alteryx.com/en/stable/user_guide/data_checks.html (accessed on 10 August 2022).
    Paper not yet in RePEc: Add citation now
  29. Fields, T.; Hsieh, G.; Chenou, J. Mitigating drift in time series data with noise augmentation. In Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7 December 2019; pp. 227–230.
    Paper not yet in RePEc: Add citation now
  30. Frick, T.; Glüge, S.; Rahimi, A.; Benini, L.; Brunschwiler, T. Explainable Deep Learning for Medical Time Series Data. In Proceedings of the International Conference on Wireless Mobile Communication and Healthcare, Virtual Event, 18–19 December 2020; pp. 244–256.
    Paper not yet in RePEc: Add citation now
  31. Gijsbers, P.; LeDell, E.; Thomas, J.; Poirier, S.; Bischl, B.; Vanschoren, J. An open source AutoML benchmark. arXiv 2019, arXiv:1907.00909.
    Paper not yet in RePEc: Add citation now
  32. Hamayel, M.J.; Owda, A.Y. A Novel Cryptocurrency Price Prediction Model Using GRU, LSTM and bi-LSTM Machine Learning Algorithms. AI 2021, 2, 477–496. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Hanussek, M.; Blohm, M.; Kintz, M. Can AutoML outperform humans? An evaluation on popular OpenML datasets using AutoML benchmark. arXiv 2020, arXiv:2009.01564.
    Paper not yet in RePEc: Add citation now
  34. He, Y.; Fataliyev, K.; Wang, L. Feature selection for stock market analysis. In Proceedings of the International Conference on Neural Information Processing, Daegu, Korea, 3–7 November 2013; pp. 737–744.
    Paper not yet in RePEc: Add citation now
  35. Hu, Y.-J.; Huang, S.-W. Challenges of automated machine learning on causal impact analytics for policy evaluation. In Proceedings of the 2017 2nd International Conference on Telecommunication and Networks (TEL-NET), Noida, India, 10–11 August 2017; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  36. Idrees, S.M.; Alam, M.A.; Agarwal, P. A prediction approach for stock market volatility based on time series data. IEEE Access 2019, 7, 17287–17298. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. In Proceedings of the International Workshop on Automatic Machine Learning at ICML, Stockholm, Sweden, 10–15 July 2018; pp. 1189–1232.
    Paper not yet in RePEc: Add citation now
  38. Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956.
    Paper not yet in RePEc: Add citation now
  39. Karevan, Z.; Suykens, J.A.K. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw. 2020, 125, 1–9. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Kedem, B.; Fokianos, K. Regression Models for Time Series Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 0471461687.
    Paper not yet in RePEc: Add citation now
  41. Khan, M.A.; Abbas, K.; Su’ud, M.M.; Salameh, A.A.; Alam, M.M.; Aman, N.; Mehreen, M.; Jan, A.; Hashim, N.A.A.B.N.; Aziz, R.C. Application of Machine Learning Algorithms for Sustainable Business Management Based on Macro-Economic Data: Supervised Learning Techniques Approach. Sustainability 2022, 14, 9964. [CrossRef]

  42. Kilinc, H.C.; Yurtsever, A. Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series. Sustainability 2022, 14, 3352. [CrossRef]
    Paper not yet in RePEc: Add citation now
  43. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA: Automatic model selection and hyperparameter optimization in WEKA. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 81–95.
    Paper not yet in RePEc: Add citation now
  44. Laine, M. Introduction to dynamic linear models for time series analysis. In Geodetic Time Series Analysis in Earth Sciences; Springer: Cham, Switzerland, 2020; pp. 139–156.
    Paper not yet in RePEc: Add citation now
  45. LeDell, E.; Poirier, S. H2O automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML, Vienna, Austria, 17–18 July 2020.
    Paper not yet in RePEc: Add citation now
  46. Li, Y.; Ma, W. Applications of artificial neural networks in financial economics: A survey. In Proceedings of the 2010 International Symposium on Computational Intelligence and Design, Hangzhou, China, 29–31 October 2010; Volume 1, pp. 211–214.
    Paper not yet in RePEc: Add citation now
  47. Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020, 32, 17351–17360. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Manikantha, K.; Jain, S. Automated Machine Learning. Int. J. Adv. Res. Innov. Ideas Educ. 2021, 6, 245–281.
    Paper not yet in RePEc: Add citation now
  49. Mantovani, R.G.; Horváth, T.; Cerri, R.; Vanschoren, J.; de Carvalho, A.C. Hyper-parameter tuning of a decision tree induction algorithm. In Proceedings of the 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), Recife, Brazil, 9–12 October 2016; pp. 37–42.
    Paper not yet in RePEc: Add citation now
  50. Marc Claesen, B.D.M. Hyperparameter Search in Machine Learning. In Proceedings of the MIC 2015: The XI Metaheuristics International Conference, Agadir, Morocco, 7–10 June 2015.
    Paper not yet in RePEc: Add citation now
  51. Melis, G.; Dyer, C.; Blunsom, P. On the state of the art of evaluation in neural language models. arXiv 2017, arXiv:1707.05589.
    Paper not yet in RePEc: Add citation now
  52. Mohr, F.; Wever, M.; Hüllermeier, E. ML-Plan: Automated machine learning via hierarchical planning. Mach. Learn. 2018, 107, 1495–1515. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Momani, P.; Naill, P.E. Time series analysis model for rainfall data in Jordan: Case study for using time series analysis. Am. J. Environ. Sci. 2009, 5, 599. [CrossRef]
    Paper not yet in RePEc: Add citation now
  54. Oancea, B. Linear regression with r and hadoop. Challenges Knowl. Soc. 2015, 1007–1012. Available online: https://scholar.archive.org/ work/46m3utxrpfhnlc4ssehtrpoyue/access/wayback/http://cks.univnt.ro/uploads/cks_2015_articles/index.php?dir=12_IT_in_ social_sciences%2F&download=CKS+2015_IT_in_social_sciences_art.144.pdf (accessed on 4 November 2022).
    Paper not yet in RePEc: Add citation now
  55. Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a tree-based pipeline optimization tool for automating data science. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, Denver, CO, USA, 20–24 July 2016; pp. 485–492.
    Paper not yet in RePEc: Add citation now
  56. Parray, I.R.; Khurana, S.S.; Kumar, M.; Altalbe, A.A. Time series data analysis of stock price movement using machine learning techniques. Soft Comput. 2020, 24, 16509–16517. [CrossRef]
    Paper not yet in RePEc: Add citation now
  57. Quemy, A. Two-stage optimization for machine learning workflow. Inf. Syst. 2020, 92, 101483. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Rahmani, K.; Thapa, R.; Tsou, P.; Chetty, S.C.; Barnes, G.; Lam, C.; Tso, C.F. Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction. medRxiv 2022. [CrossRef]
    Paper not yet in RePEc: Add citation now
  59. Shah, S. Comparison of Stochastic Forecasting Models. 2021. Available online: https://doi.org/10.31219/osf.io/7fepu (accessed on 4 November 2022).
    Paper not yet in RePEc: Add citation now
  60. Shen, Z.; Zhang, Y.; Lu, J.; Xu, J.; Xiao, G. A novel time series forecasting model with deep learning. Neurocomputing 2020, 396, 302–313. [CrossRef]
    Paper not yet in RePEc: Add citation now
  61. Silva, A.S.A.d.; Barreto, I.D.D.C.; Cunha-Filho, M.; Menezes, R.S.C.; Stosic, B.; Stosic, T. Spatial and Temporal Variability of Precipitation Complexity in Northeast Brazil. Sustainability 2022, 14, 13467. [CrossRef]

  62. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 2012, 25, 2951–2959. [CrossRef]
    Paper not yet in RePEc: Add citation now
  63. Tornede, T.; Tornede, A.; Wever, M.; Hüllermeier, E. Coevolution of remaining useful lifetime estimation pipelines for automated predictive maintenance. In Proceedings of the Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July 2021; pp. 368–376.
    Paper not yet in RePEc: Add citation now
  64. Tseng, F.-M.; Tzeng, G.-H.; Yu, H.-C.; Yuan, B.J.C. Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy Sets Syst. 2001, 118, 9–19. [CrossRef]
    Paper not yet in RePEc: Add citation now
  65. Uras, N.; Marchesi, L.; Marchesi, M.; Tonelli, R. Forecasting Bitcoin closing price series using linear regression and neural networks models. PeerJ Comput. Sci. 2020, 6, e279. [CrossRef] [PubMed]

  66. Wackernagel, M.; Lin, D.; Evans, M.; Hanscom, L.; Raven, P. Defying the Footprint Oracle: Implications of Country Resource Trends. Sustainability 2019, 11, 2164. [CrossRef]

  67. Wang, C.; Wu, Q.; Weimer, M.; Zhu, E. FLAML: A fast and lightweight automl library. Proc. Mach. Learn. Syst. 2021, 3, 434–447.
    Paper not yet in RePEc: Add citation now
  68. Wang, J.; You, S.; Agyekum, E.B.; Matasane, C.; Uhunamure, S.E. Exploring the Impacts of Renewable Energy, Environmental Regulations, and Democracy on Ecological Footprints in the Next Eleven Nations. Sustainability 2022, 14, 11909. [CrossRef]

  69. Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104, 101822. [CrossRef] [PubMed] Sustainability 2022, 14, 15292 19 of 19
    Paper not yet in RePEc: Add citation now
  70. Xu, Z.; Tu, W.-W.; Guyon, I. AutoML Meets Time Series Regression Design and Analysis of the AutoSeries Challenge. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Bilbao, Spain, 13–17 September 2021; pp. 36–51.
    Paper not yet in RePEc: Add citation now
  71. Zhang, M. Time Series: Autoregressive Models AR, MA, ARMA, ARIMA; University of Pittsburgh: Pittsburgh, PA, USA, 2018.
    Paper not yet in RePEc: Add citation now
  72. Zimmer, L.; Lindauer, M.; Hutter, F. Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3079–3090. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  73. Zoller, M.-A.; Huber, M.F. Benchmark and Survey of Automated Machine Learning Frameworks. arXiv 2019, arXiv:1904.12054. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Unprecedented rainfall in the United Arab Emirates: hydrologic and flood impact analysis of the April 2024 event. (2025). al Aghbari, Amran A ; Elkamali, Muhagir ; Alsumaiti, Tareefa ; Sharif, Hatim O ; Abdalati, Waleed ; Hussein, Khalid ; Alhosani, Naeema ; Al-Areeq, Ahmed M.
    In: Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards.
    RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07156-9.

    Full description at Econpapers || Download paper

  2. Time Series Data Modeling Using Advanced Machine Learning and AutoML. (2022). , Sonia ; Kumar, Karan ; Iwendi, Celestine ; Alsharef, Ahmad.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:22:p:15292-:d:976087.

    Full description at Econpapers || Download paper

  3. Climate Transition Risk, Climate Sentiments, and Financial Stability in a Stock-Flow Consistent approach. (2019). Naqvi, Asjad ; Dunz, Nepomuk ; Monasterolo, Irene.
    In: Ecological Economic Papers.
    RePEc:wiw:wus045:6911.

    Full description at Econpapers || Download paper

  4. Modeling Stock Market Returns of BRICS with a Markov-Switching Dynamic Regression Model. (2019). Moroke, Ntebogang Dinah ; Rapoo, Ishmael ; Xaba, Diteboho.
    In: Journal of Economics and Behavioral Studies.
    RePEc:rnd:arjebs:v:11:y:2019:i:3:p:10-22.

    Full description at Econpapers || Download paper

  5. A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province. (2019). Xu, Yueling ; Xiang, Ying ; Zhang, Wenyu ; Bao, Haijun.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:11:p:3164-:d:237384.

    Full description at Econpapers || Download paper

  6. A model-free consistent test for structural change in regression possibly with endogeneity. (2019). Hong, Yongmiao ; Fu, Zhonghao.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:211:y:2019:i:1:p:206-242.

    Full description at Econpapers || Download paper

  7. Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model. (2018). Nyberg, Henri.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:37:y:2018:i:1:p:1-15.

    Full description at Econpapers || Download paper

  8. Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA. (2018). Deo, Ravinesh ; Ghareb, Mazen Ismaeel ; Ebtehaj, Isa ; Bonakdari, Hossein ; Yusif, Ali A ; Yaseen, Zaher Mundher ; Heddam, Salim ; Siddique, Ridwan.
    In: Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA).
    RePEc:spr:waterr:v:32:y:2018:i:1:d:10.1007_s11269-017-1797-0.

    Full description at Econpapers || Download paper

  9. Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression. (2018). Aste, Tomaso ; di Matteo, Tiziana ; Nava, Noemi.
    In: Risks.
    RePEc:gam:jrisks:v:6:y:2018:i:1:p:7-:d:130251.

    Full description at Econpapers || Download paper

  10. Financial time series forecasting using empirical mode decomposition and support vector regression. (2018). Aste, Tomaso ; di Matteo, Tiziana ; Nava, Noemi.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:91028.

    Full description at Econpapers || Download paper

  11. Forecasting exchange rate using Variational Mode Decomposition and entropy theory. (2018). Chen, Yanhui.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:510:y:2018:i:c:p:15-25.

    Full description at Econpapers || Download paper

  12. Empowering cash managers to achieve cost savings by improving predictive accuracy. (2017). Salas-Molina, Francisco ; Rodriguez-Aguilar, Juan A ; Ll, Josep ; Serra, Joan ; Martin, Francisco J.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:2:p:403-415.

    Full description at Econpapers || Download paper

  13. Empirical analysis of daily cash flow time series and its implications for forecasting. (2017). Salas-Molina, Francisco ; Rodr, Juan A ; Serra, Joan ; Martin, Francisco J.
    In: Papers.
    RePEc:arx:papers:1611.04941.

    Full description at Econpapers || Download paper

  14. Forecasting the nominal exchange rate movements in a changing world. The case of the U.S. and the U.K.. (2016). Peel, David ; Promponas, Pantelis .
    In: Working Papers.
    RePEc:lan:wpaper:144439514.

    Full description at Econpapers || Download paper

  15. On the Predictive Content of Nonlinear Transformations of Lagged Autoregression Residuals and Time Series Observations. (2016). Rossen, Anja.
    In: Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik).
    RePEc:jns:jbstat:v:236:y:2016:i:1:p:389-409.

    Full description at Econpapers || Download paper

  16. Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price. (2016). Zha, Rui ; Lai, Kin Keung ; He, Kaijian ; Wu, Jun.
    In: Sustainability.
    RePEc:gam:jsusta:v:8:y:2016:i:4:p:387-:d:68672.

    Full description at Econpapers || Download paper

  17. Empowering cash managers to achieve cost savings by improving predictive accuracy. (2016). Salas-Molina, Francisco ; Rodr, Juan A ; Ll, Josep ; Serra, Joan ; Martin, Francisco J.
    In: Papers.
    RePEc:arx:papers:1605.04219.

    Full description at Econpapers || Download paper

  18. Financial variables and economic activity in the Nordic countries. (2015). Kuosmanen, Petri ; Nabulsi, Nasib ; Vataja, Juuso.
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:37:y:2015:i:c:p:368-379.

    Full description at Econpapers || Download paper

  19. Electricity price forecasts using a Curvelet denoising based approach. (2015). Zou, Yingchao ; Xu, Yang ; Tang, Ling ; He, Kaijian.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:425:y:2015:i:c:p:1-9.

    Full description at Econpapers || Download paper

  20. Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology. (2015). Yu, Lean ; Tang, Ling ; He, Kaijian.
    In: Energy.
    RePEc:eee:energy:v:91:y:2015:i:c:p:601-609.

    Full description at Econpapers || Download paper

  21. On the predictive content of nonlinear transformations of lagged autoregression residuals and time series observations. (2014). Rossen, Anja.
    In: HWWI Research Papers.
    RePEc:zbw:hwwirp:157.

    Full description at Econpapers || Download paper

  22. On the empirical evidence of asymmetric effects in the Polish interest rate pass-through. (2013). Sznajderska, Anna.
    In: The Journal of Economic Asymmetries.
    RePEc:eee:joecas:v:10:y:2013:i:2:p:78-93.

    Full description at Econpapers || Download paper

  23. Economic valuation of liquidity timing. (2013). van der Wel, Michel ; Sojli, Elvira ; Tham, Wing Wah ; Karstanje, Dennis .
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:12:p:5073-5087.

    Full description at Econpapers || Download paper

  24. An empirical study of nonlinear adjustment in the UIP model using a smooth transition regression model. (2013). Morley, Bruce ; Ghoshray, Atanu ; Li, Dandan.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:30:y:2013:i:c:p:109-120.

    Full description at Econpapers || Download paper

  25. Advances in Forecasting under Instability. (2013). Rossi, Barbara.
    In: Handbook of Economic Forecasting.
    RePEc:eee:ecofch:2-1203.

    Full description at Econpapers || Download paper

  26. Métodos para predecir índices Bursátiles. (2013). Garcia, Martha Cecilia ; Garzon, Luis Alfonso ; Lopez, Jorge Mario ; Jalal, Aura Maria.
    In: Revista Ecos de Economía.
    RePEc:col:000442:012005.

    Full description at Econpapers || Download paper

  27. The Effect of Non-Linearity Between Credit Conditions and Economic Activity on Density Forecasts. (2013). Franta, Michal.
    In: Working Papers.
    RePEc:cnb:wpaper:2013/09.

    Full description at Econpapers || Download paper

  28. Nonlinear and nonparametric modeling approaches for probabilistic forecasting of the US gross national product. (2013). McSharry, Patrick ; McSharry Patrick E., ; Little Max A., ; Siddharth, Arora .
    In: Studies in Nonlinear Dynamics & Econometrics.
    RePEc:bpj:sndecm:v:17:y:2013:i:4:p:395-420:n:3.

    Full description at Econpapers || Download paper

  29. Boosting techniques for nonlinear time series models. (2012). Hothorn, Torsten ; Robinzonov, Nikolay ; Tutz, Gerhard.
    In: AStA Advances in Statistical Analysis.
    RePEc:spr:alstar:v:96:y:2012:i:1:p:99-122.

    Full description at Econpapers || Download paper

  30. Testing For Nonlinearity In G7 Macroeconomic Time Series. (2012). yilanci, Veli ; Yavuz, Nilgun il .
    In: Journal for Economic Forecasting.
    RePEc:rjr:romjef:v::y:2012:i:3:p:69-79.

    Full description at Econpapers || Download paper

  31. Crude oil price analysis and forecasting using wavelet decomposed ensemble model. (2012). Yu, Lean ; Lai, Kin Keung ; He, Kaijian.
    In: Energy.
    RePEc:eee:energy:v:46:y:2012:i:1:p:564-574.

    Full description at Econpapers || Download paper

  32. Evaluating the forecasting performance of linear and nonlinear monetary policy rules for South Africa. (2011). Naraidoo, Ruthira ; Kasai, Ndahiriwe.
    In: MPRA Paper.
    RePEc:pra:mprapa:40699.

    Full description at Econpapers || Download paper

  33. Markov Switching Models in Empirical Finance. (2011). Guidolin, Massimo.
    In: Working Papers.
    RePEc:igi:igierp:415.

    Full description at Econpapers || Download paper

  34. Advances in Forecasting Under Instability. (2011). Rossi, Barbara.
    In: Working Papers.
    RePEc:duk:dukeec:11-20.

    Full description at Econpapers || Download paper

  35. Concepts and tools for nonlinear time series modelling. (2009). Francq, Christian ; Amendola, Alessandra.
    In: MPRA Paper.
    RePEc:pra:mprapa:15140.

    Full description at Econpapers || Download paper

  36. Non-linear predictability in stock and bond returns: when and where is it exploitable?. (2009). Hyde, Stuart ; Guidolin, Massimo ; Ono, Sadayuki ; McMillan, David.
    In: Working Papers.
    RePEc:fip:fedlwp:2008-010.

    Full description at Econpapers || Download paper

  37. On entropy, financial markets and minority games. (2009). Zapart, Christopher A..
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:388:y:2009:i:7:p:1157-1172.

    Full description at Econpapers || Download paper

  38. Non-linear predictability in stock and bond returns: When and where is it exploitable?. (2009). Hyde, Stuart ; Guidolin, Massimo ; Ono, Sadayuki ; McMillan, David.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:25:y:2009:i:2:p:373-399.

    Full description at Econpapers || Download paper

  39. Nonlinear Time Series in Financial Forecasting. (2008). Lee, Tae Hwy ; Gonzalez-Rivera, Gloria ; Gonzlez-Rivera, Gloria .
    In: Working Papers.
    RePEc:ucr:wpaper:200803.

    Full description at Econpapers || Download paper

  40. Freedom of Choice in Macroeconomic Forecasting: An Illustration with German Industrial Production and Linear Models. (2008). Wohlrabe, Klaus ; Robinzonov, Nikolay .
    In: ifo Working Paper Series.
    RePEc:ces:ifowps:_57.

    Full description at Econpapers || Download paper

  41. Caracterización no lineal y predicción no paramétrica en el IBEX35/Nonlinear Characterization and Predictions of IBEX 35. (2007). Valderas Jaramillo, Juan Manuel ; Velasco, F. ; Olmedo, E..
    In: Estudios de Economia Aplicada.
    RePEc:lrk:eeaart:25_3_11.

    Full description at Econpapers || Download paper

  42. The future of macroeconomic forecasting: Understanding the forecasting process. (2007). Stekler, H. O..
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:23:y:2007:i:2:p:237-248.

    Full description at Econpapers || Download paper

  43. Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach. (2006). Weron, Rafal.
    In: HSC Books.
    RePEc:wuu:hsbook:hsbook0601.

    Full description at Econpapers || Download paper

  44. Economic activity and Recession Probabilities: spread predictive power in Italy. (2006). Torricelli, Costanza ; Brunetti, Marianna ; Modena, University of ; Emilia, Reggio.
    In: Computing in Economics and Finance 2006.
    RePEc:sce:scecfa:350.

    Full description at Econpapers || Download paper

  45. 25 years of time series forecasting. (2006). Hyndman, Rob ; Gooijer, Jan G..
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:22:y:2006:i:3:p:443-473.

    Full description at Econpapers || Download paper

  46. Evaluación asimétrica de una red neuronal artificial:Aplicación al caso de la inflación en Colombia. (2006). Maria Clara Aristizabal Restrepo, .
    In: Borradores de Economia.
    RePEc:bdr:borrec:377.

    Full description at Econpapers || Download paper

  47. What causes the forecasting failure of Markov-Switching models? A Monte Carlo study. (2005). Bessec, Marie ; Bouabdallah, Othman.
    In: Econometrics.
    RePEc:wpa:wuwpem:0503018.

    Full description at Econpapers || Download paper

  48. 25 Years of IIF Time Series Forecasting: A Selective Review. (2005). Hyndman, Rob ; Gooijer, Jan G. ; De Gooijer, Jan G..
    In: Tinbergen Institute Discussion Papers.
    RePEc:tin:wpaper:20050068.

    Full description at Econpapers || Download paper

  49. Forecasting economic variables with nonlinear models. (2005). Teräsvirta, Timo.
    In: SSE/EFI Working Paper Series in Economics and Finance.
    RePEc:hhs:hastef:0598.

    Full description at Econpapers || Download paper

  50. What Causes The Forecasting Failure of Markov-Switching Models? A Monte Carlo Study. (2005). Bessec, Marie ; Bouabdallah, Othman.
    In: Studies in Nonlinear Dynamics & Econometrics.
    RePEc:bpj:sndecm:v:9:y:2005:i:2:n:6.

    Full description at Econpapers || Download paper

  51. Guest Editors’ Introduction: Information in Economic Forecasting. (2005). Hendry, David ; Clements, Michael.
    In: Oxford Bulletin of Economics and Statistics.
    RePEc:bla:obuest:v:67:y:2005:i:s1:p:713-753.

    Full description at Econpapers || Download paper

  52. A Multi-Step Forecast Density. (2005). Zerom, Dawit ; Manzan, S..
    In: CeNDEF Working Papers.
    RePEc:ams:ndfwpp:05-05.

    Full description at Econpapers || Download paper

  53. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 05:21:04 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.