Asgharian, H.; Christiansen, C.; Hou, A.J. Macro-finance determinants of the long-run stock-bond correlation: The DCC-MIDAS specification. J. Financ. Econom. 2016, 14, 617â642. [CrossRef]
Batten, J.A.; Maddox, G.E.; Young, M.R. Does weather, or energy prices, affect carbon prices? Energy Econ. 2021, 96, 105016. [CrossRef]
- Bertini, M.; Buehler, S.; Halbheer, D.; Lehmann, D.R. Carbon Footprinting and Pricing Under Climate Concerns. J. Mark. 2020, 86, 186â201. [CrossRef]
Paper not yet in RePEc: Add citation now
Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307â327. [CrossRef]
Byun, S.J.; Cho, H. Forecasting carbon futures volatility using GARCH models with energy volatilities. Energy Econ. 2013, 40, 207â221. [CrossRef]
Chevallier, J. A model of carbon price interactions with macroeconomic and energy dynamics. Energy Econ. 2011, 33, 1295â1312. [CrossRef] Sustainability 2022, 14, 4306 13 of 13
Chevallier, J. Carbon futures and macroeconomic risk factors: A view from the EU ETS. Energy Econ. 2009, 31, 614â625. [CrossRef]
Conrad, C.; Rittler, D.; RotfuÃ, W. Modeling and explaining the dynamics of European Union Allowance prices at high-frequency. Energy Econ. 2012, 34, 316â326. [CrossRef]
Dai, P.F.; Xiong, X.; Huynh, T.L.D.; Wang, J. The impact of economic policy uncertainties on the volatility of European carbon market. J. Commod. Mark. 2021, 100208. [CrossRef]
- Dutta, A. Modeling and forecasting the volatility of carbon emission market: The role of outliers, time-varying jumps and oil price risk. J. Clean. Prod. 2018, 172, 2773â2781. [CrossRef]
Paper not yet in RePEc: Add citation now
Engle, R.F.; Ghysels, E.; Sohn, B. Stock market volatility and macroeconomic fundamentals. Rev. Econ. Stat. 2013, 95, 776â797. [CrossRef]
Fang, L.; Chen, B.; Yu, H.; Qian, Y. The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH-MIDAS approach. J. Futures Mark. 2018, 38, 413â422. [CrossRef]
Fang, T.; Lee, T.H.; Su, Z. Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection. J. Empir. Financ. 2020, 58, 36â49. [CrossRef]
- Gavriilidis, K. Measuring Climate Policy Uncertainty. Working paper. 2021. [CrossRef]
Paper not yet in RePEc: Add citation now
Golub, A.A.; Lubowski, R.N.; Piris-Cabezas, P. Business responses to climate policy uncertainty: Theoretical analysis of a twin deferral strategy and the risk-adjusted price of carbon. Energy 2020, 205, 117996. [CrossRef]
Gugler, K.; Haxhimusa, A.; Liebensteiner, M. Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables. J. Environ. Econ. Manag. 2021, 106, 102405. [CrossRef]
Hambel, C.; Kraft, H.; Schwartz, E. Optimal carbon abatement in a stochastic equilibrium model with climate change. Eur. Econ. Rev. 2021, 132, 103642. [CrossRef]
Hansen, P.R.; Lunde, A.; Nason, J.M. The model confidence set. Econometrica 2011, 79, 453â497. [CrossRef]
Huang, Y.; Dai, X.; Wang, Q.; Zhou, D. A hybrid model for carbon price forecasting using GARCH and long short-term memory network. Appl. Energy 2021, 285, 116485. [CrossRef]
- Ji, Q.; Zhang, D.; Geng, J. Information linkage, dynamic spillovers in prices and volatility between the carbon and energy markets. J. Clean. Prod. 2018, 198, 972â978. [CrossRef]
Paper not yet in RePEc: Add citation now
Liu, J.; Zhang, Z.; Yan, L.; Wen, F. Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model. Financ. Innov. 2021, 7, 1â19. [CrossRef]
Lopez, J.M.R.; Sakhel, A.; Busch, T. Corporate investments and environmental regulation: The role of regulatory uncertainty, regulation-induced uncertainty, and investment history. Eur. Manag. J. 2017, 35, 91â101. [CrossRef]
- Ma, F.; Lu, X.; Wang, L.; Chevallier, J. Global economic policy uncertainty and gold futures market volatility: Evidence from Markov regime-switching GARCH-MIDAS models. J. Forecast. 2021, 40, 1070â1085. [CrossRef]
Paper not yet in RePEc: Add citation now
Pan, Z.; Wang, Y.; Wu, C.; Yin, L. Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model. J. Empir. Financ. 2017, 43, 130â142. [CrossRef]
- Salisu, A.A.; Gupta, R.; Bouri, E.; Bouri, E.; Ji, Q. Mixed-frequency forecasting of crude oil volatility based on the information content of global economic conditions. J. Forecast. 2022, 41, 134â157. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tian, Y.; Akimov, A.; Roca, E.; Wong, V. Does the carbon market help or hurt the stock price of electricity companies? Further evidence from the European context. J. Clean. Prod. 2016, 112, 1619â1626. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ullah, S.; Chishti, M.Z.; Majeed, M.T. The asymmetric effects of oil price changes on environmental pollution: Evidence from the top ten carbon emitters. Environ. Sci. Pollut. Res. 2020, 27, 29623â29635. [CrossRef]
Paper not yet in RePEc: Add citation now
Van der Ploeg, F.; de Zeeuw, A. Pricing carbon and adjusting capital to fend off climate catastrophes. Environ. Resour. Econ. 2019, 72, 29. [CrossRef]
Wang, L.; Ma, F.; Liu, J.; Yang, L. Forecasting stock price volatility: New evidence from the GARCH-MIDAS model. Int. J. Forecast. 2020, 36, 684â694. [CrossRef]
- Wang, Z.; Dong, H.; Huang, Z. Carbon spot prices in equilibrium frameworks associated with climate change. J. Ind. Manag. Optim. 2021. [CrossRef]
Paper not yet in RePEc: Add citation now
Yu, H.; Fang, L.; Sun, W. Forecasting performance of global economic policy uncertainty for volatility of Chinese stock market. Phys. A Stat. Mech. Its Appl. 2018, 505, 931â940. [CrossRef]
Zhang, Y.; Liu, Z.; Xu, Y. Carbon price volatility: The case of China. PLoS ONE 2018, 13, e0205317. [CrossRef]
Zhao, X.; Han, M.; Ding, L.; Kang, W. Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS. Appl. Energy 2018, 216, 132â141. [CrossRef]
Zhou, Z.; Fu, Z.; Jiang, Y.; Zeng, X.; Lin, L. Can economic policy uncertainty predict exchange rate volatility? New evidence from the GARCH-MIDAS model. Financ. Res. Lett. 2020, 34, 101258. [CrossRef]